mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-28 14:44:10 +08:00
cf8e865810
The Itanium architecture is obsolete, and an informal survey [0] reveals that any residual use of Itanium hardware in production is mostly HP-UX or OpenVMS based. The use of Linux on Itanium appears to be limited to enthusiasts that occasionally boot a fresh Linux kernel to see whether things are still working as intended, and perhaps to churn out some distro packages that are rarely used in practice. None of the original companies behind Itanium still produce or support any hardware or software for the architecture, and it is listed as 'Orphaned' in the MAINTAINERS file, as apparently, none of the engineers that contributed on behalf of those companies (nor anyone else, for that matter) have been willing to support or maintain the architecture upstream or even be responsible for applying the odd fix. The Intel firmware team removed all IA-64 support from the Tianocore/EDK2 reference implementation of EFI in 2018. (Itanium is the original architecture for which EFI was developed, and the way Linux supports it deviates significantly from other architectures.) Some distros, such as Debian and Gentoo, still maintain [unofficial] ia64 ports, but many have dropped support years ago. While the argument is being made [1] that there is a 'for the common good' angle to being able to build and run existing projects such as the Grid Community Toolkit [2] on Itanium for interoperability testing, the fact remains that none of those projects are known to be deployed on Linux/ia64, and very few people actually have access to such a system in the first place. Even if there were ways imaginable in which Linux/ia64 could be put to good use today, what matters is whether anyone is actually doing that, and this does not appear to be the case. There are no emulators widely available, and so boot testing Itanium is generally infeasible for ordinary contributors. GCC still supports IA-64 but its compile farm [3] no longer has any IA-64 machines. GLIBC would like to get rid of IA-64 [4] too because it would permit some overdue code cleanups. In summary, the benefits to the ecosystem of having IA-64 be part of it are mostly theoretical, whereas the maintenance overhead of keeping it supported is real. So let's rip off the band aid, and remove the IA-64 arch code entirely. This follows the timeline proposed by the Debian/ia64 maintainer [5], which removes support in a controlled manner, leaving IA-64 in a known good state in the most recent LTS release. Other projects will follow once the kernel support is removed. [0] https://lore.kernel.org/all/CAMj1kXFCMh_578jniKpUtx_j8ByHnt=s7S+yQ+vGbKt9ud7+kQ@mail.gmail.com/ [1] https://lore.kernel.org/all/0075883c-7c51-00f5-2c2d-5119c1820410@web.de/ [2] https://gridcf.org/gct-docs/latest/index.html [3] https://cfarm.tetaneutral.net/machines/list/ [4] https://lore.kernel.org/all/87bkiilpc4.fsf@mid.deneb.enyo.de/ [5] https://lore.kernel.org/all/ff58a3e76e5102c94bb5946d99187b358def688a.camel@physik.fu-berlin.de/ Acked-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
306 lines
9.3 KiB
Plaintext
306 lines
9.3 KiB
Plaintext
# SPDX-License-Identifier: GPL-2.0-only
|
|
menu "CPU Frequency scaling"
|
|
|
|
config CPU_FREQ
|
|
bool "CPU Frequency scaling"
|
|
help
|
|
CPU Frequency scaling allows you to change the clock speed of
|
|
CPUs on the fly. This is a nice method to save power, because
|
|
the lower the CPU clock speed, the less power the CPU consumes.
|
|
|
|
Note that this driver doesn't automatically change the CPU
|
|
clock speed, you need to either enable a dynamic cpufreq governor
|
|
(see below) after boot, or use a userspace tool.
|
|
|
|
For details, take a look at
|
|
<file:Documentation/admin-guide/pm/cpufreq.rst>.
|
|
|
|
If in doubt, say N.
|
|
|
|
if CPU_FREQ
|
|
|
|
config CPU_FREQ_GOV_ATTR_SET
|
|
bool
|
|
|
|
config CPU_FREQ_GOV_COMMON
|
|
select CPU_FREQ_GOV_ATTR_SET
|
|
select IRQ_WORK
|
|
bool
|
|
|
|
config CPU_FREQ_STAT
|
|
bool "CPU frequency transition statistics"
|
|
help
|
|
Export CPU frequency statistics information through sysfs.
|
|
|
|
If in doubt, say N.
|
|
|
|
choice
|
|
prompt "Default CPUFreq governor"
|
|
default CPU_FREQ_DEFAULT_GOV_USERSPACE if ARM_SA1110_CPUFREQ
|
|
default CPU_FREQ_DEFAULT_GOV_SCHEDUTIL if ARM64 || ARM
|
|
default CPU_FREQ_DEFAULT_GOV_SCHEDUTIL if (X86_INTEL_PSTATE || X86_AMD_PSTATE) && SMP
|
|
default CPU_FREQ_DEFAULT_GOV_PERFORMANCE
|
|
help
|
|
This option sets which CPUFreq governor shall be loaded at
|
|
startup. If in doubt, use the default setting.
|
|
|
|
config CPU_FREQ_DEFAULT_GOV_PERFORMANCE
|
|
bool "performance"
|
|
select CPU_FREQ_GOV_PERFORMANCE
|
|
help
|
|
Use the CPUFreq governor 'performance' as default. This sets
|
|
the frequency statically to the highest frequency supported by
|
|
the CPU.
|
|
|
|
config CPU_FREQ_DEFAULT_GOV_POWERSAVE
|
|
bool "powersave"
|
|
select CPU_FREQ_GOV_POWERSAVE
|
|
help
|
|
Use the CPUFreq governor 'powersave' as default. This sets
|
|
the frequency statically to the lowest frequency supported by
|
|
the CPU.
|
|
|
|
config CPU_FREQ_DEFAULT_GOV_USERSPACE
|
|
bool "userspace"
|
|
select CPU_FREQ_GOV_USERSPACE
|
|
help
|
|
Use the CPUFreq governor 'userspace' as default. This allows
|
|
you to set the CPU frequency manually or when a userspace
|
|
program shall be able to set the CPU dynamically without having
|
|
to enable the userspace governor manually.
|
|
|
|
config CPU_FREQ_DEFAULT_GOV_ONDEMAND
|
|
bool "ondemand"
|
|
depends on !(X86_INTEL_PSTATE && SMP)
|
|
select CPU_FREQ_GOV_ONDEMAND
|
|
select CPU_FREQ_GOV_PERFORMANCE
|
|
help
|
|
Use the CPUFreq governor 'ondemand' as default. This allows
|
|
you to get a full dynamic frequency capable system by simply
|
|
loading your cpufreq low-level hardware driver.
|
|
Be aware that not all cpufreq drivers support the ondemand
|
|
governor. If unsure have a look at the help section of the
|
|
driver. Fallback governor will be the performance governor.
|
|
|
|
config CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
|
|
bool "conservative"
|
|
depends on !(X86_INTEL_PSTATE && SMP)
|
|
select CPU_FREQ_GOV_CONSERVATIVE
|
|
select CPU_FREQ_GOV_PERFORMANCE
|
|
help
|
|
Use the CPUFreq governor 'conservative' as default. This allows
|
|
you to get a full dynamic frequency capable system by simply
|
|
loading your cpufreq low-level hardware driver.
|
|
Be aware that not all cpufreq drivers support the conservative
|
|
governor. If unsure have a look at the help section of the
|
|
driver. Fallback governor will be the performance governor.
|
|
|
|
config CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
|
|
bool "schedutil"
|
|
depends on SMP
|
|
select CPU_FREQ_GOV_SCHEDUTIL
|
|
select CPU_FREQ_GOV_PERFORMANCE
|
|
help
|
|
Use the 'schedutil' CPUFreq governor by default. If unsure,
|
|
have a look at the help section of that governor. The fallback
|
|
governor will be 'performance'.
|
|
|
|
endchoice
|
|
|
|
config CPU_FREQ_GOV_PERFORMANCE
|
|
tristate "'performance' governor"
|
|
help
|
|
This cpufreq governor sets the frequency statically to the
|
|
highest available CPU frequency.
|
|
|
|
To compile this driver as a module, choose M here: the
|
|
module will be called cpufreq_performance.
|
|
|
|
If in doubt, say Y.
|
|
|
|
config CPU_FREQ_GOV_POWERSAVE
|
|
tristate "'powersave' governor"
|
|
help
|
|
This cpufreq governor sets the frequency statically to the
|
|
lowest available CPU frequency.
|
|
|
|
To compile this driver as a module, choose M here: the
|
|
module will be called cpufreq_powersave.
|
|
|
|
If in doubt, say Y.
|
|
|
|
config CPU_FREQ_GOV_USERSPACE
|
|
tristate "'userspace' governor for userspace frequency scaling"
|
|
help
|
|
Enable this cpufreq governor when you either want to set the
|
|
CPU frequency manually or when a userspace program shall
|
|
be able to set the CPU dynamically, like on LART
|
|
<http://www.lartmaker.nl/>.
|
|
|
|
To compile this driver as a module, choose M here: the
|
|
module will be called cpufreq_userspace.
|
|
|
|
If in doubt, say Y.
|
|
|
|
config CPU_FREQ_GOV_ONDEMAND
|
|
tristate "'ondemand' cpufreq policy governor"
|
|
select CPU_FREQ_GOV_COMMON
|
|
help
|
|
'ondemand' - This driver adds a dynamic cpufreq policy governor.
|
|
The governor does a periodic polling and
|
|
changes frequency based on the CPU utilization.
|
|
The support for this governor depends on CPU capability to
|
|
do fast frequency switching (i.e, very low latency frequency
|
|
transitions).
|
|
|
|
To compile this driver as a module, choose M here: the
|
|
module will be called cpufreq_ondemand.
|
|
|
|
For details, take a look at
|
|
<file:Documentation/admin-guide/pm/cpufreq.rst>.
|
|
|
|
If in doubt, say N.
|
|
|
|
config CPU_FREQ_GOV_CONSERVATIVE
|
|
tristate "'conservative' cpufreq governor"
|
|
depends on CPU_FREQ
|
|
select CPU_FREQ_GOV_COMMON
|
|
help
|
|
'conservative' - this driver is rather similar to the 'ondemand'
|
|
governor both in its source code and its purpose, the difference is
|
|
its optimisation for better suitability in a battery powered
|
|
environment. The frequency is gracefully increased and decreased
|
|
rather than jumping to 100% when speed is required.
|
|
|
|
If you have a desktop machine then you should really be considering
|
|
the 'ondemand' governor instead, however if you are using a laptop,
|
|
PDA or even an AMD64 based computer (due to the unacceptable
|
|
step-by-step latency issues between the minimum and maximum frequency
|
|
transitions in the CPU) you will probably want to use this governor.
|
|
|
|
To compile this driver as a module, choose M here: the
|
|
module will be called cpufreq_conservative.
|
|
|
|
For details, take a look at
|
|
<file:Documentation/admin-guide/pm/cpufreq.rst>.
|
|
|
|
If in doubt, say N.
|
|
|
|
config CPU_FREQ_GOV_SCHEDUTIL
|
|
bool "'schedutil' cpufreq policy governor"
|
|
depends on CPU_FREQ && SMP
|
|
select CPU_FREQ_GOV_ATTR_SET
|
|
select IRQ_WORK
|
|
help
|
|
This governor makes decisions based on the utilization data provided
|
|
by the scheduler. It sets the CPU frequency to be proportional to
|
|
the utilization/capacity ratio coming from the scheduler. If the
|
|
utilization is frequency-invariant, the new frequency is also
|
|
proportional to the maximum available frequency. If that is not the
|
|
case, it is proportional to the current frequency of the CPU. The
|
|
frequency tipping point is at utilization/capacity equal to 80% in
|
|
both cases.
|
|
|
|
If in doubt, say N.
|
|
|
|
comment "CPU frequency scaling drivers"
|
|
|
|
config CPUFREQ_DT
|
|
tristate "Generic DT based cpufreq driver"
|
|
depends on HAVE_CLK && OF
|
|
select CPUFREQ_DT_PLATDEV
|
|
select PM_OPP
|
|
help
|
|
This adds a generic DT based cpufreq driver for frequency management.
|
|
It supports both uniprocessor (UP) and symmetric multiprocessor (SMP)
|
|
systems.
|
|
|
|
If in doubt, say N.
|
|
|
|
config CPUFREQ_DT_PLATDEV
|
|
tristate "Generic DT based cpufreq platdev driver"
|
|
depends on OF
|
|
help
|
|
This adds a generic DT based cpufreq platdev driver for frequency
|
|
management. This creates a 'cpufreq-dt' platform device, on the
|
|
supported platforms.
|
|
|
|
If in doubt, say N.
|
|
|
|
if X86
|
|
source "drivers/cpufreq/Kconfig.x86"
|
|
endif
|
|
|
|
if ARM || ARM64
|
|
source "drivers/cpufreq/Kconfig.arm"
|
|
endif
|
|
|
|
if PPC32 || PPC64
|
|
source "drivers/cpufreq/Kconfig.powerpc"
|
|
endif
|
|
|
|
if MIPS
|
|
config BMIPS_CPUFREQ
|
|
tristate "BMIPS CPUfreq Driver"
|
|
help
|
|
This option adds a CPUfreq driver for BMIPS processors with
|
|
support for configurable CPU frequency.
|
|
|
|
For now, BMIPS5 chips are supported (such as the Broadcom 7425).
|
|
|
|
If in doubt, say N.
|
|
|
|
config LOONGSON2_CPUFREQ
|
|
tristate "Loongson2 CPUFreq Driver"
|
|
depends on LEMOTE_MACH2F
|
|
help
|
|
This option adds a CPUFreq driver for loongson processors which
|
|
support software configurable cpu frequency.
|
|
|
|
Loongson2F and its successors support this feature.
|
|
|
|
If in doubt, say N.
|
|
endif
|
|
|
|
if SPARC64
|
|
config SPARC_US3_CPUFREQ
|
|
tristate "UltraSPARC-III CPU Frequency driver"
|
|
help
|
|
This adds the CPUFreq driver for UltraSPARC-III processors.
|
|
|
|
If in doubt, say N.
|
|
|
|
config SPARC_US2E_CPUFREQ
|
|
tristate "UltraSPARC-IIe CPU Frequency driver"
|
|
help
|
|
This adds the CPUFreq driver for UltraSPARC-IIe processors.
|
|
|
|
If in doubt, say N.
|
|
endif
|
|
|
|
if SUPERH
|
|
config SH_CPU_FREQ
|
|
tristate "SuperH CPU Frequency driver"
|
|
help
|
|
This adds the cpufreq driver for SuperH. Any CPU that supports
|
|
clock rate rounding through the clock framework can use this
|
|
driver. While it will make the kernel slightly larger, this is
|
|
harmless for CPUs that don't support rate rounding. The driver
|
|
will also generate a notice in the boot log before disabling
|
|
itself if the CPU in question is not capable of rate rounding.
|
|
|
|
If unsure, say N.
|
|
endif
|
|
|
|
config QORIQ_CPUFREQ
|
|
tristate "CPU frequency scaling driver for Freescale QorIQ SoCs"
|
|
depends on OF && COMMON_CLK
|
|
depends on PPC_E500MC || SOC_LS1021A || ARCH_LAYERSCAPE || COMPILE_TEST
|
|
select CLK_QORIQ
|
|
help
|
|
This adds the CPUFreq driver support for Freescale QorIQ SoCs
|
|
which are capable of changing the CPU's frequency dynamically.
|
|
|
|
endif
|
|
endmenu
|