linux/drivers/cpufreq/mediatek-cpufreq.c
Wan Jiabing a3b8d1b12c cpufreq: mediatek: Fix NULL pointer dereference in mediatek-cpufreq
Fix following coccicheck error:
drivers/cpufreq/mediatek-cpufreq.c:464:16-23: ERROR: info is NULL but dereferenced.

Use pr_err instead of dev_err to avoid dereferring a NULL pointer.

Fixes: f52b16ba9fe4 ("cpufreq: mediatek: Use device print to show logs")
Signed-off-by: Wan Jiabing <wanjiabing@vivo.com>
Reviewed-by: Matthias Brugger <matthias.bgg@gmail.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
2022-04-27 08:51:14 +05:30

625 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015 Linaro Ltd.
* Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
*/
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/regulator/consumer.h>
#define MIN_VOLT_SHIFT (100000)
#define MAX_VOLT_SHIFT (200000)
#define MAX_VOLT_LIMIT (1150000)
#define VOLT_TOL (10000)
/*
* The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
* on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
* Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
* voltage inputs need to be controlled under a hardware limitation:
* 100mV < Vsram - Vproc < 200mV
*
* When scaling the clock frequency of a CPU clock domain, the clock source
* needs to be switched to another stable PLL clock temporarily until
* the original PLL becomes stable at target frequency.
*/
struct mtk_cpu_dvfs_info {
struct cpumask cpus;
struct device *cpu_dev;
struct regulator *proc_reg;
struct regulator *sram_reg;
struct clk *cpu_clk;
struct clk *inter_clk;
struct list_head list_head;
int intermediate_voltage;
bool need_voltage_tracking;
int pre_vproc;
};
static LIST_HEAD(dvfs_info_list);
static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
{
struct mtk_cpu_dvfs_info *info;
list_for_each_entry(info, &dvfs_info_list, list_head) {
if (cpumask_test_cpu(cpu, &info->cpus))
return info;
}
return NULL;
}
static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
int new_vproc)
{
struct regulator *proc_reg = info->proc_reg;
struct regulator *sram_reg = info->sram_reg;
int pre_vproc, pre_vsram, new_vsram, vsram, vproc, ret;
pre_vproc = regulator_get_voltage(proc_reg);
if (pre_vproc < 0) {
dev_err(info->cpu_dev,
"invalid Vproc value: %d\n", pre_vproc);
return pre_vproc;
}
/* Vsram should not exceed the maximum allowed voltage of SoC. */
new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
if (pre_vproc < new_vproc) {
/*
* When scaling up voltages, Vsram and Vproc scale up step
* by step. At each step, set Vsram to (Vproc + 200mV) first,
* then set Vproc to (Vsram - 100mV).
* Keep doing it until Vsram and Vproc hit target voltages.
*/
do {
pre_vsram = regulator_get_voltage(sram_reg);
if (pre_vsram < 0) {
dev_err(info->cpu_dev,
"invalid Vsram value: %d\n", pre_vsram);
return pre_vsram;
}
pre_vproc = regulator_get_voltage(proc_reg);
if (pre_vproc < 0) {
dev_err(info->cpu_dev,
"invalid Vproc value: %d\n", pre_vproc);
return pre_vproc;
}
vsram = min(new_vsram, pre_vproc + MAX_VOLT_SHIFT);
if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
vsram = MAX_VOLT_LIMIT;
/*
* If the target Vsram hits the maximum voltage,
* try to set the exact voltage value first.
*/
ret = regulator_set_voltage(sram_reg, vsram,
vsram);
if (ret)
ret = regulator_set_voltage(sram_reg,
vsram - VOLT_TOL,
vsram);
vproc = new_vproc;
} else {
ret = regulator_set_voltage(sram_reg, vsram,
vsram + VOLT_TOL);
vproc = vsram - MIN_VOLT_SHIFT;
}
if (ret)
return ret;
ret = regulator_set_voltage(proc_reg, vproc,
vproc + VOLT_TOL);
if (ret) {
regulator_set_voltage(sram_reg, pre_vsram,
pre_vsram);
return ret;
}
} while (vproc < new_vproc || vsram < new_vsram);
} else if (pre_vproc > new_vproc) {
/*
* When scaling down voltages, Vsram and Vproc scale down step
* by step. At each step, set Vproc to (Vsram - 200mV) first,
* then set Vproc to (Vproc + 100mV).
* Keep doing it until Vsram and Vproc hit target voltages.
*/
do {
pre_vproc = regulator_get_voltage(proc_reg);
if (pre_vproc < 0) {
dev_err(info->cpu_dev,
"invalid Vproc value: %d\n", pre_vproc);
return pre_vproc;
}
pre_vsram = regulator_get_voltage(sram_reg);
if (pre_vsram < 0) {
dev_err(info->cpu_dev,
"invalid Vsram value: %d\n", pre_vsram);
return pre_vsram;
}
vproc = max(new_vproc, pre_vsram - MAX_VOLT_SHIFT);
ret = regulator_set_voltage(proc_reg, vproc,
vproc + VOLT_TOL);
if (ret)
return ret;
if (vproc == new_vproc)
vsram = new_vsram;
else
vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
vsram = MAX_VOLT_LIMIT;
/*
* If the target Vsram hits the maximum voltage,
* try to set the exact voltage value first.
*/
ret = regulator_set_voltage(sram_reg, vsram,
vsram);
if (ret)
ret = regulator_set_voltage(sram_reg,
vsram - VOLT_TOL,
vsram);
} else {
ret = regulator_set_voltage(sram_reg, vsram,
vsram + VOLT_TOL);
}
if (ret) {
regulator_set_voltage(proc_reg, pre_vproc,
pre_vproc);
return ret;
}
} while (vproc > new_vproc + VOLT_TOL ||
vsram > new_vsram + VOLT_TOL);
}
return 0;
}
static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
{
int ret;
if (info->need_voltage_tracking)
ret = mtk_cpufreq_voltage_tracking(info, vproc);
else
ret = regulator_set_voltage(info->proc_reg, vproc,
MAX_VOLT_LIMIT);
if (!ret)
info->pre_vproc = vproc;
return ret;
}
static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
unsigned int index)
{
struct cpufreq_frequency_table *freq_table = policy->freq_table;
struct clk *cpu_clk = policy->clk;
struct clk *armpll = clk_get_parent(cpu_clk);
struct mtk_cpu_dvfs_info *info = policy->driver_data;
struct device *cpu_dev = info->cpu_dev;
struct dev_pm_opp *opp;
long freq_hz, pre_freq_hz;
int vproc, pre_vproc, inter_vproc, target_vproc, ret;
inter_vproc = info->intermediate_voltage;
pre_freq_hz = clk_get_rate(cpu_clk);
if (unlikely(info->pre_vproc <= 0))
pre_vproc = regulator_get_voltage(info->proc_reg);
else
pre_vproc = info->pre_vproc;
if (pre_vproc < 0) {
dev_err(cpu_dev, "invalid Vproc value: %d\n", pre_vproc);
return pre_vproc;
}
freq_hz = freq_table[index].frequency * 1000;
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
if (IS_ERR(opp)) {
dev_err(cpu_dev, "cpu%d: failed to find OPP for %ld\n",
policy->cpu, freq_hz);
return PTR_ERR(opp);
}
vproc = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
/*
* If the new voltage or the intermediate voltage is higher than the
* current voltage, scale up voltage first.
*/
target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
if (pre_vproc < target_vproc) {
ret = mtk_cpufreq_set_voltage(info, target_vproc);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to scale up voltage!\n", policy->cpu);
mtk_cpufreq_set_voltage(info, pre_vproc);
return ret;
}
}
/* Reparent the CPU clock to intermediate clock. */
ret = clk_set_parent(cpu_clk, info->inter_clk);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to re-parent cpu clock!\n", policy->cpu);
mtk_cpufreq_set_voltage(info, pre_vproc);
WARN_ON(1);
return ret;
}
/* Set the original PLL to target rate. */
ret = clk_set_rate(armpll, freq_hz);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to scale cpu clock rate!\n", policy->cpu);
clk_set_parent(cpu_clk, armpll);
mtk_cpufreq_set_voltage(info, pre_vproc);
return ret;
}
/* Set parent of CPU clock back to the original PLL. */
ret = clk_set_parent(cpu_clk, armpll);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to re-parent cpu clock!\n", policy->cpu);
mtk_cpufreq_set_voltage(info, inter_vproc);
WARN_ON(1);
return ret;
}
/*
* If the new voltage is lower than the intermediate voltage or the
* original voltage, scale down to the new voltage.
*/
if (vproc < inter_vproc || vproc < pre_vproc) {
ret = mtk_cpufreq_set_voltage(info, vproc);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to scale down voltage!\n", policy->cpu);
clk_set_parent(cpu_clk, info->inter_clk);
clk_set_rate(armpll, pre_freq_hz);
clk_set_parent(cpu_clk, armpll);
return ret;
}
}
return 0;
}
#define DYNAMIC_POWER "dynamic-power-coefficient"
static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
{
struct device *cpu_dev;
struct dev_pm_opp *opp;
unsigned long rate;
int ret;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
dev_err(cpu_dev, "failed to get cpu%d device\n", cpu);
return -ENODEV;
}
info->cpu_dev = cpu_dev;
info->cpu_clk = clk_get(cpu_dev, "cpu");
if (IS_ERR(info->cpu_clk)) {
ret = PTR_ERR(info->cpu_clk);
return dev_err_probe(cpu_dev, ret,
"cpu%d: failed to get cpu clk\n", cpu);
}
info->inter_clk = clk_get(cpu_dev, "intermediate");
if (IS_ERR(info->inter_clk)) {
ret = PTR_ERR(info->inter_clk);
dev_err_probe(cpu_dev, ret,
"cpu%d: failed to get intermediate clk\n", cpu);
goto out_free_resources;
}
info->proc_reg = regulator_get_optional(cpu_dev, "proc");
if (IS_ERR(info->proc_reg)) {
ret = PTR_ERR(info->proc_reg);
dev_err_probe(cpu_dev, ret,
"cpu%d: failed to get proc regulator\n", cpu);
goto out_free_resources;
}
ret = regulator_enable(info->proc_reg);
if (ret) {
dev_warn(cpu_dev, "cpu%d: failed to enable vproc\n", cpu);
goto out_free_resources;
}
/* Both presence and absence of sram regulator are valid cases. */
info->sram_reg = regulator_get_optional(cpu_dev, "sram");
if (IS_ERR(info->sram_reg))
info->sram_reg = NULL;
else {
ret = regulator_enable(info->sram_reg);
if (ret) {
dev_warn(cpu_dev, "cpu%d: failed to enable vsram\n", cpu);
goto out_free_resources;
}
}
/* Get OPP-sharing information from "operating-points-v2" bindings */
ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to get OPP-sharing information\n", cpu);
goto out_free_resources;
}
ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
if (ret) {
dev_warn(cpu_dev, "cpu%d: no OPP table\n", cpu);
goto out_free_resources;
}
ret = clk_prepare_enable(info->cpu_clk);
if (ret)
goto out_free_opp_table;
ret = clk_prepare_enable(info->inter_clk);
if (ret)
goto out_disable_mux_clock;
/* Search a safe voltage for intermediate frequency. */
rate = clk_get_rate(info->inter_clk);
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
if (IS_ERR(opp)) {
dev_err(cpu_dev, "cpu%d: failed to get intermediate opp\n", cpu);
ret = PTR_ERR(opp);
goto out_disable_inter_clock;
}
info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
/*
* If SRAM regulator is present, software "voltage tracking" is needed
* for this CPU power domain.
*/
info->need_voltage_tracking = (info->sram_reg != NULL);
return 0;
out_disable_inter_clock:
clk_disable_unprepare(info->inter_clk);
out_disable_mux_clock:
clk_disable_unprepare(info->cpu_clk);
out_free_opp_table:
dev_pm_opp_of_cpumask_remove_table(&info->cpus);
out_free_resources:
if (regulator_is_enabled(info->proc_reg))
regulator_disable(info->proc_reg);
if (info->sram_reg && regulator_is_enabled(info->sram_reg))
regulator_disable(info->sram_reg);
if (!IS_ERR(info->proc_reg))
regulator_put(info->proc_reg);
if (!IS_ERR(info->sram_reg))
regulator_put(info->sram_reg);
if (!IS_ERR(info->cpu_clk))
clk_put(info->cpu_clk);
if (!IS_ERR(info->inter_clk))
clk_put(info->inter_clk);
return ret;
}
static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
{
if (!IS_ERR(info->proc_reg)) {
regulator_disable(info->proc_reg);
regulator_put(info->proc_reg);
}
if (!IS_ERR(info->sram_reg)) {
regulator_disable(info->sram_reg);
regulator_put(info->sram_reg);
}
if (!IS_ERR(info->cpu_clk)) {
clk_disable_unprepare(info->cpu_clk);
clk_put(info->cpu_clk);
}
if (!IS_ERR(info->inter_clk)) {
clk_disable_unprepare(info->inter_clk);
clk_put(info->inter_clk);
}
dev_pm_opp_of_cpumask_remove_table(&info->cpus);
}
static int mtk_cpufreq_init(struct cpufreq_policy *policy)
{
struct mtk_cpu_dvfs_info *info;
struct cpufreq_frequency_table *freq_table;
int ret;
info = mtk_cpu_dvfs_info_lookup(policy->cpu);
if (!info) {
pr_err("dvfs info for cpu%d is not initialized.\n",
policy->cpu);
return -EINVAL;
}
ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
if (ret) {
dev_err(info->cpu_dev,
"failed to init cpufreq table for cpu%d: %d\n",
policy->cpu, ret);
return ret;
}
cpumask_copy(policy->cpus, &info->cpus);
policy->freq_table = freq_table;
policy->driver_data = info;
policy->clk = info->cpu_clk;
return 0;
}
static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
{
struct mtk_cpu_dvfs_info *info = policy->driver_data;
dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
return 0;
}
static struct cpufreq_driver mtk_cpufreq_driver = {
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
CPUFREQ_IS_COOLING_DEV,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = mtk_cpufreq_set_target,
.get = cpufreq_generic_get,
.init = mtk_cpufreq_init,
.exit = mtk_cpufreq_exit,
.register_em = cpufreq_register_em_with_opp,
.name = "mtk-cpufreq",
.attr = cpufreq_generic_attr,
};
static int mtk_cpufreq_probe(struct platform_device *pdev)
{
struct mtk_cpu_dvfs_info *info, *tmp;
int cpu, ret;
for_each_possible_cpu(cpu) {
info = mtk_cpu_dvfs_info_lookup(cpu);
if (info)
continue;
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info) {
ret = -ENOMEM;
goto release_dvfs_info_list;
}
ret = mtk_cpu_dvfs_info_init(info, cpu);
if (ret) {
dev_err(&pdev->dev,
"failed to initialize dvfs info for cpu%d\n",
cpu);
goto release_dvfs_info_list;
}
list_add(&info->list_head, &dvfs_info_list);
}
ret = cpufreq_register_driver(&mtk_cpufreq_driver);
if (ret) {
dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n");
goto release_dvfs_info_list;
}
return 0;
release_dvfs_info_list:
list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
mtk_cpu_dvfs_info_release(info);
list_del(&info->list_head);
}
return ret;
}
static struct platform_driver mtk_cpufreq_platdrv = {
.driver = {
.name = "mtk-cpufreq",
},
.probe = mtk_cpufreq_probe,
};
/* List of machines supported by this driver */
static const struct of_device_id mtk_cpufreq_machines[] __initconst = {
{ .compatible = "mediatek,mt2701", },
{ .compatible = "mediatek,mt2712", },
{ .compatible = "mediatek,mt7622", },
{ .compatible = "mediatek,mt7623", },
{ .compatible = "mediatek,mt8167", },
{ .compatible = "mediatek,mt817x", },
{ .compatible = "mediatek,mt8173", },
{ .compatible = "mediatek,mt8176", },
{ .compatible = "mediatek,mt8183", },
{ .compatible = "mediatek,mt8365", },
{ .compatible = "mediatek,mt8516", },
{ }
};
MODULE_DEVICE_TABLE(of, mtk_cpufreq_machines);
static int __init mtk_cpufreq_driver_init(void)
{
struct device_node *np;
const struct of_device_id *match;
struct platform_device *pdev;
int err;
np = of_find_node_by_path("/");
if (!np)
return -ENODEV;
match = of_match_node(mtk_cpufreq_machines, np);
of_node_put(np);
if (!match) {
pr_debug("Machine is not compatible with mtk-cpufreq\n");
return -ENODEV;
}
err = platform_driver_register(&mtk_cpufreq_platdrv);
if (err)
return err;
/*
* Since there's no place to hold device registration code and no
* device tree based way to match cpufreq driver yet, both the driver
* and the device registration codes are put here to handle defer
* probing.
*/
pdev = platform_device_register_simple("mtk-cpufreq", -1, NULL, 0);
if (IS_ERR(pdev)) {
pr_err("failed to register mtk-cpufreq platform device\n");
platform_driver_unregister(&mtk_cpufreq_platdrv);
return PTR_ERR(pdev);
}
return 0;
}
module_init(mtk_cpufreq_driver_init)
static void __exit mtk_cpufreq_driver_exit(void)
{
platform_driver_unregister(&mtk_cpufreq_platdrv);
}
module_exit(mtk_cpufreq_driver_exit)
MODULE_DESCRIPTION("MediaTek CPUFreq driver");
MODULE_AUTHOR("Pi-Cheng Chen <pi-cheng.chen@linaro.org>");
MODULE_LICENSE("GPL v2");