linux/drivers/media/video/cx23885/cx23888-ir.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

1235 lines
34 KiB
C

/*
* Driver for the Conexant CX23885/7/8 PCIe bridge
*
* CX23888 Integrated Consumer Infrared Controller
*
* Copyright (C) 2009 Andy Walls <awalls@radix.net>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
#include <linux/kfifo.h>
#include <linux/slab.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include "cx23885.h"
static unsigned int ir_888_debug;
module_param(ir_888_debug, int, 0644);
MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
#define CX23888_IR_REG_BASE 0x170000
/*
* These CX23888 register offsets have a straightforward one to one mapping
* to the CX23885 register offsets of 0x200 through 0x218
*/
#define CX23888_IR_CNTRL_REG 0x170000
#define CNTRL_WIN_3_3 0x00000000
#define CNTRL_WIN_4_3 0x00000001
#define CNTRL_WIN_3_4 0x00000002
#define CNTRL_WIN_4_4 0x00000003
#define CNTRL_WIN 0x00000003
#define CNTRL_EDG_NONE 0x00000000
#define CNTRL_EDG_FALL 0x00000004
#define CNTRL_EDG_RISE 0x00000008
#define CNTRL_EDG_BOTH 0x0000000C
#define CNTRL_EDG 0x0000000C
#define CNTRL_DMD 0x00000010
#define CNTRL_MOD 0x00000020
#define CNTRL_RFE 0x00000040
#define CNTRL_TFE 0x00000080
#define CNTRL_RXE 0x00000100
#define CNTRL_TXE 0x00000200
#define CNTRL_RIC 0x00000400
#define CNTRL_TIC 0x00000800
#define CNTRL_CPL 0x00001000
#define CNTRL_LBM 0x00002000
#define CNTRL_R 0x00004000
#define CX23888_IR_TXCLK_REG 0x170004
#define TXCLK_TCD 0x0000FFFF
#define CX23888_IR_RXCLK_REG 0x170008
#define RXCLK_RCD 0x0000FFFF
#define CX23888_IR_CDUTY_REG 0x17000C
#define CDUTY_CDC 0x0000000F
#define CX23888_IR_STATS_REG 0x170010
#define STATS_RTO 0x00000001
#define STATS_ROR 0x00000002
#define STATS_RBY 0x00000004
#define STATS_TBY 0x00000008
#define STATS_RSR 0x00000010
#define STATS_TSR 0x00000020
#define CX23888_IR_IRQEN_REG 0x170014
#define IRQEN_RTE 0x00000001
#define IRQEN_ROE 0x00000002
#define IRQEN_RSE 0x00000010
#define IRQEN_TSE 0x00000020
#define CX23888_IR_FILTR_REG 0x170018
#define FILTR_LPF 0x0000FFFF
/* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
#define CX23888_IR_FIFO_REG 0x170040
#define FIFO_RXTX 0x0000FFFF
#define FIFO_RXTX_LVL 0x00010000
#define FIFO_RXTX_RTO 0x0001FFFF
#define FIFO_RX_NDV 0x00020000
#define FIFO_RX_DEPTH 8
#define FIFO_TX_DEPTH 8
/* CX23888 unique registers */
#define CX23888_IR_SEEDP_REG 0x17001C
#define CX23888_IR_TIMOL_REG 0x170020
#define CX23888_IR_WAKE0_REG 0x170024
#define CX23888_IR_WAKE1_REG 0x170028
#define CX23888_IR_WAKE2_REG 0x17002C
#define CX23888_IR_MASK0_REG 0x170030
#define CX23888_IR_MASK1_REG 0x170034
#define CX23888_IR_MAKS2_REG 0x170038
#define CX23888_IR_DPIPG_REG 0x17003C
#define CX23888_IR_LEARN_REG 0x170044
#define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
#define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
#define CX23888_IR_RX_KFIFO_SIZE (512 * sizeof(u32))
#define CX23888_IR_TX_KFIFO_SIZE (512 * sizeof(u32))
struct cx23888_ir_state {
struct v4l2_subdev sd;
struct cx23885_dev *dev;
u32 id;
u32 rev;
struct v4l2_subdev_ir_parameters rx_params;
struct mutex rx_params_lock;
atomic_t rxclk_divider;
atomic_t rx_invert;
struct kfifo rx_kfifo;
spinlock_t rx_kfifo_lock;
struct v4l2_subdev_ir_parameters tx_params;
struct mutex tx_params_lock;
atomic_t txclk_divider;
};
static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
{
return v4l2_get_subdevdata(sd);
}
/*
* IR register block read and write functions
*/
static
inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
{
cx_write(addr, value);
return 0;
}
static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
{
return cx_read(addr);
}
static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
u32 and_mask, u32 or_value)
{
cx_andor(addr, ~and_mask, or_value);
return 0;
}
/*
* Rx and Tx Clock Divider register computations
*
* Note the largest clock divider value of 0xffff corresponds to:
* (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
* which fits in 21 bits, so we'll use unsigned int for time arguments.
*/
static inline u16 count_to_clock_divider(unsigned int d)
{
if (d > RXCLK_RCD + 1)
d = RXCLK_RCD;
else if (d < 2)
d = 1;
else
d--;
return (u16) d;
}
static inline u16 ns_to_clock_divider(unsigned int ns)
{
return count_to_clock_divider(
DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
}
static inline unsigned int clock_divider_to_ns(unsigned int divider)
{
/* Period of the Rx or Tx clock in ns */
return DIV_ROUND_CLOSEST((divider + 1) * 1000,
CX23888_IR_REFCLK_FREQ / 1000000);
}
static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
{
return count_to_clock_divider(
DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
}
static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
{
return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
}
static inline u16 freq_to_clock_divider(unsigned int freq,
unsigned int rollovers)
{
return count_to_clock_divider(
DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
}
static inline unsigned int clock_divider_to_freq(unsigned int divider,
unsigned int rollovers)
{
return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
(divider + 1) * rollovers);
}
/*
* Low Pass Filter register calculations
*
* Note the largest count value of 0xffff corresponds to:
* 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
* which fits in 21 bits, so we'll use unsigned int for time arguments.
*/
static inline u16 count_to_lpf_count(unsigned int d)
{
if (d > FILTR_LPF)
d = FILTR_LPF;
else if (d < 4)
d = 0;
return (u16) d;
}
static inline u16 ns_to_lpf_count(unsigned int ns)
{
return count_to_lpf_count(
DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
}
static inline unsigned int lpf_count_to_ns(unsigned int count)
{
/* Duration of the Low Pass Filter rejection window in ns */
return DIV_ROUND_CLOSEST(count * 1000,
CX23888_IR_REFCLK_FREQ / 1000000);
}
static inline unsigned int lpf_count_to_us(unsigned int count)
{
/* Duration of the Low Pass Filter rejection window in us */
return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
}
/*
* FIFO register pulse width count compuations
*/
static u32 clock_divider_to_resolution(u16 divider)
{
/*
* Resolution is the duration of 1 tick of the readable portion of
* of the pulse width counter as read from the FIFO. The two lsb's are
* not readable, hence the << 2. This function returns ns.
*/
return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
CX23888_IR_REFCLK_FREQ / 1000000);
}
static u64 pulse_width_count_to_ns(u16 count, u16 divider)
{
u64 n;
u32 rem;
/*
* The 2 lsb's of the pulse width timer count are not readable, hence
* the (count << 2) | 0x3
*/
n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
n++;
return n;
}
static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
{
u64 n;
u32 rem;
/*
* The 2 lsb's of the pulse width timer count are not readable, hence
* the (count << 2) | 0x3
*/
n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
n++;
return (unsigned int) n;
}
/*
* Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
*
* The total pulse clock count is an 18 bit pulse width timer count as the most
* significant part and (up to) 16 bit clock divider count as a modulus.
* When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
* width timer count's least significant bit.
*/
static u64 ns_to_pulse_clocks(u32 ns)
{
u64 clocks;
u32 rem;
clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
rem = do_div(clocks, 1000); /* /1000 = cycles */
if (rem >= 1000 / 2)
clocks++;
return clocks;
}
static u16 pulse_clocks_to_clock_divider(u64 count)
{
u32 rem;
rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
/* net result needs to be rounded down and decremented by 1 */
if (count > RXCLK_RCD + 1)
count = RXCLK_RCD;
else if (count < 2)
count = 1;
else
count--;
return (u16) count;
}
/*
* IR Control Register helpers
*/
enum tx_fifo_watermark {
TX_FIFO_HALF_EMPTY = 0,
TX_FIFO_EMPTY = CNTRL_TIC,
};
enum rx_fifo_watermark {
RX_FIFO_HALF_FULL = 0,
RX_FIFO_NOT_EMPTY = CNTRL_RIC,
};
static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
enum tx_fifo_watermark level)
{
cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
}
static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
enum rx_fifo_watermark level)
{
cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
}
static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
{
cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
}
static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
{
cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
}
static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
bool enable)
{
cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
enable ? CNTRL_MOD : 0);
}
static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
bool enable)
{
cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
enable ? CNTRL_DMD : 0);
}
static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
u32 edge_types)
{
cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
edge_types & CNTRL_EDG_BOTH);
}
static void control_rx_s_carrier_window(struct cx23885_dev *dev,
unsigned int carrier,
unsigned int *carrier_range_low,
unsigned int *carrier_range_high)
{
u32 v;
unsigned int c16 = carrier * 16;
if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
v = CNTRL_WIN_3_4;
*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
} else {
v = CNTRL_WIN_3_3;
*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
}
if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
v |= CNTRL_WIN_4_3;
*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
} else {
v |= CNTRL_WIN_3_3;
*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
}
cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
}
static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
bool invert)
{
cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
invert ? CNTRL_CPL : 0);
}
/*
* IR Rx & Tx Clock Register helpers
*/
static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
unsigned int freq,
u16 *divider)
{
*divider = carrier_freq_to_clock_divider(freq);
cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
return clock_divider_to_carrier_freq(*divider);
}
static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
unsigned int freq,
u16 *divider)
{
*divider = carrier_freq_to_clock_divider(freq);
cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
return clock_divider_to_carrier_freq(*divider);
}
static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
u16 *divider)
{
u64 pulse_clocks;
if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS;
pulse_clocks = ns_to_pulse_clocks(ns);
*divider = pulse_clocks_to_clock_divider(pulse_clocks);
cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
}
static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
u16 *divider)
{
u64 pulse_clocks;
if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS;
pulse_clocks = ns_to_pulse_clocks(ns);
*divider = pulse_clocks_to_clock_divider(pulse_clocks);
cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
}
/*
* IR Tx Carrier Duty Cycle register helpers
*/
static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
unsigned int duty_cycle)
{
u32 n;
n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
if (n != 0)
n--;
if (n > 15)
n = 15;
cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
}
/*
* IR Filter Register helpers
*/
static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
{
u32 count = ns_to_lpf_count(min_width_ns);
cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
return lpf_count_to_ns(count);
}
/*
* IR IRQ Enable Register helpers
*/
static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
{
mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
}
static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
{
mask &= IRQEN_TSE;
cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
}
/*
* V4L2 Subdevice IR Ops
*/
static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
bool *handled)
{
struct cx23888_ir_state *state = to_state(sd);
struct cx23885_dev *dev = state->dev;
unsigned long flags;
u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
u32 rx_data[FIFO_RX_DEPTH];
int i, j, k;
u32 events, v;
int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
ror = stats & STATS_ROR; /* Rx FIFO Over Run */
tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
*handled = false;
v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n",
tsr ? "tsr" : " ", rsr ? "rsr" : " ",
rto ? "rto" : " ", ror ? "ror" : " ",
stats & STATS_TBY ? "tby" : " ",
stats & STATS_RBY ? "rby" : " ");
v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
tse ? "tse" : " ", rse ? "rse" : " ",
rte ? "rte" : " ", roe ? "roe" : " ");
/*
* Transmitter interrupt service
*/
if (tse && tsr) {
/*
* TODO:
* Check the watermark threshold setting
* Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
* Push the data to the hardware FIFO.
* If there was nothing more to send in the tx_kfifo, disable
* the TSR IRQ and notify the v4l2_device.
* If there was something in the tx_kfifo, check the tx_kfifo
* level and notify the v4l2_device, if it is low.
*/
/* For now, inhibit TSR interrupt until Tx is implemented */
irqenable_tx(dev, 0);
events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
*handled = true;
}
/*
* Receiver interrupt service
*/
kror = 0;
if ((rse && rsr) || (rte && rto)) {
/*
* Receive data on RSR to clear the STATS_RSR.
* Receive data on RTO, since we may not have yet hit the RSR
* watermark when we receive the RTO.
*/
for (i = 0, v = FIFO_RX_NDV;
(v & FIFO_RX_NDV) && !kror; i = 0) {
for (j = 0;
(v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
rx_data[i++] = v & ~FIFO_RX_NDV;
}
if (i == 0)
break;
j = i * sizeof(u32);
k = kfifo_in_locked(&state->rx_kfifo,
(unsigned char *) rx_data, j,
&state->rx_kfifo_lock);
if (k != j)
kror++; /* rx_kfifo over run */
}
*handled = true;
}
events = 0;
v = 0;
if (kror) {
events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
v4l2_err(sd, "IR receiver software FIFO overrun\n");
}
if (roe && ror) {
/*
* The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
* the Rx FIFO Over Run status (STATS_ROR)
*/
v |= CNTRL_RFE;
events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
}
if (rte && rto) {
/*
* The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
* the Rx Pulse Width Timer Time Out (STATS_RTO)
*/
v |= CNTRL_RXE;
events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
}
if (v) {
/* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
*handled = true;
}
spin_lock_irqsave(&state->rx_kfifo_lock, flags);
if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
if (events)
v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
return 0;
}
/* Receiver */
static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
ssize_t *num)
{
struct cx23888_ir_state *state = to_state(sd);
bool invert = (bool) atomic_read(&state->rx_invert);
u16 divider = (u16) atomic_read(&state->rxclk_divider);
unsigned int i, n;
u32 *p;
u32 u, v;
n = count / sizeof(u32) * sizeof(u32);
if (n == 0) {
*num = 0;
return 0;
}
n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
n /= sizeof(u32);
*num = n * sizeof(u32);
for (p = (u32 *) buf, i = 0; i < n; p++, i++) {
if ((*p & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
*p = V4L2_SUBDEV_IR_PULSE_RX_SEQ_END;
v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
continue;
}
u = (*p & FIFO_RXTX_LVL) ? V4L2_SUBDEV_IR_PULSE_LEVEL_MASK : 0;
if (invert)
u = u ? 0 : V4L2_SUBDEV_IR_PULSE_LEVEL_MASK;
v = (u32) pulse_width_count_to_ns((u16) (*p & FIFO_RXTX),
divider);
if (v >= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
v = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS - 1;
*p = u | v;
v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s\n",
v, u ? "mark" : "space");
}
return 0;
}
static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
struct v4l2_subdev_ir_parameters *p)
{
struct cx23888_ir_state *state = to_state(sd);
mutex_lock(&state->rx_params_lock);
memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
mutex_unlock(&state->rx_params_lock);
return 0;
}
static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
{
struct cx23888_ir_state *state = to_state(sd);
struct cx23885_dev *dev = state->dev;
mutex_lock(&state->rx_params_lock);
/* Disable or slow down all IR Rx circuits and counters */
irqenable_rx(dev, 0);
control_rx_enable(dev, false);
control_rx_demodulation_enable(dev, false);
control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
filter_rx_s_min_width(dev, 0);
cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
state->rx_params.shutdown = true;
mutex_unlock(&state->rx_params_lock);
return 0;
}
static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
struct v4l2_subdev_ir_parameters *p)
{
struct cx23888_ir_state *state = to_state(sd);
struct cx23885_dev *dev = state->dev;
struct v4l2_subdev_ir_parameters *o = &state->rx_params;
u16 rxclk_divider;
if (p->shutdown)
return cx23888_ir_rx_shutdown(sd);
if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
return -ENOSYS;
mutex_lock(&state->rx_params_lock);
o->shutdown = p->shutdown;
o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
o->bytes_per_data_element = p->bytes_per_data_element = sizeof(u32);
/* Before we tweak the hardware, we have to disable the receiver */
irqenable_rx(dev, 0);
control_rx_enable(dev, false);
control_rx_demodulation_enable(dev, p->modulation);
o->modulation = p->modulation;
if (p->modulation) {
p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
&rxclk_divider);
o->carrier_freq = p->carrier_freq;
o->duty_cycle = p->duty_cycle = 50;
control_rx_s_carrier_window(dev, p->carrier_freq,
&p->carrier_range_lower,
&p->carrier_range_upper);
o->carrier_range_lower = p->carrier_range_lower;
o->carrier_range_upper = p->carrier_range_upper;
} else {
p->max_pulse_width =
rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
&rxclk_divider);
o->max_pulse_width = p->max_pulse_width;
}
atomic_set(&state->rxclk_divider, rxclk_divider);
p->noise_filter_min_width =
filter_rx_s_min_width(dev, p->noise_filter_min_width);
o->noise_filter_min_width = p->noise_filter_min_width;
p->resolution = clock_divider_to_resolution(rxclk_divider);
o->resolution = p->resolution;
/* FIXME - make this dependent on resolution for better performance */
control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
o->invert = p->invert;
atomic_set(&state->rx_invert, p->invert);
o->interrupt_enable = p->interrupt_enable;
o->enable = p->enable;
if (p->enable) {
unsigned long flags;
spin_lock_irqsave(&state->rx_kfifo_lock, flags);
kfifo_reset(&state->rx_kfifo);
/* reset tx_fifo too if there is one... */
spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
if (p->interrupt_enable)
irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
control_rx_enable(dev, p->enable);
}
mutex_unlock(&state->rx_params_lock);
return 0;
}
/* Transmitter */
static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
ssize_t *num)
{
struct cx23888_ir_state *state = to_state(sd);
struct cx23885_dev *dev = state->dev;
/* For now enable the Tx FIFO Service interrupt & pretend we did work */
irqenable_tx(dev, IRQEN_TSE);
*num = count;
return 0;
}
static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
struct v4l2_subdev_ir_parameters *p)
{
struct cx23888_ir_state *state = to_state(sd);
mutex_lock(&state->tx_params_lock);
memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
mutex_unlock(&state->tx_params_lock);
return 0;
}
static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
{
struct cx23888_ir_state *state = to_state(sd);
struct cx23885_dev *dev = state->dev;
mutex_lock(&state->tx_params_lock);
/* Disable or slow down all IR Tx circuits and counters */
irqenable_tx(dev, 0);
control_tx_enable(dev, false);
control_tx_modulation_enable(dev, false);
cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
state->tx_params.shutdown = true;
mutex_unlock(&state->tx_params_lock);
return 0;
}
static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
struct v4l2_subdev_ir_parameters *p)
{
struct cx23888_ir_state *state = to_state(sd);
struct cx23885_dev *dev = state->dev;
struct v4l2_subdev_ir_parameters *o = &state->tx_params;
u16 txclk_divider;
if (p->shutdown)
return cx23888_ir_tx_shutdown(sd);
if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
return -ENOSYS;
mutex_lock(&state->tx_params_lock);
o->shutdown = p->shutdown;
o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
o->bytes_per_data_element = p->bytes_per_data_element = sizeof(u32);
/* Before we tweak the hardware, we have to disable the transmitter */
irqenable_tx(dev, 0);
control_tx_enable(dev, false);
control_tx_modulation_enable(dev, p->modulation);
o->modulation = p->modulation;
if (p->modulation) {
p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
&txclk_divider);
o->carrier_freq = p->carrier_freq;
p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
o->duty_cycle = p->duty_cycle;
} else {
p->max_pulse_width =
txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
&txclk_divider);
o->max_pulse_width = p->max_pulse_width;
}
atomic_set(&state->txclk_divider, txclk_divider);
p->resolution = clock_divider_to_resolution(txclk_divider);
o->resolution = p->resolution;
/* FIXME - make this dependent on resolution for better performance */
control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
control_tx_polarity_invert(dev, p->invert);
o->invert = p->invert;
o->interrupt_enable = p->interrupt_enable;
o->enable = p->enable;
if (p->enable) {
if (p->interrupt_enable)
irqenable_tx(dev, IRQEN_TSE);
control_tx_enable(dev, p->enable);
}
mutex_unlock(&state->tx_params_lock);
return 0;
}
/*
* V4L2 Subdevice Core Ops
*/
static int cx23888_ir_log_status(struct v4l2_subdev *sd)
{
struct cx23888_ir_state *state = to_state(sd);
struct cx23885_dev *dev = state->dev;
char *s;
int i, j;
u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
v4l2_info(sd, "IR Receiver:\n");
v4l2_info(sd, "\tEnabled: %s\n",
cntrl & CNTRL_RXE ? "yes" : "no");
v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
cntrl & CNTRL_DMD ? "enabled" : "disabled");
v4l2_info(sd, "\tFIFO: %s\n",
cntrl & CNTRL_RFE ? "enabled" : "disabled");
switch (cntrl & CNTRL_EDG) {
case CNTRL_EDG_NONE:
s = "disabled";
break;
case CNTRL_EDG_FALL:
s = "falling edge";
break;
case CNTRL_EDG_RISE:
s = "rising edge";
break;
case CNTRL_EDG_BOTH:
s = "rising & falling edges";
break;
default:
s = "??? edge";
break;
}
v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
cntrl & CNTRL_R ? "not loaded" : "overflow marker");
v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
v4l2_info(sd, "\tLoopback mode: %s\n",
cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
if (cntrl & CNTRL_DMD) {
v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
clock_divider_to_carrier_freq(rxclk));
switch (cntrl & CNTRL_WIN) {
case CNTRL_WIN_3_3:
i = 3;
j = 3;
break;
case CNTRL_WIN_4_3:
i = 4;
j = 3;
break;
case CNTRL_WIN_3_4:
i = 3;
j = 4;
break;
case CNTRL_WIN_4_4:
i = 4;
j = 4;
break;
default:
i = 0;
j = 0;
break;
}
v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
"-%1d/+%1d, %u to %u Hz\n", i, j,
clock_divider_to_freq(rxclk, 16 + j),
clock_divider_to_freq(rxclk, 16 - i));
} else {
v4l2_info(sd, "\tMax measurable pulse width: %u us, "
"%llu ns\n",
pulse_width_count_to_us(FIFO_RXTX, rxclk),
pulse_width_count_to_ns(FIFO_RXTX, rxclk));
}
v4l2_info(sd, "\tLow pass filter: %s\n",
filtr ? "enabled" : "disabled");
if (filtr)
v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
"%u ns\n",
lpf_count_to_us(filtr),
lpf_count_to_ns(filtr));
v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
stats & STATS_RTO ? "yes" : "no");
v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
irqen & IRQEN_RTE ? "enabled" : "disabled");
v4l2_info(sd, "\tFIFO overrun: %s\n",
stats & STATS_ROR ? "yes" : "no");
v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
irqen & IRQEN_ROE ? "enabled" : "disabled");
v4l2_info(sd, "\tBusy: %s\n",
stats & STATS_RBY ? "yes" : "no");
v4l2_info(sd, "\tFIFO service requested: %s\n",
stats & STATS_RSR ? "yes" : "no");
v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
irqen & IRQEN_RSE ? "enabled" : "disabled");
v4l2_info(sd, "IR Transmitter:\n");
v4l2_info(sd, "\tEnabled: %s\n",
cntrl & CNTRL_TXE ? "yes" : "no");
v4l2_info(sd, "\tModulation onto a carrier: %s\n",
cntrl & CNTRL_MOD ? "enabled" : "disabled");
v4l2_info(sd, "\tFIFO: %s\n",
cntrl & CNTRL_TFE ? "enabled" : "disabled");
v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
cntrl & CNTRL_TIC ? "not empty" : "half full or less");
v4l2_info(sd, "\tSignal polarity: %s\n",
cntrl & CNTRL_CPL ? "0:mark 1:space" : "0:space 1:mark");
if (cntrl & CNTRL_MOD) {
v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
clock_divider_to_carrier_freq(txclk));
v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
cduty + 1);
} else {
v4l2_info(sd, "\tMax pulse width: %u us, "
"%llu ns\n",
pulse_width_count_to_us(FIFO_RXTX, txclk),
pulse_width_count_to_ns(FIFO_RXTX, txclk));
}
v4l2_info(sd, "\tBusy: %s\n",
stats & STATS_TBY ? "yes" : "no");
v4l2_info(sd, "\tFIFO service requested: %s\n",
stats & STATS_TSR ? "yes" : "no");
v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
irqen & IRQEN_TSE ? "enabled" : "disabled");
return 0;
}
static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match)
{
return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2;
}
static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct cx23888_ir_state *state = to_state(sd);
if (cx23888_ir_dbg_match(&chip->match)) {
chip->ident = state->id;
chip->revision = state->rev;
}
return 0;
}
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int cx23888_ir_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct cx23888_ir_state *state = to_state(sd);
u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
if (!cx23888_ir_dbg_match(&reg->match))
return -EINVAL;
if ((addr & 0x3) != 0)
return -EINVAL;
if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
reg->size = 4;
reg->val = cx23888_ir_read4(state->dev, addr);
return 0;
}
static int cx23888_ir_s_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct cx23888_ir_state *state = to_state(sd);
u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
if (!cx23888_ir_dbg_match(&reg->match))
return -EINVAL;
if ((addr & 0x3) != 0)
return -EINVAL;
if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
cx23888_ir_write4(state->dev, addr, reg->val);
return 0;
}
#endif
static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
.g_chip_ident = cx23888_ir_g_chip_ident,
.log_status = cx23888_ir_log_status,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = cx23888_ir_g_register,
.s_register = cx23888_ir_s_register,
#endif
};
static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
.interrupt_service_routine = cx23888_ir_irq_handler,
.rx_read = cx23888_ir_rx_read,
.rx_g_parameters = cx23888_ir_rx_g_parameters,
.rx_s_parameters = cx23888_ir_rx_s_parameters,
.tx_write = cx23888_ir_tx_write,
.tx_g_parameters = cx23888_ir_tx_g_parameters,
.tx_s_parameters = cx23888_ir_tx_s_parameters,
};
static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
.core = &cx23888_ir_core_ops,
.ir = &cx23888_ir_ir_ops,
};
static const struct v4l2_subdev_ir_parameters default_rx_params = {
.bytes_per_data_element = sizeof(u32),
.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
.enable = false,
.interrupt_enable = false,
.shutdown = true,
.modulation = true,
.carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
/* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
/* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
.noise_filter_min_width = 333333, /* ns */
.carrier_range_lower = 35000,
.carrier_range_upper = 37000,
.invert = false,
};
static const struct v4l2_subdev_ir_parameters default_tx_params = {
.bytes_per_data_element = sizeof(u32),
.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
.enable = false,
.interrupt_enable = false,
.shutdown = true,
.modulation = true,
.carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
.duty_cycle = 25, /* 25 % - RC-5 carrier */
.invert = false,
};
int cx23888_ir_probe(struct cx23885_dev *dev)
{
struct cx23888_ir_state *state;
struct v4l2_subdev *sd;
struct v4l2_subdev_ir_parameters default_params;
int ret;
state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
if (state == NULL)
return -ENOMEM;
spin_lock_init(&state->rx_kfifo_lock);
if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
return -ENOMEM;
state->dev = dev;
state->id = V4L2_IDENT_CX23888_IR;
state->rev = 0;
sd = &state->sd;
v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
v4l2_set_subdevdata(sd, state);
/* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
sd->grp_id = CX23885_HW_888_IR;
ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
if (ret == 0) {
/*
* Ensure no interrupts arrive from '888 specific conditions,
* since we ignore them in this driver to have commonality with
* similar IR controller cores.
*/
cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
mutex_init(&state->rx_params_lock);
memcpy(&default_params, &default_rx_params,
sizeof(struct v4l2_subdev_ir_parameters));
v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
mutex_init(&state->tx_params_lock);
memcpy(&default_params, &default_tx_params,
sizeof(struct v4l2_subdev_ir_parameters));
v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
} else {
kfifo_free(&state->rx_kfifo);
}
return ret;
}
int cx23888_ir_remove(struct cx23885_dev *dev)
{
struct v4l2_subdev *sd;
struct cx23888_ir_state *state;
sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
if (sd == NULL)
return -ENODEV;
cx23888_ir_rx_shutdown(sd);
cx23888_ir_tx_shutdown(sd);
state = to_state(sd);
v4l2_device_unregister_subdev(sd);
kfifo_free(&state->rx_kfifo);
kfree(state);
/* Nothing more to free() as state held the actual v4l2_subdev object */
return 0;
}