linux/block/blk-mq.h
Ming Lei 1db4909e76 blk-mq: not embed .mq_kobj and ctx->kobj into queue instance
Even though .mq_kobj, ctx->kobj and q->kobj share same lifetime
from block layer's view, actually they don't because userspace may
grab one kobject anytime via sysfs.

This patch fixes the issue by the following approach:

1) introduce 'struct blk_mq_ctxs' for holding .mq_kobj and managing
all ctxs

2) free all allocated ctxs and the 'blk_mq_ctxs' instance in release
handler of .mq_kobj

3) grab one ref of .mq_kobj before initializing each ctx->kobj, so that
.mq_kobj is always released after all ctxs are freed.

This patch fixes kernel panic issue during booting when DEBUG_KOBJECT_RELEASE
is enabled.

Reported-by: Guenter Roeck <linux@roeck-us.net>
Cc: "jianchao.wang" <jianchao.w.wang@oracle.com>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-11-21 05:57:56 -07:00

247 lines
6.6 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef INT_BLK_MQ_H
#define INT_BLK_MQ_H
#include "blk-stat.h"
#include "blk-mq-tag.h"
struct blk_mq_tag_set;
struct blk_mq_ctxs {
struct kobject kobj;
struct blk_mq_ctx __percpu *queue_ctx;
};
/**
* struct blk_mq_ctx - State for a software queue facing the submitting CPUs
*/
struct blk_mq_ctx {
struct {
spinlock_t lock;
struct list_head rq_list;
} ____cacheline_aligned_in_smp;
unsigned int cpu;
unsigned short index_hw[HCTX_MAX_TYPES];
/* incremented at dispatch time */
unsigned long rq_dispatched[2];
unsigned long rq_merged;
/* incremented at completion time */
unsigned long ____cacheline_aligned_in_smp rq_completed[2];
struct request_queue *queue;
struct blk_mq_ctxs *ctxs;
struct kobject kobj;
} ____cacheline_aligned_in_smp;
void blk_mq_freeze_queue(struct request_queue *q);
void blk_mq_free_queue(struct request_queue *q);
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
void blk_mq_wake_waiters(struct request_queue *q);
bool blk_mq_dispatch_rq_list(struct request_queue *, struct list_head *, bool);
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
bool blk_mq_get_driver_tag(struct request *rq);
struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
struct blk_mq_ctx *start);
/*
* Internal helpers for allocating/freeing the request map
*/
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
unsigned int hctx_idx);
void blk_mq_free_rq_map(struct blk_mq_tags *tags);
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
unsigned int hctx_idx,
unsigned int nr_tags,
unsigned int reserved_tags);
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
unsigned int hctx_idx, unsigned int depth);
/*
* Internal helpers for request insertion into sw queues
*/
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
bool at_head);
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue);
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
struct list_head *list);
/* Used by blk_insert_cloned_request() to issue request directly */
blk_status_t blk_mq_request_issue_directly(struct request *rq);
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
struct list_head *list);
/*
* CPU -> queue mappings
*/
extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
/*
* blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
* @q: request queue
* @hctx_type: the hctx type index
* @cpu: CPU
*/
static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
unsigned int hctx_type,
unsigned int cpu)
{
struct blk_mq_tag_set *set = q->tag_set;
return q->queue_hw_ctx[set->map[hctx_type].mq_map[cpu]];
}
/*
* blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
* @q: request queue
* @flags: request command flags
* @cpu: CPU
*/
static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
unsigned int flags,
unsigned int cpu)
{
int hctx_type = 0;
if (q->mq_ops->rq_flags_to_type)
hctx_type = q->mq_ops->rq_flags_to_type(q, flags);
return blk_mq_map_queue_type(q, hctx_type, cpu);
}
/*
* sysfs helpers
*/
extern void blk_mq_sysfs_init(struct request_queue *q);
extern void blk_mq_sysfs_deinit(struct request_queue *q);
extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q);
extern int blk_mq_sysfs_register(struct request_queue *q);
extern void blk_mq_sysfs_unregister(struct request_queue *q);
extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
void blk_mq_release(struct request_queue *q);
/**
* blk_mq_rq_state() - read the current MQ_RQ_* state of a request
* @rq: target request.
*/
static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
{
return READ_ONCE(rq->state);
}
static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
unsigned int cpu)
{
return per_cpu_ptr(q->queue_ctx, cpu);
}
/*
* This assumes per-cpu software queueing queues. They could be per-node
* as well, for instance. For now this is hardcoded as-is. Note that we don't
* care about preemption, since we know the ctx's are persistent. This does
* mean that we can't rely on ctx always matching the currently running CPU.
*/
static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
{
return __blk_mq_get_ctx(q, get_cpu());
}
static inline void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
{
put_cpu();
}
struct blk_mq_alloc_data {
/* input parameter */
struct request_queue *q;
blk_mq_req_flags_t flags;
unsigned int shallow_depth;
unsigned int cmd_flags;
/* input & output parameter */
struct blk_mq_ctx *ctx;
struct blk_mq_hw_ctx *hctx;
};
static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
{
if (data->flags & BLK_MQ_REQ_INTERNAL)
return data->hctx->sched_tags;
return data->hctx->tags;
}
static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
{
return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
{
return hctx->nr_ctx && hctx->tags;
}
void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
unsigned int inflight[2]);
void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
unsigned int inflight[2]);
static inline void blk_mq_put_dispatch_budget(struct blk_mq_hw_ctx *hctx)
{
struct request_queue *q = hctx->queue;
if (q->mq_ops->put_budget)
q->mq_ops->put_budget(hctx);
}
static inline bool blk_mq_get_dispatch_budget(struct blk_mq_hw_ctx *hctx)
{
struct request_queue *q = hctx->queue;
if (q->mq_ops->get_budget)
return q->mq_ops->get_budget(hctx);
return true;
}
static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
struct request *rq)
{
blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
rq->tag = -1;
if (rq->rq_flags & RQF_MQ_INFLIGHT) {
rq->rq_flags &= ~RQF_MQ_INFLIGHT;
atomic_dec(&hctx->nr_active);
}
}
static inline void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
struct request *rq)
{
if (rq->tag == -1 || rq->internal_tag == -1)
return;
__blk_mq_put_driver_tag(hctx, rq);
}
static inline void blk_mq_put_driver_tag(struct request *rq)
{
if (rq->tag == -1 || rq->internal_tag == -1)
return;
__blk_mq_put_driver_tag(rq->mq_hctx, rq);
}
static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
{
int cpu;
for_each_possible_cpu(cpu)
qmap->mq_map[cpu] = 0;
}
#endif