mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-17 19:34:12 +08:00
a050ba1e74
This does the simple pattern conversion of alpha, arc, csky, hexagon, loongarch, nios2, sh, sparc32, and xtensa to the lock_mm_and_find_vma() helper. They all have the regular fault handling pattern without odd special cases. The remaining architectures all have something that keeps us from a straightforward conversion: ia64 and parisc have stacks that can grow both up as well as down (and ia64 has special address region checks). And m68k, microblaze, openrisc, sparc64, and um end up having extra rules about only expanding the stack down a limited amount below the user space stack pointer. That is something that x86 used to do too (long long ago), and it probably could just be skipped, but it still makes the conversion less than trivial. Note that this conversion was done manually and with the exception of alpha without any build testing, because I have a fairly limited cross- building environment. The cases are all simple, and I went through the changes several times, but... Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
492 lines
11 KiB
C
492 lines
11 KiB
C
/*
|
|
* Page fault handler for SH with an MMU.
|
|
*
|
|
* Copyright (C) 1999 Niibe Yutaka
|
|
* Copyright (C) 2003 - 2012 Paul Mundt
|
|
*
|
|
* Based on linux/arch/i386/mm/fault.c:
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/io_trapped.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/traps.h>
|
|
|
|
static void
|
|
force_sig_info_fault(int si_signo, int si_code, unsigned long address)
|
|
{
|
|
force_sig_fault(si_signo, si_code, (void __user *)address);
|
|
}
|
|
|
|
/*
|
|
* This is useful to dump out the page tables associated with
|
|
* 'addr' in mm 'mm'.
|
|
*/
|
|
static void show_pte(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
|
|
if (mm) {
|
|
pgd = mm->pgd;
|
|
} else {
|
|
pgd = get_TTB();
|
|
|
|
if (unlikely(!pgd))
|
|
pgd = swapper_pg_dir;
|
|
}
|
|
|
|
pr_alert("pgd = %p\n", pgd);
|
|
pgd += pgd_index(addr);
|
|
pr_alert("[%08lx] *pgd=%0*llx", addr, (u32)(sizeof(*pgd) * 2),
|
|
(u64)pgd_val(*pgd));
|
|
|
|
do {
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (pgd_none(*pgd))
|
|
break;
|
|
|
|
if (pgd_bad(*pgd)) {
|
|
pr_cont("(bad)");
|
|
break;
|
|
}
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (PTRS_PER_P4D != 1)
|
|
pr_cont(", *p4d=%0*Lx", (u32)(sizeof(*p4d) * 2),
|
|
(u64)p4d_val(*p4d));
|
|
|
|
if (p4d_none(*p4d))
|
|
break;
|
|
|
|
if (p4d_bad(*p4d)) {
|
|
pr_cont("(bad)");
|
|
break;
|
|
}
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
if (PTRS_PER_PUD != 1)
|
|
pr_cont(", *pud=%0*llx", (u32)(sizeof(*pud) * 2),
|
|
(u64)pud_val(*pud));
|
|
|
|
if (pud_none(*pud))
|
|
break;
|
|
|
|
if (pud_bad(*pud)) {
|
|
pr_cont("(bad)");
|
|
break;
|
|
}
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (PTRS_PER_PMD != 1)
|
|
pr_cont(", *pmd=%0*llx", (u32)(sizeof(*pmd) * 2),
|
|
(u64)pmd_val(*pmd));
|
|
|
|
if (pmd_none(*pmd))
|
|
break;
|
|
|
|
if (pmd_bad(*pmd)) {
|
|
pr_cont("(bad)");
|
|
break;
|
|
}
|
|
|
|
/* We must not map this if we have highmem enabled */
|
|
if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
|
|
break;
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
pr_cont(", *pte=%0*llx", (u32)(sizeof(*pte) * 2),
|
|
(u64)pte_val(*pte));
|
|
} while (0);
|
|
|
|
pr_cont("\n");
|
|
}
|
|
|
|
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
|
|
{
|
|
unsigned index = pgd_index(address);
|
|
pgd_t *pgd_k;
|
|
p4d_t *p4d, *p4d_k;
|
|
pud_t *pud, *pud_k;
|
|
pmd_t *pmd, *pmd_k;
|
|
|
|
pgd += index;
|
|
pgd_k = init_mm.pgd + index;
|
|
|
|
if (!pgd_present(*pgd_k))
|
|
return NULL;
|
|
|
|
p4d = p4d_offset(pgd, address);
|
|
p4d_k = p4d_offset(pgd_k, address);
|
|
if (!p4d_present(*p4d_k))
|
|
return NULL;
|
|
|
|
pud = pud_offset(p4d, address);
|
|
pud_k = pud_offset(p4d_k, address);
|
|
if (!pud_present(*pud_k))
|
|
return NULL;
|
|
|
|
if (!pud_present(*pud))
|
|
set_pud(pud, *pud_k);
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
pmd_k = pmd_offset(pud_k, address);
|
|
if (!pmd_present(*pmd_k))
|
|
return NULL;
|
|
|
|
if (!pmd_present(*pmd))
|
|
set_pmd(pmd, *pmd_k);
|
|
else {
|
|
/*
|
|
* The page tables are fully synchronised so there must
|
|
* be another reason for the fault. Return NULL here to
|
|
* signal that we have not taken care of the fault.
|
|
*/
|
|
BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
|
|
return NULL;
|
|
}
|
|
|
|
return pmd_k;
|
|
}
|
|
|
|
#ifdef CONFIG_SH_STORE_QUEUES
|
|
#define __FAULT_ADDR_LIMIT P3_ADDR_MAX
|
|
#else
|
|
#define __FAULT_ADDR_LIMIT VMALLOC_END
|
|
#endif
|
|
|
|
/*
|
|
* Handle a fault on the vmalloc or module mapping area
|
|
*/
|
|
static noinline int vmalloc_fault(unsigned long address)
|
|
{
|
|
pgd_t *pgd_k;
|
|
pmd_t *pmd_k;
|
|
pte_t *pte_k;
|
|
|
|
/* Make sure we are in vmalloc/module/P3 area: */
|
|
if (!(address >= VMALLOC_START && address < __FAULT_ADDR_LIMIT))
|
|
return -1;
|
|
|
|
/*
|
|
* Synchronize this task's top level page-table
|
|
* with the 'reference' page table.
|
|
*
|
|
* Do _not_ use "current" here. We might be inside
|
|
* an interrupt in the middle of a task switch..
|
|
*/
|
|
pgd_k = get_TTB();
|
|
pmd_k = vmalloc_sync_one(pgd_k, address);
|
|
if (!pmd_k)
|
|
return -1;
|
|
|
|
pte_k = pte_offset_kernel(pmd_k, address);
|
|
if (!pte_present(*pte_k))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
show_fault_oops(struct pt_regs *regs, unsigned long address)
|
|
{
|
|
if (!oops_may_print())
|
|
return;
|
|
|
|
pr_alert("BUG: unable to handle kernel %s at %08lx\n",
|
|
address < PAGE_SIZE ? "NULL pointer dereference"
|
|
: "paging request",
|
|
address);
|
|
pr_alert("PC:");
|
|
printk_address(regs->pc, 1);
|
|
|
|
show_pte(NULL, address);
|
|
}
|
|
|
|
static noinline void
|
|
no_context(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address)
|
|
{
|
|
/* Are we prepared to handle this kernel fault? */
|
|
if (fixup_exception(regs))
|
|
return;
|
|
|
|
if (handle_trapped_io(regs, address))
|
|
return;
|
|
|
|
/*
|
|
* Oops. The kernel tried to access some bad page. We'll have to
|
|
* terminate things with extreme prejudice.
|
|
*/
|
|
bust_spinlocks(1);
|
|
|
|
show_fault_oops(regs, address);
|
|
|
|
die("Oops", regs, error_code);
|
|
}
|
|
|
|
static void
|
|
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address, int si_code)
|
|
{
|
|
/* User mode accesses just cause a SIGSEGV */
|
|
if (user_mode(regs)) {
|
|
/*
|
|
* It's possible to have interrupts off here:
|
|
*/
|
|
local_irq_enable();
|
|
|
|
force_sig_info_fault(SIGSEGV, si_code, address);
|
|
|
|
return;
|
|
}
|
|
|
|
no_context(regs, error_code, address);
|
|
}
|
|
|
|
static noinline void
|
|
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address)
|
|
{
|
|
__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
|
|
}
|
|
|
|
static void
|
|
__bad_area(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address, int si_code)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
/*
|
|
* Something tried to access memory that isn't in our memory map..
|
|
* Fix it, but check if it's kernel or user first..
|
|
*/
|
|
mmap_read_unlock(mm);
|
|
|
|
__bad_area_nosemaphore(regs, error_code, address, si_code);
|
|
}
|
|
|
|
static noinline void
|
|
bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
|
|
{
|
|
__bad_area(regs, error_code, address, SEGV_MAPERR);
|
|
}
|
|
|
|
static noinline void
|
|
bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address)
|
|
{
|
|
__bad_area(regs, error_code, address, SEGV_ACCERR);
|
|
}
|
|
|
|
static void
|
|
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct mm_struct *mm = tsk->mm;
|
|
|
|
mmap_read_unlock(mm);
|
|
|
|
/* Kernel mode? Handle exceptions or die: */
|
|
if (!user_mode(regs))
|
|
no_context(regs, error_code, address);
|
|
|
|
force_sig_info_fault(SIGBUS, BUS_ADRERR, address);
|
|
}
|
|
|
|
static noinline int
|
|
mm_fault_error(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address, vm_fault_t fault)
|
|
{
|
|
/*
|
|
* Pagefault was interrupted by SIGKILL. We have no reason to
|
|
* continue pagefault.
|
|
*/
|
|
if (fault_signal_pending(fault, regs)) {
|
|
if (!user_mode(regs))
|
|
no_context(regs, error_code, address);
|
|
return 1;
|
|
}
|
|
|
|
/* Release mmap_lock first if necessary */
|
|
if (!(fault & VM_FAULT_RETRY))
|
|
mmap_read_unlock(current->mm);
|
|
|
|
if (!(fault & VM_FAULT_ERROR))
|
|
return 0;
|
|
|
|
if (fault & VM_FAULT_OOM) {
|
|
/* Kernel mode? Handle exceptions or die: */
|
|
if (!user_mode(regs)) {
|
|
no_context(regs, error_code, address);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* We ran out of memory, call the OOM killer, and return the
|
|
* userspace (which will retry the fault, or kill us if we got
|
|
* oom-killed):
|
|
*/
|
|
pagefault_out_of_memory();
|
|
} else {
|
|
if (fault & VM_FAULT_SIGBUS)
|
|
do_sigbus(regs, error_code, address);
|
|
else if (fault & VM_FAULT_SIGSEGV)
|
|
bad_area(regs, error_code, address);
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static inline int access_error(int error_code, struct vm_area_struct *vma)
|
|
{
|
|
if (error_code & FAULT_CODE_WRITE) {
|
|
/* write, present and write, not present: */
|
|
if (unlikely(!(vma->vm_flags & VM_WRITE)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* ITLB miss on NX page */
|
|
if (unlikely((error_code & FAULT_CODE_ITLB) &&
|
|
!(vma->vm_flags & VM_EXEC)))
|
|
return 1;
|
|
|
|
/* read, not present: */
|
|
if (unlikely(!vma_is_accessible(vma)))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fault_in_kernel_space(unsigned long address)
|
|
{
|
|
return address >= TASK_SIZE;
|
|
}
|
|
|
|
/*
|
|
* This routine handles page faults. It determines the address,
|
|
* and the problem, and then passes it off to one of the appropriate
|
|
* routines.
|
|
*/
|
|
asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
|
|
unsigned long error_code,
|
|
unsigned long address)
|
|
{
|
|
unsigned long vec;
|
|
struct task_struct *tsk;
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct * vma;
|
|
vm_fault_t fault;
|
|
unsigned int flags = FAULT_FLAG_DEFAULT;
|
|
|
|
tsk = current;
|
|
mm = tsk->mm;
|
|
vec = lookup_exception_vector();
|
|
|
|
/*
|
|
* We fault-in kernel-space virtual memory on-demand. The
|
|
* 'reference' page table is init_mm.pgd.
|
|
*
|
|
* NOTE! We MUST NOT take any locks for this case. We may
|
|
* be in an interrupt or a critical region, and should
|
|
* only copy the information from the master page table,
|
|
* nothing more.
|
|
*/
|
|
if (unlikely(fault_in_kernel_space(address))) {
|
|
if (vmalloc_fault(address) >= 0)
|
|
return;
|
|
if (kprobe_page_fault(regs, vec))
|
|
return;
|
|
|
|
bad_area_nosemaphore(regs, error_code, address);
|
|
return;
|
|
}
|
|
|
|
if (unlikely(kprobe_page_fault(regs, vec)))
|
|
return;
|
|
|
|
/* Only enable interrupts if they were on before the fault */
|
|
if ((regs->sr & SR_IMASK) != SR_IMASK)
|
|
local_irq_enable();
|
|
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
|
|
|
|
/*
|
|
* If we're in an interrupt, have no user context or are running
|
|
* with pagefaults disabled then we must not take the fault:
|
|
*/
|
|
if (unlikely(faulthandler_disabled() || !mm)) {
|
|
bad_area_nosemaphore(regs, error_code, address);
|
|
return;
|
|
}
|
|
|
|
retry:
|
|
vma = lock_mm_and_find_vma(mm, address, regs);
|
|
if (unlikely(!vma)) {
|
|
bad_area_nosemaphore(regs, error_code, address);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so
|
|
* we can handle it..
|
|
*/
|
|
if (unlikely(access_error(error_code, vma))) {
|
|
bad_area_access_error(regs, error_code, address);
|
|
return;
|
|
}
|
|
|
|
set_thread_fault_code(error_code);
|
|
|
|
if (user_mode(regs))
|
|
flags |= FAULT_FLAG_USER;
|
|
if (error_code & FAULT_CODE_WRITE)
|
|
flags |= FAULT_FLAG_WRITE;
|
|
|
|
/*
|
|
* If for any reason at all we couldn't handle the fault,
|
|
* make sure we exit gracefully rather than endlessly redo
|
|
* the fault.
|
|
*/
|
|
fault = handle_mm_fault(vma, address, flags, regs);
|
|
|
|
if (unlikely(fault & (VM_FAULT_RETRY | VM_FAULT_ERROR)))
|
|
if (mm_fault_error(regs, error_code, address, fault))
|
|
return;
|
|
|
|
/* The fault is fully completed (including releasing mmap lock) */
|
|
if (fault & VM_FAULT_COMPLETED)
|
|
return;
|
|
|
|
if (fault & VM_FAULT_RETRY) {
|
|
flags |= FAULT_FLAG_TRIED;
|
|
|
|
/*
|
|
* No need to mmap_read_unlock(mm) as we would
|
|
* have already released it in __lock_page_or_retry
|
|
* in mm/filemap.c.
|
|
*/
|
|
goto retry;
|
|
}
|
|
|
|
mmap_read_unlock(mm);
|
|
}
|