mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-20 17:44:33 +08:00
9fb3565743
All of sync_page()'s existing checks filter out only !PRESENT gPTE,
because without execute-only, all upper levels are guaranteed to be at
least READABLE. However, if EPT with execute-only support is in use by
L1, KVM can create an SPTE that is shadow-present but guest-inaccessible
(RWX=0) if the upper level combined permissions are R (or RW) and
the leaf EPTE is changed from R (or RW) to X. Because the EPTE is
considered present when viewed in isolation, and no reserved bits are set,
FNAME(prefetch_invalid_gpte) will consider the GPTE valid, and cause a
not-present SPTE to be created.
The SPTE is "correct": the guest translation is inaccessible because
the combined protections of all levels yield RWX=0, and KVM will just
redirect any vmexits to the guest. If EPT A/D bits are disabled, KVM
can mistake the SPTE for an access-tracked SPTE, but again such confusion
isn't fatal, as the "saved" protections are also RWX=0. However,
creating a useless SPTE in general means that KVM messed up something,
even if this particular goof didn't manifest as a functional bug.
So, drop SPTEs whose new protections will yield a RWX=0 SPTE, and
add a WARN in make_spte() to detect creation of SPTEs that will
result in RWX=0 protections.
Fixes: d95c55687e
("kvm: mmu: track read permission explicitly for shadow EPT page tables")
Cc: David Matlack <dmatlack@google.com>
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220513195000.99371-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
1100 lines
31 KiB
C
1100 lines
31 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* This module enables machines with Intel VT-x extensions to run virtual
|
|
* machines without emulation or binary translation.
|
|
*
|
|
* MMU support
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
* Avi Kivity <avi@qumranet.com>
|
|
*/
|
|
|
|
/*
|
|
* We need the mmu code to access both 32-bit and 64-bit guest ptes,
|
|
* so the code in this file is compiled twice, once per pte size.
|
|
*/
|
|
|
|
#if PTTYPE == 64
|
|
#define pt_element_t u64
|
|
#define guest_walker guest_walker64
|
|
#define FNAME(name) paging##64_##name
|
|
#define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
|
|
#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
|
|
#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
|
|
#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
|
|
#define PT_LEVEL_BITS PT64_LEVEL_BITS
|
|
#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
|
|
#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
|
|
#define PT_HAVE_ACCESSED_DIRTY(mmu) true
|
|
#ifdef CONFIG_X86_64
|
|
#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
|
|
#define CMPXCHG "cmpxchgq"
|
|
#else
|
|
#define PT_MAX_FULL_LEVELS 2
|
|
#endif
|
|
#elif PTTYPE == 32
|
|
#define pt_element_t u32
|
|
#define guest_walker guest_walker32
|
|
#define FNAME(name) paging##32_##name
|
|
#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
|
|
#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
|
|
#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
|
|
#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
|
|
#define PT_LEVEL_BITS PT32_LEVEL_BITS
|
|
#define PT_MAX_FULL_LEVELS 2
|
|
#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
|
|
#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
|
|
#define PT_HAVE_ACCESSED_DIRTY(mmu) true
|
|
#define CMPXCHG "cmpxchgl"
|
|
#elif PTTYPE == PTTYPE_EPT
|
|
#define pt_element_t u64
|
|
#define guest_walker guest_walkerEPT
|
|
#define FNAME(name) ept_##name
|
|
#define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
|
|
#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
|
|
#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
|
|
#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
|
|
#define PT_LEVEL_BITS PT64_LEVEL_BITS
|
|
#define PT_GUEST_DIRTY_SHIFT 9
|
|
#define PT_GUEST_ACCESSED_SHIFT 8
|
|
#define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled)
|
|
#ifdef CONFIG_X86_64
|
|
#define CMPXCHG "cmpxchgq"
|
|
#endif
|
|
#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
|
|
#else
|
|
#error Invalid PTTYPE value
|
|
#endif
|
|
|
|
#define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
|
|
#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
|
|
|
|
#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
|
|
#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
|
|
|
|
/*
|
|
* The guest_walker structure emulates the behavior of the hardware page
|
|
* table walker.
|
|
*/
|
|
struct guest_walker {
|
|
int level;
|
|
unsigned max_level;
|
|
gfn_t table_gfn[PT_MAX_FULL_LEVELS];
|
|
pt_element_t ptes[PT_MAX_FULL_LEVELS];
|
|
pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
|
|
gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
|
|
pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
|
|
bool pte_writable[PT_MAX_FULL_LEVELS];
|
|
unsigned int pt_access[PT_MAX_FULL_LEVELS];
|
|
unsigned int pte_access;
|
|
gfn_t gfn;
|
|
struct x86_exception fault;
|
|
};
|
|
|
|
static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
|
|
{
|
|
return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
|
|
unsigned gpte)
|
|
{
|
|
unsigned mask;
|
|
|
|
/* dirty bit is not supported, so no need to track it */
|
|
if (!PT_HAVE_ACCESSED_DIRTY(mmu))
|
|
return;
|
|
|
|
BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
|
|
|
|
mask = (unsigned)~ACC_WRITE_MASK;
|
|
/* Allow write access to dirty gptes */
|
|
mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
|
|
PT_WRITABLE_MASK;
|
|
*access &= mask;
|
|
}
|
|
|
|
static inline int FNAME(is_present_gpte)(unsigned long pte)
|
|
{
|
|
#if PTTYPE != PTTYPE_EPT
|
|
return pte & PT_PRESENT_MASK;
|
|
#else
|
|
return pte & 7;
|
|
#endif
|
|
}
|
|
|
|
static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
|
|
{
|
|
#if PTTYPE != PTTYPE_EPT
|
|
return false;
|
|
#else
|
|
return __is_bad_mt_xwr(rsvd_check, gpte);
|
|
#endif
|
|
}
|
|
|
|
static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
|
|
{
|
|
return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
|
|
FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
|
|
}
|
|
|
|
static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
|
|
struct kvm_mmu_page *sp, u64 *spte,
|
|
u64 gpte)
|
|
{
|
|
if (!FNAME(is_present_gpte)(gpte))
|
|
goto no_present;
|
|
|
|
/* Prefetch only accessed entries (unless A/D bits are disabled). */
|
|
if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
|
|
!(gpte & PT_GUEST_ACCESSED_MASK))
|
|
goto no_present;
|
|
|
|
if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
|
|
goto no_present;
|
|
|
|
return false;
|
|
|
|
no_present:
|
|
drop_spte(vcpu->kvm, spte);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* For PTTYPE_EPT, a page table can be executable but not readable
|
|
* on supported processors. Therefore, set_spte does not automatically
|
|
* set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
|
|
* to signify readability since it isn't used in the EPT case
|
|
*/
|
|
static inline unsigned FNAME(gpte_access)(u64 gpte)
|
|
{
|
|
unsigned access;
|
|
#if PTTYPE == PTTYPE_EPT
|
|
access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
|
|
((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
|
|
((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
|
|
#else
|
|
BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
|
|
BUILD_BUG_ON(ACC_EXEC_MASK != 1);
|
|
access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
|
|
/* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
|
|
access ^= (gpte >> PT64_NX_SHIFT);
|
|
#endif
|
|
|
|
return access;
|
|
}
|
|
|
|
static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
|
|
struct kvm_mmu *mmu,
|
|
struct guest_walker *walker,
|
|
gpa_t addr, int write_fault)
|
|
{
|
|
unsigned level, index;
|
|
pt_element_t pte, orig_pte;
|
|
pt_element_t __user *ptep_user;
|
|
gfn_t table_gfn;
|
|
int ret;
|
|
|
|
/* dirty/accessed bits are not supported, so no need to update them */
|
|
if (!PT_HAVE_ACCESSED_DIRTY(mmu))
|
|
return 0;
|
|
|
|
for (level = walker->max_level; level >= walker->level; --level) {
|
|
pte = orig_pte = walker->ptes[level - 1];
|
|
table_gfn = walker->table_gfn[level - 1];
|
|
ptep_user = walker->ptep_user[level - 1];
|
|
index = offset_in_page(ptep_user) / sizeof(pt_element_t);
|
|
if (!(pte & PT_GUEST_ACCESSED_MASK)) {
|
|
trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
|
|
pte |= PT_GUEST_ACCESSED_MASK;
|
|
}
|
|
if (level == walker->level && write_fault &&
|
|
!(pte & PT_GUEST_DIRTY_MASK)) {
|
|
trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
|
|
#if PTTYPE == PTTYPE_EPT
|
|
if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
|
|
return -EINVAL;
|
|
#endif
|
|
pte |= PT_GUEST_DIRTY_MASK;
|
|
}
|
|
if (pte == orig_pte)
|
|
continue;
|
|
|
|
/*
|
|
* If the slot is read-only, simply do not process the accessed
|
|
* and dirty bits. This is the correct thing to do if the slot
|
|
* is ROM, and page tables in read-as-ROM/write-as-MMIO slots
|
|
* are only supported if the accessed and dirty bits are already
|
|
* set in the ROM (so that MMIO writes are never needed).
|
|
*
|
|
* Note that NPT does not allow this at all and faults, since
|
|
* it always wants nested page table entries for the guest
|
|
* page tables to be writable. And EPT works but will simply
|
|
* overwrite the read-only memory to set the accessed and dirty
|
|
* bits.
|
|
*/
|
|
if (unlikely(!walker->pte_writable[level - 1]))
|
|
continue;
|
|
|
|
ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault);
|
|
if (ret)
|
|
return ret;
|
|
|
|
kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
|
|
walker->ptes[level - 1] = pte;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
|
|
{
|
|
unsigned pkeys = 0;
|
|
#if PTTYPE == 64
|
|
pte_t pte = {.pte = gpte};
|
|
|
|
pkeys = pte_flags_pkey(pte_flags(pte));
|
|
#endif
|
|
return pkeys;
|
|
}
|
|
|
|
static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
|
|
unsigned int level, unsigned int gpte)
|
|
{
|
|
/*
|
|
* For EPT and PAE paging (both variants), bit 7 is either reserved at
|
|
* all level or indicates a huge page (ignoring CR3/EPTP). In either
|
|
* case, bit 7 being set terminates the walk.
|
|
*/
|
|
#if PTTYPE == 32
|
|
/*
|
|
* 32-bit paging requires special handling because bit 7 is ignored if
|
|
* CR4.PSE=0, not reserved. Clear bit 7 in the gpte if the level is
|
|
* greater than the last level for which bit 7 is the PAGE_SIZE bit.
|
|
*
|
|
* The RHS has bit 7 set iff level < (2 + PSE). If it is clear, bit 7
|
|
* is not reserved and does not indicate a large page at this level,
|
|
* so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
|
|
*/
|
|
gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse);
|
|
#endif
|
|
/*
|
|
* PG_LEVEL_4K always terminates. The RHS has bit 7 set
|
|
* iff level <= PG_LEVEL_4K, which for our purpose means
|
|
* level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
|
|
*/
|
|
gpte |= level - PG_LEVEL_4K - 1;
|
|
|
|
return gpte & PT_PAGE_SIZE_MASK;
|
|
}
|
|
/*
|
|
* Fetch a guest pte for a guest virtual address, or for an L2's GPA.
|
|
*/
|
|
static int FNAME(walk_addr_generic)(struct guest_walker *walker,
|
|
struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
|
|
gpa_t addr, u64 access)
|
|
{
|
|
int ret;
|
|
pt_element_t pte;
|
|
pt_element_t __user *ptep_user;
|
|
gfn_t table_gfn;
|
|
u64 pt_access, pte_access;
|
|
unsigned index, accessed_dirty, pte_pkey;
|
|
u64 nested_access;
|
|
gpa_t pte_gpa;
|
|
bool have_ad;
|
|
int offset;
|
|
u64 walk_nx_mask = 0;
|
|
const int write_fault = access & PFERR_WRITE_MASK;
|
|
const int user_fault = access & PFERR_USER_MASK;
|
|
const int fetch_fault = access & PFERR_FETCH_MASK;
|
|
u16 errcode = 0;
|
|
gpa_t real_gpa;
|
|
gfn_t gfn;
|
|
|
|
trace_kvm_mmu_pagetable_walk(addr, access);
|
|
retry_walk:
|
|
walker->level = mmu->cpu_role.base.level;
|
|
pte = mmu->get_guest_pgd(vcpu);
|
|
have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
|
|
|
|
#if PTTYPE == 64
|
|
walk_nx_mask = 1ULL << PT64_NX_SHIFT;
|
|
if (walker->level == PT32E_ROOT_LEVEL) {
|
|
pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
|
|
trace_kvm_mmu_paging_element(pte, walker->level);
|
|
if (!FNAME(is_present_gpte)(pte))
|
|
goto error;
|
|
--walker->level;
|
|
}
|
|
#endif
|
|
walker->max_level = walker->level;
|
|
ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
|
|
|
|
/*
|
|
* FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
|
|
* by the MOV to CR instruction are treated as reads and do not cause the
|
|
* processor to set the dirty flag in any EPT paging-structure entry.
|
|
*/
|
|
nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
|
|
|
|
pte_access = ~0;
|
|
++walker->level;
|
|
|
|
do {
|
|
unsigned long host_addr;
|
|
|
|
pt_access = pte_access;
|
|
--walker->level;
|
|
|
|
index = PT_INDEX(addr, walker->level);
|
|
table_gfn = gpte_to_gfn(pte);
|
|
offset = index * sizeof(pt_element_t);
|
|
pte_gpa = gfn_to_gpa(table_gfn) + offset;
|
|
|
|
BUG_ON(walker->level < 1);
|
|
walker->table_gfn[walker->level - 1] = table_gfn;
|
|
walker->pte_gpa[walker->level - 1] = pte_gpa;
|
|
|
|
real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn),
|
|
nested_access, &walker->fault);
|
|
|
|
/*
|
|
* FIXME: This can happen if emulation (for of an INS/OUTS
|
|
* instruction) triggers a nested page fault. The exit
|
|
* qualification / exit info field will incorrectly have
|
|
* "guest page access" as the nested page fault's cause,
|
|
* instead of "guest page structure access". To fix this,
|
|
* the x86_exception struct should be augmented with enough
|
|
* information to fix the exit_qualification or exit_info_1
|
|
* fields.
|
|
*/
|
|
if (unlikely(real_gpa == UNMAPPED_GVA))
|
|
return 0;
|
|
|
|
host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
|
|
&walker->pte_writable[walker->level - 1]);
|
|
if (unlikely(kvm_is_error_hva(host_addr)))
|
|
goto error;
|
|
|
|
ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
|
|
if (unlikely(__get_user(pte, ptep_user)))
|
|
goto error;
|
|
walker->ptep_user[walker->level - 1] = ptep_user;
|
|
|
|
trace_kvm_mmu_paging_element(pte, walker->level);
|
|
|
|
/*
|
|
* Inverting the NX it lets us AND it like other
|
|
* permission bits.
|
|
*/
|
|
pte_access = pt_access & (pte ^ walk_nx_mask);
|
|
|
|
if (unlikely(!FNAME(is_present_gpte)(pte)))
|
|
goto error;
|
|
|
|
if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
|
|
errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
|
|
goto error;
|
|
}
|
|
|
|
walker->ptes[walker->level - 1] = pte;
|
|
|
|
/* Convert to ACC_*_MASK flags for struct guest_walker. */
|
|
walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
|
|
} while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
|
|
|
|
pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
|
|
accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
|
|
|
|
/* Convert to ACC_*_MASK flags for struct guest_walker. */
|
|
walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
|
|
errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
|
|
if (unlikely(errcode))
|
|
goto error;
|
|
|
|
gfn = gpte_to_gfn_lvl(pte, walker->level);
|
|
gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
|
|
|
|
if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
|
|
gfn += pse36_gfn_delta(pte);
|
|
|
|
real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault);
|
|
if (real_gpa == UNMAPPED_GVA)
|
|
return 0;
|
|
|
|
walker->gfn = real_gpa >> PAGE_SHIFT;
|
|
|
|
if (!write_fault)
|
|
FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
|
|
else
|
|
/*
|
|
* On a write fault, fold the dirty bit into accessed_dirty.
|
|
* For modes without A/D bits support accessed_dirty will be
|
|
* always clear.
|
|
*/
|
|
accessed_dirty &= pte >>
|
|
(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
|
|
|
|
if (unlikely(!accessed_dirty)) {
|
|
ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
|
|
addr, write_fault);
|
|
if (unlikely(ret < 0))
|
|
goto error;
|
|
else if (ret)
|
|
goto retry_walk;
|
|
}
|
|
|
|
pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
|
|
__func__, (u64)pte, walker->pte_access,
|
|
walker->pt_access[walker->level - 1]);
|
|
return 1;
|
|
|
|
error:
|
|
errcode |= write_fault | user_fault;
|
|
if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
|
|
errcode |= PFERR_FETCH_MASK;
|
|
|
|
walker->fault.vector = PF_VECTOR;
|
|
walker->fault.error_code_valid = true;
|
|
walker->fault.error_code = errcode;
|
|
|
|
#if PTTYPE == PTTYPE_EPT
|
|
/*
|
|
* Use PFERR_RSVD_MASK in error_code to to tell if EPT
|
|
* misconfiguration requires to be injected. The detection is
|
|
* done by is_rsvd_bits_set() above.
|
|
*
|
|
* We set up the value of exit_qualification to inject:
|
|
* [2:0] - Derive from the access bits. The exit_qualification might be
|
|
* out of date if it is serving an EPT misconfiguration.
|
|
* [5:3] - Calculated by the page walk of the guest EPT page tables
|
|
* [7:8] - Derived from [7:8] of real exit_qualification
|
|
*
|
|
* The other bits are set to 0.
|
|
*/
|
|
if (!(errcode & PFERR_RSVD_MASK)) {
|
|
vcpu->arch.exit_qualification &= (EPT_VIOLATION_GVA_IS_VALID |
|
|
EPT_VIOLATION_GVA_TRANSLATED);
|
|
if (write_fault)
|
|
vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
|
|
if (user_fault)
|
|
vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
|
|
if (fetch_fault)
|
|
vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
|
|
|
|
/*
|
|
* Note, pte_access holds the raw RWX bits from the EPTE, not
|
|
* ACC_*_MASK flags!
|
|
*/
|
|
vcpu->arch.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) <<
|
|
EPT_VIOLATION_RWX_SHIFT;
|
|
}
|
|
#endif
|
|
walker->fault.address = addr;
|
|
walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
|
|
walker->fault.async_page_fault = false;
|
|
|
|
trace_kvm_mmu_walker_error(walker->fault.error_code);
|
|
return 0;
|
|
}
|
|
|
|
static int FNAME(walk_addr)(struct guest_walker *walker,
|
|
struct kvm_vcpu *vcpu, gpa_t addr, u64 access)
|
|
{
|
|
return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
|
|
access);
|
|
}
|
|
|
|
static bool
|
|
FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
|
|
u64 *spte, pt_element_t gpte, bool no_dirty_log)
|
|
{
|
|
struct kvm_memory_slot *slot;
|
|
unsigned pte_access;
|
|
gfn_t gfn;
|
|
kvm_pfn_t pfn;
|
|
|
|
if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
|
|
return false;
|
|
|
|
pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
|
|
|
|
gfn = gpte_to_gfn(gpte);
|
|
pte_access = sp->role.access & FNAME(gpte_access)(gpte);
|
|
FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
|
|
|
|
slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn,
|
|
no_dirty_log && (pte_access & ACC_WRITE_MASK));
|
|
if (!slot)
|
|
return false;
|
|
|
|
pfn = gfn_to_pfn_memslot_atomic(slot, gfn);
|
|
if (is_error_pfn(pfn))
|
|
return false;
|
|
|
|
mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL);
|
|
kvm_release_pfn_clean(pfn);
|
|
return true;
|
|
}
|
|
|
|
static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
|
|
struct guest_walker *gw, int level)
|
|
{
|
|
pt_element_t curr_pte;
|
|
gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
|
|
u64 mask;
|
|
int r, index;
|
|
|
|
if (level == PG_LEVEL_4K) {
|
|
mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
|
|
base_gpa = pte_gpa & ~mask;
|
|
index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
|
|
|
|
r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
|
|
gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
|
|
curr_pte = gw->prefetch_ptes[index];
|
|
} else
|
|
r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
|
|
&curr_pte, sizeof(curr_pte));
|
|
|
|
return r || curr_pte != gw->ptes[level - 1];
|
|
}
|
|
|
|
static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
|
|
u64 *sptep)
|
|
{
|
|
struct kvm_mmu_page *sp;
|
|
pt_element_t *gptep = gw->prefetch_ptes;
|
|
u64 *spte;
|
|
int i;
|
|
|
|
sp = sptep_to_sp(sptep);
|
|
|
|
if (sp->role.level > PG_LEVEL_4K)
|
|
return;
|
|
|
|
/*
|
|
* If addresses are being invalidated, skip prefetching to avoid
|
|
* accidentally prefetching those addresses.
|
|
*/
|
|
if (unlikely(vcpu->kvm->mmu_notifier_count))
|
|
return;
|
|
|
|
if (sp->role.direct)
|
|
return __direct_pte_prefetch(vcpu, sp, sptep);
|
|
|
|
i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
|
|
spte = sp->spt + i;
|
|
|
|
for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
|
|
if (spte == sptep)
|
|
continue;
|
|
|
|
if (is_shadow_present_pte(*spte))
|
|
continue;
|
|
|
|
if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fetch a shadow pte for a specific level in the paging hierarchy.
|
|
* If the guest tries to write a write-protected page, we need to
|
|
* emulate this operation, return 1 to indicate this case.
|
|
*/
|
|
static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
|
|
struct guest_walker *gw)
|
|
{
|
|
struct kvm_mmu_page *sp = NULL;
|
|
struct kvm_shadow_walk_iterator it;
|
|
unsigned int direct_access, access;
|
|
int top_level, ret;
|
|
gfn_t base_gfn = fault->gfn;
|
|
|
|
WARN_ON_ONCE(gw->gfn != base_gfn);
|
|
direct_access = gw->pte_access;
|
|
|
|
top_level = vcpu->arch.mmu->cpu_role.base.level;
|
|
if (top_level == PT32E_ROOT_LEVEL)
|
|
top_level = PT32_ROOT_LEVEL;
|
|
/*
|
|
* Verify that the top-level gpte is still there. Since the page
|
|
* is a root page, it is either write protected (and cannot be
|
|
* changed from now on) or it is invalid (in which case, we don't
|
|
* really care if it changes underneath us after this point).
|
|
*/
|
|
if (FNAME(gpte_changed)(vcpu, gw, top_level))
|
|
goto out_gpte_changed;
|
|
|
|
if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
|
|
goto out_gpte_changed;
|
|
|
|
for (shadow_walk_init(&it, vcpu, fault->addr);
|
|
shadow_walk_okay(&it) && it.level > gw->level;
|
|
shadow_walk_next(&it)) {
|
|
gfn_t table_gfn;
|
|
|
|
clear_sp_write_flooding_count(it.sptep);
|
|
drop_large_spte(vcpu, it.sptep);
|
|
|
|
sp = NULL;
|
|
if (!is_shadow_present_pte(*it.sptep)) {
|
|
table_gfn = gw->table_gfn[it.level - 2];
|
|
access = gw->pt_access[it.level - 2];
|
|
sp = kvm_mmu_get_page(vcpu, table_gfn, fault->addr,
|
|
it.level-1, false, access);
|
|
/*
|
|
* We must synchronize the pagetable before linking it
|
|
* because the guest doesn't need to flush tlb when
|
|
* the gpte is changed from non-present to present.
|
|
* Otherwise, the guest may use the wrong mapping.
|
|
*
|
|
* For PG_LEVEL_4K, kvm_mmu_get_page() has already
|
|
* synchronized it transiently via kvm_sync_page().
|
|
*
|
|
* For higher level pagetable, we synchronize it via
|
|
* the slower mmu_sync_children(). If it needs to
|
|
* break, some progress has been made; return
|
|
* RET_PF_RETRY and retry on the next #PF.
|
|
* KVM_REQ_MMU_SYNC is not necessary but it
|
|
* expedites the process.
|
|
*/
|
|
if (sp->unsync_children &&
|
|
mmu_sync_children(vcpu, sp, false))
|
|
return RET_PF_RETRY;
|
|
}
|
|
|
|
/*
|
|
* Verify that the gpte in the page we've just write
|
|
* protected is still there.
|
|
*/
|
|
if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
|
|
goto out_gpte_changed;
|
|
|
|
if (sp)
|
|
link_shadow_page(vcpu, it.sptep, sp);
|
|
}
|
|
|
|
kvm_mmu_hugepage_adjust(vcpu, fault);
|
|
|
|
trace_kvm_mmu_spte_requested(fault);
|
|
|
|
for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
|
|
clear_sp_write_flooding_count(it.sptep);
|
|
|
|
/*
|
|
* We cannot overwrite existing page tables with an NX
|
|
* large page, as the leaf could be executable.
|
|
*/
|
|
if (fault->nx_huge_page_workaround_enabled)
|
|
disallowed_hugepage_adjust(fault, *it.sptep, it.level);
|
|
|
|
base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
|
|
if (it.level == fault->goal_level)
|
|
break;
|
|
|
|
validate_direct_spte(vcpu, it.sptep, direct_access);
|
|
|
|
drop_large_spte(vcpu, it.sptep);
|
|
|
|
if (!is_shadow_present_pte(*it.sptep)) {
|
|
sp = kvm_mmu_get_page(vcpu, base_gfn, fault->addr,
|
|
it.level - 1, true, direct_access);
|
|
link_shadow_page(vcpu, it.sptep, sp);
|
|
if (fault->huge_page_disallowed &&
|
|
fault->req_level >= it.level)
|
|
account_huge_nx_page(vcpu->kvm, sp);
|
|
}
|
|
}
|
|
|
|
if (WARN_ON_ONCE(it.level != fault->goal_level))
|
|
return -EFAULT;
|
|
|
|
ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access,
|
|
base_gfn, fault->pfn, fault);
|
|
if (ret == RET_PF_SPURIOUS)
|
|
return ret;
|
|
|
|
FNAME(pte_prefetch)(vcpu, gw, it.sptep);
|
|
return ret;
|
|
|
|
out_gpte_changed:
|
|
return RET_PF_RETRY;
|
|
}
|
|
|
|
/*
|
|
* To see whether the mapped gfn can write its page table in the current
|
|
* mapping.
|
|
*
|
|
* It is the helper function of FNAME(page_fault). When guest uses large page
|
|
* size to map the writable gfn which is used as current page table, we should
|
|
* force kvm to use small page size to map it because new shadow page will be
|
|
* created when kvm establishes shadow page table that stop kvm using large
|
|
* page size. Do it early can avoid unnecessary #PF and emulation.
|
|
*
|
|
* @write_fault_to_shadow_pgtable will return true if the fault gfn is
|
|
* currently used as its page table.
|
|
*
|
|
* Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
|
|
* since the PDPT is always shadowed, that means, we can not use large page
|
|
* size to map the gfn which is used as PDPT.
|
|
*/
|
|
static bool
|
|
FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
|
|
struct guest_walker *walker, bool user_fault,
|
|
bool *write_fault_to_shadow_pgtable)
|
|
{
|
|
int level;
|
|
gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
|
|
bool self_changed = false;
|
|
|
|
if (!(walker->pte_access & ACC_WRITE_MASK ||
|
|
(!is_cr0_wp(vcpu->arch.mmu) && !user_fault)))
|
|
return false;
|
|
|
|
for (level = walker->level; level <= walker->max_level; level++) {
|
|
gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
|
|
|
|
self_changed |= !(gfn & mask);
|
|
*write_fault_to_shadow_pgtable |= !gfn;
|
|
}
|
|
|
|
return self_changed;
|
|
}
|
|
|
|
/*
|
|
* Page fault handler. There are several causes for a page fault:
|
|
* - there is no shadow pte for the guest pte
|
|
* - write access through a shadow pte marked read only so that we can set
|
|
* the dirty bit
|
|
* - write access to a shadow pte marked read only so we can update the page
|
|
* dirty bitmap, when userspace requests it
|
|
* - mmio access; in this case we will never install a present shadow pte
|
|
* - normal guest page fault due to the guest pte marked not present, not
|
|
* writable, or not executable
|
|
*
|
|
* Returns: 1 if we need to emulate the instruction, 0 otherwise, or
|
|
* a negative value on error.
|
|
*/
|
|
static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
|
|
{
|
|
struct guest_walker walker;
|
|
int r;
|
|
unsigned long mmu_seq;
|
|
bool is_self_change_mapping;
|
|
|
|
pgprintk("%s: addr %lx err %x\n", __func__, fault->addr, fault->error_code);
|
|
WARN_ON_ONCE(fault->is_tdp);
|
|
|
|
/*
|
|
* Look up the guest pte for the faulting address.
|
|
* If PFEC.RSVD is set, this is a shadow page fault.
|
|
* The bit needs to be cleared before walking guest page tables.
|
|
*/
|
|
r = FNAME(walk_addr)(&walker, vcpu, fault->addr,
|
|
fault->error_code & ~PFERR_RSVD_MASK);
|
|
|
|
/*
|
|
* The page is not mapped by the guest. Let the guest handle it.
|
|
*/
|
|
if (!r) {
|
|
pgprintk("%s: guest page fault\n", __func__);
|
|
if (!fault->prefetch)
|
|
kvm_inject_emulated_page_fault(vcpu, &walker.fault);
|
|
|
|
return RET_PF_RETRY;
|
|
}
|
|
|
|
fault->gfn = walker.gfn;
|
|
fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
|
|
|
|
if (page_fault_handle_page_track(vcpu, fault)) {
|
|
shadow_page_table_clear_flood(vcpu, fault->addr);
|
|
return RET_PF_EMULATE;
|
|
}
|
|
|
|
r = mmu_topup_memory_caches(vcpu, true);
|
|
if (r)
|
|
return r;
|
|
|
|
vcpu->arch.write_fault_to_shadow_pgtable = false;
|
|
|
|
is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
|
|
&walker, fault->user, &vcpu->arch.write_fault_to_shadow_pgtable);
|
|
|
|
if (is_self_change_mapping)
|
|
fault->max_level = PG_LEVEL_4K;
|
|
else
|
|
fault->max_level = walker.level;
|
|
|
|
mmu_seq = vcpu->kvm->mmu_notifier_seq;
|
|
smp_rmb();
|
|
|
|
r = kvm_faultin_pfn(vcpu, fault);
|
|
if (r != RET_PF_CONTINUE)
|
|
return r;
|
|
|
|
r = handle_abnormal_pfn(vcpu, fault, walker.pte_access);
|
|
if (r != RET_PF_CONTINUE)
|
|
return r;
|
|
|
|
/*
|
|
* Do not change pte_access if the pfn is a mmio page, otherwise
|
|
* we will cache the incorrect access into mmio spte.
|
|
*/
|
|
if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) &&
|
|
!is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) {
|
|
walker.pte_access |= ACC_WRITE_MASK;
|
|
walker.pte_access &= ~ACC_USER_MASK;
|
|
|
|
/*
|
|
* If we converted a user page to a kernel page,
|
|
* so that the kernel can write to it when cr0.wp=0,
|
|
* then we should prevent the kernel from executing it
|
|
* if SMEP is enabled.
|
|
*/
|
|
if (is_cr4_smep(vcpu->arch.mmu))
|
|
walker.pte_access &= ~ACC_EXEC_MASK;
|
|
}
|
|
|
|
r = RET_PF_RETRY;
|
|
write_lock(&vcpu->kvm->mmu_lock);
|
|
|
|
if (is_page_fault_stale(vcpu, fault, mmu_seq))
|
|
goto out_unlock;
|
|
|
|
r = make_mmu_pages_available(vcpu);
|
|
if (r)
|
|
goto out_unlock;
|
|
r = FNAME(fetch)(vcpu, fault, &walker);
|
|
|
|
out_unlock:
|
|
write_unlock(&vcpu->kvm->mmu_lock);
|
|
kvm_release_pfn_clean(fault->pfn);
|
|
return r;
|
|
}
|
|
|
|
static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
|
|
{
|
|
int offset = 0;
|
|
|
|
WARN_ON(sp->role.level != PG_LEVEL_4K);
|
|
|
|
if (PTTYPE == 32)
|
|
offset = sp->role.quadrant << PT64_LEVEL_BITS;
|
|
|
|
return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
|
|
}
|
|
|
|
static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
|
|
{
|
|
struct kvm_shadow_walk_iterator iterator;
|
|
struct kvm_mmu_page *sp;
|
|
u64 old_spte;
|
|
int level;
|
|
u64 *sptep;
|
|
|
|
vcpu_clear_mmio_info(vcpu, gva);
|
|
|
|
/*
|
|
* No need to check return value here, rmap_can_add() can
|
|
* help us to skip pte prefetch later.
|
|
*/
|
|
mmu_topup_memory_caches(vcpu, true);
|
|
|
|
if (!VALID_PAGE(root_hpa)) {
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
write_lock(&vcpu->kvm->mmu_lock);
|
|
for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
|
|
level = iterator.level;
|
|
sptep = iterator.sptep;
|
|
|
|
sp = sptep_to_sp(sptep);
|
|
old_spte = *sptep;
|
|
if (is_last_spte(old_spte, level)) {
|
|
pt_element_t gpte;
|
|
gpa_t pte_gpa;
|
|
|
|
if (!sp->unsync)
|
|
break;
|
|
|
|
pte_gpa = FNAME(get_level1_sp_gpa)(sp);
|
|
pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
|
|
|
|
mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
|
|
if (is_shadow_present_pte(old_spte))
|
|
kvm_flush_remote_tlbs_with_address(vcpu->kvm,
|
|
sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
|
|
|
|
if (!rmap_can_add(vcpu))
|
|
break;
|
|
|
|
if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
|
|
sizeof(pt_element_t)))
|
|
break;
|
|
|
|
FNAME(prefetch_gpte)(vcpu, sp, sptep, gpte, false);
|
|
}
|
|
|
|
if (!sp->unsync_children)
|
|
break;
|
|
}
|
|
write_unlock(&vcpu->kvm->mmu_lock);
|
|
}
|
|
|
|
/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
|
|
static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
|
|
gpa_t addr, u64 access,
|
|
struct x86_exception *exception)
|
|
{
|
|
struct guest_walker walker;
|
|
gpa_t gpa = UNMAPPED_GVA;
|
|
int r;
|
|
|
|
#ifndef CONFIG_X86_64
|
|
/* A 64-bit GVA should be impossible on 32-bit KVM. */
|
|
WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu);
|
|
#endif
|
|
|
|
r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access);
|
|
|
|
if (r) {
|
|
gpa = gfn_to_gpa(walker.gfn);
|
|
gpa |= addr & ~PAGE_MASK;
|
|
} else if (exception)
|
|
*exception = walker.fault;
|
|
|
|
return gpa;
|
|
}
|
|
|
|
/*
|
|
* Using the cached information from sp->gfns is safe because:
|
|
* - The spte has a reference to the struct page, so the pfn for a given gfn
|
|
* can't change unless all sptes pointing to it are nuked first.
|
|
*
|
|
* Returns
|
|
* < 0: the sp should be zapped
|
|
* 0: the sp is synced and no tlb flushing is required
|
|
* > 0: the sp is synced and tlb flushing is required
|
|
*/
|
|
static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
|
|
{
|
|
union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
|
|
int i;
|
|
bool host_writable;
|
|
gpa_t first_pte_gpa;
|
|
bool flush = false;
|
|
|
|
/*
|
|
* Ignore various flags when verifying that it's safe to sync a shadow
|
|
* page using the current MMU context.
|
|
*
|
|
* - level: not part of the overall MMU role and will never match as the MMU's
|
|
* level tracks the root level
|
|
* - access: updated based on the new guest PTE
|
|
* - quadrant: not part of the overall MMU role (similar to level)
|
|
*/
|
|
const union kvm_mmu_page_role sync_role_ign = {
|
|
.level = 0xf,
|
|
.access = 0x7,
|
|
.quadrant = 0x3,
|
|
.passthrough = 0x1,
|
|
};
|
|
|
|
/*
|
|
* Direct pages can never be unsync, and KVM should never attempt to
|
|
* sync a shadow page for a different MMU context, e.g. if the role
|
|
* differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
|
|
* reserved bits checks will be wrong, etc...
|
|
*/
|
|
if (WARN_ON_ONCE(sp->role.direct ||
|
|
(sp->role.word ^ root_role.word) & ~sync_role_ign.word))
|
|
return -1;
|
|
|
|
first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
|
|
|
|
for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
|
|
u64 *sptep, spte;
|
|
struct kvm_memory_slot *slot;
|
|
unsigned pte_access;
|
|
pt_element_t gpte;
|
|
gpa_t pte_gpa;
|
|
gfn_t gfn;
|
|
|
|
if (!sp->spt[i])
|
|
continue;
|
|
|
|
pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
|
|
|
|
if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
|
|
sizeof(pt_element_t)))
|
|
return -1;
|
|
|
|
if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
|
|
flush = true;
|
|
continue;
|
|
}
|
|
|
|
gfn = gpte_to_gfn(gpte);
|
|
pte_access = sp->role.access;
|
|
pte_access &= FNAME(gpte_access)(gpte);
|
|
FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
|
|
|
|
if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access))
|
|
continue;
|
|
|
|
/*
|
|
* Drop the SPTE if the new protections would result in a RWX=0
|
|
* SPTE or if the gfn is changing. The RWX=0 case only affects
|
|
* EPT with execute-only support, i.e. EPT without an effective
|
|
* "present" bit, as all other paging modes will create a
|
|
* read-only SPTE if pte_access is zero.
|
|
*/
|
|
if ((!pte_access && !shadow_present_mask) || gfn != sp->gfns[i]) {
|
|
drop_spte(vcpu->kvm, &sp->spt[i]);
|
|
flush = true;
|
|
continue;
|
|
}
|
|
|
|
sptep = &sp->spt[i];
|
|
spte = *sptep;
|
|
host_writable = spte & shadow_host_writable_mask;
|
|
slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
|
|
make_spte(vcpu, sp, slot, pte_access, gfn,
|
|
spte_to_pfn(spte), spte, true, false,
|
|
host_writable, &spte);
|
|
|
|
flush |= mmu_spte_update(sptep, spte);
|
|
}
|
|
|
|
return flush;
|
|
}
|
|
|
|
#undef pt_element_t
|
|
#undef guest_walker
|
|
#undef FNAME
|
|
#undef PT_BASE_ADDR_MASK
|
|
#undef PT_INDEX
|
|
#undef PT_LVL_ADDR_MASK
|
|
#undef PT_LVL_OFFSET_MASK
|
|
#undef PT_LEVEL_BITS
|
|
#undef PT_MAX_FULL_LEVELS
|
|
#undef gpte_to_gfn
|
|
#undef gpte_to_gfn_lvl
|
|
#undef CMPXCHG
|
|
#undef PT_GUEST_ACCESSED_MASK
|
|
#undef PT_GUEST_DIRTY_MASK
|
|
#undef PT_GUEST_DIRTY_SHIFT
|
|
#undef PT_GUEST_ACCESSED_SHIFT
|
|
#undef PT_HAVE_ACCESSED_DIRTY
|