linux/drivers/ufs/core/ufshcd-crypto.c
Bart Van Assche 078f4f4b34 scsi: ufs: Ungate the clock synchronously
Ungating the clock asynchronously causes ufshcd_queuecommand() to return
SCSI_MLQUEUE_HOST_BUSY and hence causes commands to be requeued.  This is
suboptimal. Allow ufshcd_queuecommand() to sleep such that clock ungating
does not trigger command requeuing. Remove the ufshcd_scsi_block_requests()
and ufshcd_scsi_unblock_requests() calls because these are no longer
needed. The flush_work(&hba->clk_gating.ungate_work) call is sufficient to
make the SCSI core wait for clock ungating to complete.

Acked-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20230529202640.11883-6-bvanassche@acm.org
Reviewed-by: Bean Huo <beanhuo@micron.com>
Reviewed-by: Bao D. Nguyen <quic_nguyenb@quicinc.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-05-31 11:44:01 -04:00

241 lines
6.7 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2019 Google LLC
*/
#include <ufs/ufshcd.h>
#include "ufshcd-crypto.h"
/* Blk-crypto modes supported by UFS crypto */
static const struct ufs_crypto_alg_entry {
enum ufs_crypto_alg ufs_alg;
enum ufs_crypto_key_size ufs_key_size;
} ufs_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = {
[BLK_ENCRYPTION_MODE_AES_256_XTS] = {
.ufs_alg = UFS_CRYPTO_ALG_AES_XTS,
.ufs_key_size = UFS_CRYPTO_KEY_SIZE_256,
},
};
static int ufshcd_program_key(struct ufs_hba *hba,
const union ufs_crypto_cfg_entry *cfg, int slot)
{
int i;
u32 slot_offset = hba->crypto_cfg_register + slot * sizeof(*cfg);
int err = 0;
ufshcd_hold(hba);
if (hba->vops && hba->vops->program_key) {
err = hba->vops->program_key(hba, cfg, slot);
goto out;
}
/* Ensure that CFGE is cleared before programming the key */
ufshcd_writel(hba, 0, slot_offset + 16 * sizeof(cfg->reg_val[0]));
for (i = 0; i < 16; i++) {
ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[i]),
slot_offset + i * sizeof(cfg->reg_val[0]));
}
/* Write dword 17 */
ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[17]),
slot_offset + 17 * sizeof(cfg->reg_val[0]));
/* Dword 16 must be written last */
ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[16]),
slot_offset + 16 * sizeof(cfg->reg_val[0]));
out:
ufshcd_release(hba);
return err;
}
static int ufshcd_crypto_keyslot_program(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
unsigned int slot)
{
struct ufs_hba *hba =
container_of(profile, struct ufs_hba, crypto_profile);
const union ufs_crypto_cap_entry *ccap_array = hba->crypto_cap_array;
const struct ufs_crypto_alg_entry *alg =
&ufs_crypto_algs[key->crypto_cfg.crypto_mode];
u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512;
int i;
int cap_idx = -1;
union ufs_crypto_cfg_entry cfg = {};
int err;
BUILD_BUG_ON(UFS_CRYPTO_KEY_SIZE_INVALID != 0);
for (i = 0; i < hba->crypto_capabilities.num_crypto_cap; i++) {
if (ccap_array[i].algorithm_id == alg->ufs_alg &&
ccap_array[i].key_size == alg->ufs_key_size &&
(ccap_array[i].sdus_mask & data_unit_mask)) {
cap_idx = i;
break;
}
}
if (WARN_ON(cap_idx < 0))
return -EOPNOTSUPP;
cfg.data_unit_size = data_unit_mask;
cfg.crypto_cap_idx = cap_idx;
cfg.config_enable = UFS_CRYPTO_CONFIGURATION_ENABLE;
if (ccap_array[cap_idx].algorithm_id == UFS_CRYPTO_ALG_AES_XTS) {
/* In XTS mode, the blk_crypto_key's size is already doubled */
memcpy(cfg.crypto_key, key->raw, key->size/2);
memcpy(cfg.crypto_key + UFS_CRYPTO_KEY_MAX_SIZE/2,
key->raw + key->size/2, key->size/2);
} else {
memcpy(cfg.crypto_key, key->raw, key->size);
}
err = ufshcd_program_key(hba, &cfg, slot);
memzero_explicit(&cfg, sizeof(cfg));
return err;
}
static int ufshcd_clear_keyslot(struct ufs_hba *hba, int slot)
{
/*
* Clear the crypto cfg on the device. Clearing CFGE
* might not be sufficient, so just clear the entire cfg.
*/
union ufs_crypto_cfg_entry cfg = {};
return ufshcd_program_key(hba, &cfg, slot);
}
static int ufshcd_crypto_keyslot_evict(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
unsigned int slot)
{
struct ufs_hba *hba =
container_of(profile, struct ufs_hba, crypto_profile);
return ufshcd_clear_keyslot(hba, slot);
}
bool ufshcd_crypto_enable(struct ufs_hba *hba)
{
if (!(hba->caps & UFSHCD_CAP_CRYPTO))
return false;
/* Reset might clear all keys, so reprogram all the keys. */
blk_crypto_reprogram_all_keys(&hba->crypto_profile);
return true;
}
static const struct blk_crypto_ll_ops ufshcd_crypto_ops = {
.keyslot_program = ufshcd_crypto_keyslot_program,
.keyslot_evict = ufshcd_crypto_keyslot_evict,
};
static enum blk_crypto_mode_num
ufshcd_find_blk_crypto_mode(union ufs_crypto_cap_entry cap)
{
int i;
for (i = 0; i < ARRAY_SIZE(ufs_crypto_algs); i++) {
BUILD_BUG_ON(UFS_CRYPTO_KEY_SIZE_INVALID != 0);
if (ufs_crypto_algs[i].ufs_alg == cap.algorithm_id &&
ufs_crypto_algs[i].ufs_key_size == cap.key_size) {
return i;
}
}
return BLK_ENCRYPTION_MODE_INVALID;
}
/**
* ufshcd_hba_init_crypto_capabilities - Read crypto capabilities, init crypto
* fields in hba
* @hba: Per adapter instance
*
* Return: 0 if crypto was initialized or is not supported, else a -errno value.
*/
int ufshcd_hba_init_crypto_capabilities(struct ufs_hba *hba)
{
int cap_idx;
int err = 0;
enum blk_crypto_mode_num blk_mode_num;
/*
* Don't use crypto if either the hardware doesn't advertise the
* standard crypto capability bit *or* if the vendor specific driver
* hasn't advertised that crypto is supported.
*/
if (!(hba->capabilities & MASK_CRYPTO_SUPPORT) ||
!(hba->caps & UFSHCD_CAP_CRYPTO))
goto out;
hba->crypto_capabilities.reg_val =
cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP));
hba->crypto_cfg_register =
(u32)hba->crypto_capabilities.config_array_ptr * 0x100;
hba->crypto_cap_array =
devm_kcalloc(hba->dev, hba->crypto_capabilities.num_crypto_cap,
sizeof(hba->crypto_cap_array[0]), GFP_KERNEL);
if (!hba->crypto_cap_array) {
err = -ENOMEM;
goto out;
}
/* The actual number of configurations supported is (CFGC+1) */
err = devm_blk_crypto_profile_init(
hba->dev, &hba->crypto_profile,
hba->crypto_capabilities.config_count + 1);
if (err)
goto out;
hba->crypto_profile.ll_ops = ufshcd_crypto_ops;
/* UFS only supports 8 bytes for any DUN */
hba->crypto_profile.max_dun_bytes_supported = 8;
hba->crypto_profile.dev = hba->dev;
/*
* Cache all the UFS crypto capabilities and advertise the supported
* crypto modes and data unit sizes to the block layer.
*/
for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap;
cap_idx++) {
hba->crypto_cap_array[cap_idx].reg_val =
cpu_to_le32(ufshcd_readl(hba,
REG_UFS_CRYPTOCAP +
cap_idx * sizeof(__le32)));
blk_mode_num = ufshcd_find_blk_crypto_mode(
hba->crypto_cap_array[cap_idx]);
if (blk_mode_num != BLK_ENCRYPTION_MODE_INVALID)
hba->crypto_profile.modes_supported[blk_mode_num] |=
hba->crypto_cap_array[cap_idx].sdus_mask * 512;
}
return 0;
out:
/* Indicate that init failed by clearing UFSHCD_CAP_CRYPTO */
hba->caps &= ~UFSHCD_CAP_CRYPTO;
return err;
}
/**
* ufshcd_init_crypto - Initialize crypto hardware
* @hba: Per adapter instance
*/
void ufshcd_init_crypto(struct ufs_hba *hba)
{
int slot;
if (!(hba->caps & UFSHCD_CAP_CRYPTO))
return;
/* Clear all keyslots - the number of keyslots is (CFGC + 1) */
for (slot = 0; slot < hba->crypto_capabilities.config_count + 1; slot++)
ufshcd_clear_keyslot(hba, slot);
}
void ufshcd_crypto_register(struct ufs_hba *hba, struct request_queue *q)
{
if (hba->caps & UFSHCD_CAP_CRYPTO)
blk_crypto_register(&hba->crypto_profile, q);
}