mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-09 15:24:32 +08:00
05e36022c0
When a signal is handled, the context is pushed to the stack before handling it. For shadow stacks, since the shadow stack only tracks return addresses, there isn't any state that needs to be pushed. However, there are still a few things that need to be done. These things are visible to userspace and which will be kernel ABI for shadow stacks. One is to make sure the restorer address is written to shadow stack, since the signal handler (if not changing ucontext) returns to the restorer, and the restorer calls sigreturn. So add the restorer on the shadow stack before handling the signal, so there is not a conflict when the signal handler returns to the restorer. The other thing to do is to place some type of checkable token on the thread's shadow stack before handling the signal and check it during sigreturn. This is an extra layer of protection to hamper attackers calling sigreturn manually as in SROP-like attacks. For this token the shadow stack data format defined earlier can be used. Have the data pushed be the previous SSP. In the future the sigreturn might want to return back to a different stack. Storing the SSP (instead of a restore offset or something) allows for future functionality that may want to restore to a different stack. So, when handling a signal push - the SSP pointing in the shadow stack data format - the restorer address below the restore token. In sigreturn, verify SSP is stored in the data format and pop the shadow stack. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-32-rick.p.edgecombe%40intel.com
412 lines
11 KiB
C
412 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
* Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
|
|
*
|
|
* 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
|
|
* 2000-06-20 Pentium III FXSR, SSE support by Gareth Hughes
|
|
* 2000-2002 x86-64 support by Andi Kleen
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kstrtox.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/user-return-notifier.h>
|
|
#include <linux/uprobes.h>
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/entry-common.h>
|
|
#include <linux/syscalls.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/ucontext.h>
|
|
#include <asm/fpu/signal.h>
|
|
#include <asm/fpu/xstate.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/sighandling.h>
|
|
#include <asm/vm86.h>
|
|
|
|
#include <asm/syscall.h>
|
|
#include <asm/sigframe.h>
|
|
#include <asm/signal.h>
|
|
#include <asm/shstk.h>
|
|
|
|
static inline int is_ia32_compat_frame(struct ksignal *ksig)
|
|
{
|
|
return IS_ENABLED(CONFIG_IA32_EMULATION) &&
|
|
ksig->ka.sa.sa_flags & SA_IA32_ABI;
|
|
}
|
|
|
|
static inline int is_ia32_frame(struct ksignal *ksig)
|
|
{
|
|
return IS_ENABLED(CONFIG_X86_32) || is_ia32_compat_frame(ksig);
|
|
}
|
|
|
|
static inline int is_x32_frame(struct ksignal *ksig)
|
|
{
|
|
return IS_ENABLED(CONFIG_X86_X32_ABI) &&
|
|
ksig->ka.sa.sa_flags & SA_X32_ABI;
|
|
}
|
|
|
|
/*
|
|
* Set up a signal frame.
|
|
*/
|
|
|
|
/* x86 ABI requires 16-byte alignment */
|
|
#define FRAME_ALIGNMENT 16UL
|
|
|
|
#define MAX_FRAME_PADDING (FRAME_ALIGNMENT - 1)
|
|
|
|
/*
|
|
* Determine which stack to use..
|
|
*/
|
|
void __user *
|
|
get_sigframe(struct ksignal *ksig, struct pt_regs *regs, size_t frame_size,
|
|
void __user **fpstate)
|
|
{
|
|
struct k_sigaction *ka = &ksig->ka;
|
|
int ia32_frame = is_ia32_frame(ksig);
|
|
/* Default to using normal stack */
|
|
bool nested_altstack = on_sig_stack(regs->sp);
|
|
bool entering_altstack = false;
|
|
unsigned long math_size = 0;
|
|
unsigned long sp = regs->sp;
|
|
unsigned long buf_fx = 0;
|
|
|
|
/* redzone */
|
|
if (!ia32_frame)
|
|
sp -= 128;
|
|
|
|
/* This is the X/Open sanctioned signal stack switching. */
|
|
if (ka->sa.sa_flags & SA_ONSTACK) {
|
|
/*
|
|
* This checks nested_altstack via sas_ss_flags(). Sensible
|
|
* programs use SS_AUTODISARM, which disables that check, and
|
|
* programs that don't use SS_AUTODISARM get compatible.
|
|
*/
|
|
if (sas_ss_flags(sp) == 0) {
|
|
sp = current->sas_ss_sp + current->sas_ss_size;
|
|
entering_altstack = true;
|
|
}
|
|
} else if (ia32_frame &&
|
|
!nested_altstack &&
|
|
regs->ss != __USER_DS &&
|
|
!(ka->sa.sa_flags & SA_RESTORER) &&
|
|
ka->sa.sa_restorer) {
|
|
/* This is the legacy signal stack switching. */
|
|
sp = (unsigned long) ka->sa.sa_restorer;
|
|
entering_altstack = true;
|
|
}
|
|
|
|
sp = fpu__alloc_mathframe(sp, ia32_frame, &buf_fx, &math_size);
|
|
*fpstate = (void __user *)sp;
|
|
|
|
sp -= frame_size;
|
|
|
|
if (ia32_frame)
|
|
/*
|
|
* Align the stack pointer according to the i386 ABI,
|
|
* i.e. so that on function entry ((sp + 4) & 15) == 0.
|
|
*/
|
|
sp = ((sp + 4) & -FRAME_ALIGNMENT) - 4;
|
|
else
|
|
sp = round_down(sp, FRAME_ALIGNMENT) - 8;
|
|
|
|
/*
|
|
* If we are on the alternate signal stack and would overflow it, don't.
|
|
* Return an always-bogus address instead so we will die with SIGSEGV.
|
|
*/
|
|
if (unlikely((nested_altstack || entering_altstack) &&
|
|
!__on_sig_stack(sp))) {
|
|
|
|
if (show_unhandled_signals && printk_ratelimit())
|
|
pr_info("%s[%d] overflowed sigaltstack\n",
|
|
current->comm, task_pid_nr(current));
|
|
|
|
return (void __user *)-1L;
|
|
}
|
|
|
|
/* save i387 and extended state */
|
|
if (!copy_fpstate_to_sigframe(*fpstate, (void __user *)buf_fx, math_size))
|
|
return (void __user *)-1L;
|
|
|
|
return (void __user *)sp;
|
|
}
|
|
|
|
/*
|
|
* There are four different struct types for signal frame: sigframe_ia32,
|
|
* rt_sigframe_ia32, rt_sigframe_x32, and rt_sigframe. Use the worst case
|
|
* -- the largest size. It means the size for 64-bit apps is a bit more
|
|
* than needed, but this keeps the code simple.
|
|
*/
|
|
#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
|
|
# define MAX_FRAME_SIGINFO_UCTXT_SIZE sizeof(struct sigframe_ia32)
|
|
#else
|
|
# define MAX_FRAME_SIGINFO_UCTXT_SIZE sizeof(struct rt_sigframe)
|
|
#endif
|
|
|
|
/*
|
|
* The FP state frame contains an XSAVE buffer which must be 64-byte aligned.
|
|
* If a signal frame starts at an unaligned address, extra space is required.
|
|
* This is the max alignment padding, conservatively.
|
|
*/
|
|
#define MAX_XSAVE_PADDING 63UL
|
|
|
|
/*
|
|
* The frame data is composed of the following areas and laid out as:
|
|
*
|
|
* -------------------------
|
|
* | alignment padding |
|
|
* -------------------------
|
|
* | (f)xsave frame |
|
|
* -------------------------
|
|
* | fsave header |
|
|
* -------------------------
|
|
* | alignment padding |
|
|
* -------------------------
|
|
* | siginfo + ucontext |
|
|
* -------------------------
|
|
*/
|
|
|
|
/* max_frame_size tells userspace the worst case signal stack size. */
|
|
static unsigned long __ro_after_init max_frame_size;
|
|
static unsigned int __ro_after_init fpu_default_state_size;
|
|
|
|
static int __init init_sigframe_size(void)
|
|
{
|
|
fpu_default_state_size = fpu__get_fpstate_size();
|
|
|
|
max_frame_size = MAX_FRAME_SIGINFO_UCTXT_SIZE + MAX_FRAME_PADDING;
|
|
|
|
max_frame_size += fpu_default_state_size + MAX_XSAVE_PADDING;
|
|
|
|
/* Userspace expects an aligned size. */
|
|
max_frame_size = round_up(max_frame_size, FRAME_ALIGNMENT);
|
|
|
|
pr_info("max sigframe size: %lu\n", max_frame_size);
|
|
return 0;
|
|
}
|
|
early_initcall(init_sigframe_size);
|
|
|
|
unsigned long get_sigframe_size(void)
|
|
{
|
|
return max_frame_size;
|
|
}
|
|
|
|
static int
|
|
setup_rt_frame(struct ksignal *ksig, struct pt_regs *regs)
|
|
{
|
|
/* Perform fixup for the pre-signal frame. */
|
|
rseq_signal_deliver(ksig, regs);
|
|
|
|
/* Set up the stack frame */
|
|
if (is_ia32_frame(ksig)) {
|
|
if (ksig->ka.sa.sa_flags & SA_SIGINFO)
|
|
return ia32_setup_rt_frame(ksig, regs);
|
|
else
|
|
return ia32_setup_frame(ksig, regs);
|
|
} else if (is_x32_frame(ksig)) {
|
|
return x32_setup_rt_frame(ksig, regs);
|
|
} else {
|
|
return x64_setup_rt_frame(ksig, regs);
|
|
}
|
|
}
|
|
|
|
static void
|
|
handle_signal(struct ksignal *ksig, struct pt_regs *regs)
|
|
{
|
|
bool stepping, failed;
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
|
|
if (v8086_mode(regs))
|
|
save_v86_state((struct kernel_vm86_regs *) regs, VM86_SIGNAL);
|
|
|
|
/* Are we from a system call? */
|
|
if (syscall_get_nr(current, regs) != -1) {
|
|
/* If so, check system call restarting.. */
|
|
switch (syscall_get_error(current, regs)) {
|
|
case -ERESTART_RESTARTBLOCK:
|
|
case -ERESTARTNOHAND:
|
|
regs->ax = -EINTR;
|
|
break;
|
|
|
|
case -ERESTARTSYS:
|
|
if (!(ksig->ka.sa.sa_flags & SA_RESTART)) {
|
|
regs->ax = -EINTR;
|
|
break;
|
|
}
|
|
fallthrough;
|
|
case -ERESTARTNOINTR:
|
|
regs->ax = regs->orig_ax;
|
|
regs->ip -= 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If TF is set due to a debugger (TIF_FORCED_TF), clear TF now
|
|
* so that register information in the sigcontext is correct and
|
|
* then notify the tracer before entering the signal handler.
|
|
*/
|
|
stepping = test_thread_flag(TIF_SINGLESTEP);
|
|
if (stepping)
|
|
user_disable_single_step(current);
|
|
|
|
failed = (setup_rt_frame(ksig, regs) < 0);
|
|
if (!failed) {
|
|
/*
|
|
* Clear the direction flag as per the ABI for function entry.
|
|
*
|
|
* Clear RF when entering the signal handler, because
|
|
* it might disable possible debug exception from the
|
|
* signal handler.
|
|
*
|
|
* Clear TF for the case when it wasn't set by debugger to
|
|
* avoid the recursive send_sigtrap() in SIGTRAP handler.
|
|
*/
|
|
regs->flags &= ~(X86_EFLAGS_DF|X86_EFLAGS_RF|X86_EFLAGS_TF);
|
|
/*
|
|
* Ensure the signal handler starts with the new fpu state.
|
|
*/
|
|
fpu__clear_user_states(fpu);
|
|
}
|
|
signal_setup_done(failed, ksig, stepping);
|
|
}
|
|
|
|
static inline unsigned long get_nr_restart_syscall(const struct pt_regs *regs)
|
|
{
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
if (current->restart_block.arch_data & TS_COMPAT)
|
|
return __NR_ia32_restart_syscall;
|
|
#endif
|
|
#ifdef CONFIG_X86_X32_ABI
|
|
return __NR_restart_syscall | (regs->orig_ax & __X32_SYSCALL_BIT);
|
|
#else
|
|
return __NR_restart_syscall;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Note that 'init' is a special process: it doesn't get signals it doesn't
|
|
* want to handle. Thus you cannot kill init even with a SIGKILL even by
|
|
* mistake.
|
|
*/
|
|
void arch_do_signal_or_restart(struct pt_regs *regs)
|
|
{
|
|
struct ksignal ksig;
|
|
|
|
if (get_signal(&ksig)) {
|
|
/* Whee! Actually deliver the signal. */
|
|
handle_signal(&ksig, regs);
|
|
return;
|
|
}
|
|
|
|
/* Did we come from a system call? */
|
|
if (syscall_get_nr(current, regs) != -1) {
|
|
/* Restart the system call - no handlers present */
|
|
switch (syscall_get_error(current, regs)) {
|
|
case -ERESTARTNOHAND:
|
|
case -ERESTARTSYS:
|
|
case -ERESTARTNOINTR:
|
|
regs->ax = regs->orig_ax;
|
|
regs->ip -= 2;
|
|
break;
|
|
|
|
case -ERESTART_RESTARTBLOCK:
|
|
regs->ax = get_nr_restart_syscall(regs);
|
|
regs->ip -= 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there's no signal to deliver, we just put the saved sigmask
|
|
* back.
|
|
*/
|
|
restore_saved_sigmask();
|
|
}
|
|
|
|
void signal_fault(struct pt_regs *regs, void __user *frame, char *where)
|
|
{
|
|
struct task_struct *me = current;
|
|
|
|
if (show_unhandled_signals && printk_ratelimit()) {
|
|
printk("%s"
|
|
"%s[%d] bad frame in %s frame:%p ip:%lx sp:%lx orax:%lx",
|
|
task_pid_nr(current) > 1 ? KERN_INFO : KERN_EMERG,
|
|
me->comm, me->pid, where, frame,
|
|
regs->ip, regs->sp, regs->orig_ax);
|
|
print_vma_addr(KERN_CONT " in ", regs->ip);
|
|
pr_cont("\n");
|
|
}
|
|
|
|
force_sig(SIGSEGV);
|
|
}
|
|
|
|
#ifdef CONFIG_DYNAMIC_SIGFRAME
|
|
#ifdef CONFIG_STRICT_SIGALTSTACK_SIZE
|
|
static bool strict_sigaltstack_size __ro_after_init = true;
|
|
#else
|
|
static bool strict_sigaltstack_size __ro_after_init = false;
|
|
#endif
|
|
|
|
static int __init strict_sas_size(char *arg)
|
|
{
|
|
return kstrtobool(arg, &strict_sigaltstack_size) == 0;
|
|
}
|
|
__setup("strict_sas_size", strict_sas_size);
|
|
|
|
/*
|
|
* MINSIGSTKSZ is 2048 and can't be changed despite the fact that AVX512
|
|
* exceeds that size already. As such programs might never use the
|
|
* sigaltstack they just continued to work. While always checking against
|
|
* the real size would be correct, this might be considered a regression.
|
|
*
|
|
* Therefore avoid the sanity check, unless enforced by kernel
|
|
* configuration or command line option.
|
|
*
|
|
* When dynamic FPU features are supported, the check is also enforced when
|
|
* the task has permissions to use dynamic features. Tasks which have no
|
|
* permission are checked against the size of the non-dynamic feature set
|
|
* if strict checking is enabled. This avoids forcing all tasks on the
|
|
* system to allocate large sigaltstacks even if they are never going
|
|
* to use a dynamic feature. As this is serialized via sighand::siglock
|
|
* any permission request for a dynamic feature either happened already
|
|
* or will see the newly install sigaltstack size in the permission checks.
|
|
*/
|
|
bool sigaltstack_size_valid(size_t ss_size)
|
|
{
|
|
unsigned long fsize = max_frame_size - fpu_default_state_size;
|
|
u64 mask;
|
|
|
|
lockdep_assert_held(¤t->sighand->siglock);
|
|
|
|
if (!fpu_state_size_dynamic() && !strict_sigaltstack_size)
|
|
return true;
|
|
|
|
fsize += current->group_leader->thread.fpu.perm.__user_state_size;
|
|
if (likely(ss_size > fsize))
|
|
return true;
|
|
|
|
if (strict_sigaltstack_size)
|
|
return ss_size > fsize;
|
|
|
|
mask = current->group_leader->thread.fpu.perm.__state_perm;
|
|
if (mask & XFEATURE_MASK_USER_DYNAMIC)
|
|
return ss_size > fsize;
|
|
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_DYNAMIC_SIGFRAME */
|