mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-08 06:44:35 +08:00
9f2fc5554a
All selftests that support the backing_src option were printing their
own description of the flag and then calling backing_src_help() to dump
the list of available backing sources. Consolidate the flag printing in
backing_src_help() to align indentation, reduce duplicated strings, and
improve consistency across tests.
Note: Passing "-s" to backing_src_help is unnecessary since every test
uses the same flag. However I decided to keep it for code readability
at the call sites.
While here this opportunistically fixes the incorrectly interleaved
printing -x help message and list of backing source types in
dirty_log_perf_test.
Fixes: 609e6202ea
("KVM: selftests: Support multiple slots in dirty_log_perf_test")
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210917173657.44011-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
426 lines
12 KiB
C
426 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* access_tracking_perf_test
|
|
*
|
|
* Copyright (C) 2021, Google, Inc.
|
|
*
|
|
* This test measures the performance effects of KVM's access tracking.
|
|
* Access tracking is driven by the MMU notifiers test_young, clear_young, and
|
|
* clear_flush_young. These notifiers do not have a direct userspace API,
|
|
* however the clear_young notifier can be triggered by marking a pages as idle
|
|
* in /sys/kernel/mm/page_idle/bitmap. This test leverages that mechanism to
|
|
* enable access tracking on guest memory.
|
|
*
|
|
* To measure performance this test runs a VM with a configurable number of
|
|
* vCPUs that each touch every page in disjoint regions of memory. Performance
|
|
* is measured in the time it takes all vCPUs to finish touching their
|
|
* predefined region.
|
|
*
|
|
* Note that a deterministic correctness test of access tracking is not possible
|
|
* by using page_idle as it exists today. This is for a few reasons:
|
|
*
|
|
* 1. page_idle only issues clear_young notifiers, which lack a TLB flush. This
|
|
* means subsequent guest accesses are not guaranteed to see page table
|
|
* updates made by KVM until some time in the future.
|
|
*
|
|
* 2. page_idle only operates on LRU pages. Newly allocated pages are not
|
|
* immediately allocated to LRU lists. Instead they are held in a "pagevec",
|
|
* which is drained to LRU lists some time in the future. There is no
|
|
* userspace API to force this drain to occur.
|
|
*
|
|
* These limitations are worked around in this test by using a large enough
|
|
* region of memory for each vCPU such that the number of translations cached in
|
|
* the TLB and the number of pages held in pagevecs are a small fraction of the
|
|
* overall workload. And if either of those conditions are not true this test
|
|
* will fail rather than silently passing.
|
|
*/
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <pthread.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include "kvm_util.h"
|
|
#include "test_util.h"
|
|
#include "perf_test_util.h"
|
|
#include "guest_modes.h"
|
|
|
|
/* Global variable used to synchronize all of the vCPU threads. */
|
|
static int iteration = -1;
|
|
|
|
/* Defines what vCPU threads should do during a given iteration. */
|
|
static enum {
|
|
/* Run the vCPU to access all its memory. */
|
|
ITERATION_ACCESS_MEMORY,
|
|
/* Mark the vCPU's memory idle in page_idle. */
|
|
ITERATION_MARK_IDLE,
|
|
} iteration_work;
|
|
|
|
/* Set to true when vCPU threads should exit. */
|
|
static bool done;
|
|
|
|
/* The iteration that was last completed by each vCPU. */
|
|
static int vcpu_last_completed_iteration[KVM_MAX_VCPUS];
|
|
|
|
/* Whether to overlap the regions of memory vCPUs access. */
|
|
static bool overlap_memory_access;
|
|
|
|
struct test_params {
|
|
/* The backing source for the region of memory. */
|
|
enum vm_mem_backing_src_type backing_src;
|
|
|
|
/* The amount of memory to allocate for each vCPU. */
|
|
uint64_t vcpu_memory_bytes;
|
|
|
|
/* The number of vCPUs to create in the VM. */
|
|
int vcpus;
|
|
};
|
|
|
|
static uint64_t pread_uint64(int fd, const char *filename, uint64_t index)
|
|
{
|
|
uint64_t value;
|
|
off_t offset = index * sizeof(value);
|
|
|
|
TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value),
|
|
"pread from %s offset 0x%" PRIx64 " failed!",
|
|
filename, offset);
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
#define PAGEMAP_PRESENT (1ULL << 63)
|
|
#define PAGEMAP_PFN_MASK ((1ULL << 55) - 1)
|
|
|
|
static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva)
|
|
{
|
|
uint64_t hva = (uint64_t) addr_gva2hva(vm, gva);
|
|
uint64_t entry;
|
|
uint64_t pfn;
|
|
|
|
entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize());
|
|
if (!(entry & PAGEMAP_PRESENT))
|
|
return 0;
|
|
|
|
pfn = entry & PAGEMAP_PFN_MASK;
|
|
if (!pfn) {
|
|
print_skip("Looking up PFNs requires CAP_SYS_ADMIN");
|
|
exit(KSFT_SKIP);
|
|
}
|
|
|
|
return pfn;
|
|
}
|
|
|
|
static bool is_page_idle(int page_idle_fd, uint64_t pfn)
|
|
{
|
|
uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64);
|
|
|
|
return !!((bits >> (pfn % 64)) & 1);
|
|
}
|
|
|
|
static void mark_page_idle(int page_idle_fd, uint64_t pfn)
|
|
{
|
|
uint64_t bits = 1ULL << (pfn % 64);
|
|
|
|
TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8,
|
|
"Set page_idle bits for PFN 0x%" PRIx64, pfn);
|
|
}
|
|
|
|
static void mark_vcpu_memory_idle(struct kvm_vm *vm, int vcpu_id)
|
|
{
|
|
uint64_t base_gva = perf_test_args.vcpu_args[vcpu_id].gva;
|
|
uint64_t pages = perf_test_args.vcpu_args[vcpu_id].pages;
|
|
uint64_t page;
|
|
uint64_t still_idle = 0;
|
|
uint64_t no_pfn = 0;
|
|
int page_idle_fd;
|
|
int pagemap_fd;
|
|
|
|
/* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */
|
|
if (overlap_memory_access && vcpu_id)
|
|
return;
|
|
|
|
page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR);
|
|
TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle.");
|
|
|
|
pagemap_fd = open("/proc/self/pagemap", O_RDONLY);
|
|
TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap.");
|
|
|
|
for (page = 0; page < pages; page++) {
|
|
uint64_t gva = base_gva + page * perf_test_args.guest_page_size;
|
|
uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva);
|
|
|
|
if (!pfn) {
|
|
no_pfn++;
|
|
continue;
|
|
}
|
|
|
|
if (is_page_idle(page_idle_fd, pfn)) {
|
|
still_idle++;
|
|
continue;
|
|
}
|
|
|
|
mark_page_idle(page_idle_fd, pfn);
|
|
}
|
|
|
|
/*
|
|
* Assumption: Less than 1% of pages are going to be swapped out from
|
|
* under us during this test.
|
|
*/
|
|
TEST_ASSERT(no_pfn < pages / 100,
|
|
"vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.",
|
|
vcpu_id, no_pfn, pages);
|
|
|
|
/*
|
|
* Test that at least 90% of memory has been marked idle (the rest might
|
|
* not be marked idle because the pages have not yet made it to an LRU
|
|
* list or the translations are still cached in the TLB). 90% is
|
|
* arbitrary; high enough that we ensure most memory access went through
|
|
* access tracking but low enough as to not make the test too brittle
|
|
* over time and across architectures.
|
|
*/
|
|
TEST_ASSERT(still_idle < pages / 10,
|
|
"vCPU%d: Too many pages still idle (%"PRIu64 " out of %"
|
|
PRIu64 ").\n",
|
|
vcpu_id, still_idle, pages);
|
|
|
|
close(page_idle_fd);
|
|
close(pagemap_fd);
|
|
}
|
|
|
|
static void assert_ucall(struct kvm_vm *vm, uint32_t vcpu_id,
|
|
uint64_t expected_ucall)
|
|
{
|
|
struct ucall uc;
|
|
uint64_t actual_ucall = get_ucall(vm, vcpu_id, &uc);
|
|
|
|
TEST_ASSERT(expected_ucall == actual_ucall,
|
|
"Guest exited unexpectedly (expected ucall %" PRIu64
|
|
", got %" PRIu64 ")",
|
|
expected_ucall, actual_ucall);
|
|
}
|
|
|
|
static bool spin_wait_for_next_iteration(int *current_iteration)
|
|
{
|
|
int last_iteration = *current_iteration;
|
|
|
|
do {
|
|
if (READ_ONCE(done))
|
|
return false;
|
|
|
|
*current_iteration = READ_ONCE(iteration);
|
|
} while (last_iteration == *current_iteration);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void *vcpu_thread_main(void *arg)
|
|
{
|
|
struct perf_test_vcpu_args *vcpu_args = arg;
|
|
struct kvm_vm *vm = perf_test_args.vm;
|
|
int vcpu_id = vcpu_args->vcpu_id;
|
|
int current_iteration = -1;
|
|
|
|
while (spin_wait_for_next_iteration(¤t_iteration)) {
|
|
switch (READ_ONCE(iteration_work)) {
|
|
case ITERATION_ACCESS_MEMORY:
|
|
vcpu_run(vm, vcpu_id);
|
|
assert_ucall(vm, vcpu_id, UCALL_SYNC);
|
|
break;
|
|
case ITERATION_MARK_IDLE:
|
|
mark_vcpu_memory_idle(vm, vcpu_id);
|
|
break;
|
|
};
|
|
|
|
vcpu_last_completed_iteration[vcpu_id] = current_iteration;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void spin_wait_for_vcpu(int vcpu_id, int target_iteration)
|
|
{
|
|
while (READ_ONCE(vcpu_last_completed_iteration[vcpu_id]) !=
|
|
target_iteration) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* The type of memory accesses to perform in the VM. */
|
|
enum access_type {
|
|
ACCESS_READ,
|
|
ACCESS_WRITE,
|
|
};
|
|
|
|
static void run_iteration(struct kvm_vm *vm, int vcpus, const char *description)
|
|
{
|
|
struct timespec ts_start;
|
|
struct timespec ts_elapsed;
|
|
int next_iteration;
|
|
int vcpu_id;
|
|
|
|
/* Kick off the vCPUs by incrementing iteration. */
|
|
next_iteration = ++iteration;
|
|
|
|
clock_gettime(CLOCK_MONOTONIC, &ts_start);
|
|
|
|
/* Wait for all vCPUs to finish the iteration. */
|
|
for (vcpu_id = 0; vcpu_id < vcpus; vcpu_id++)
|
|
spin_wait_for_vcpu(vcpu_id, next_iteration);
|
|
|
|
ts_elapsed = timespec_elapsed(ts_start);
|
|
pr_info("%-30s: %ld.%09lds\n",
|
|
description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec);
|
|
}
|
|
|
|
static void access_memory(struct kvm_vm *vm, int vcpus, enum access_type access,
|
|
const char *description)
|
|
{
|
|
perf_test_args.wr_fract = (access == ACCESS_READ) ? INT_MAX : 1;
|
|
sync_global_to_guest(vm, perf_test_args);
|
|
iteration_work = ITERATION_ACCESS_MEMORY;
|
|
run_iteration(vm, vcpus, description);
|
|
}
|
|
|
|
static void mark_memory_idle(struct kvm_vm *vm, int vcpus)
|
|
{
|
|
/*
|
|
* Even though this parallelizes the work across vCPUs, this is still a
|
|
* very slow operation because page_idle forces the test to mark one pfn
|
|
* at a time and the clear_young notifier serializes on the KVM MMU
|
|
* lock.
|
|
*/
|
|
pr_debug("Marking VM memory idle (slow)...\n");
|
|
iteration_work = ITERATION_MARK_IDLE;
|
|
run_iteration(vm, vcpus, "Mark memory idle");
|
|
}
|
|
|
|
static pthread_t *create_vcpu_threads(int vcpus)
|
|
{
|
|
pthread_t *vcpu_threads;
|
|
int i;
|
|
|
|
vcpu_threads = malloc(vcpus * sizeof(vcpu_threads[0]));
|
|
TEST_ASSERT(vcpu_threads, "Failed to allocate vcpu_threads.");
|
|
|
|
for (i = 0; i < vcpus; i++) {
|
|
vcpu_last_completed_iteration[i] = iteration;
|
|
pthread_create(&vcpu_threads[i], NULL, vcpu_thread_main,
|
|
&perf_test_args.vcpu_args[i]);
|
|
}
|
|
|
|
return vcpu_threads;
|
|
}
|
|
|
|
static void terminate_vcpu_threads(pthread_t *vcpu_threads, int vcpus)
|
|
{
|
|
int i;
|
|
|
|
/* Set done to signal the vCPU threads to exit */
|
|
done = true;
|
|
|
|
for (i = 0; i < vcpus; i++)
|
|
pthread_join(vcpu_threads[i], NULL);
|
|
}
|
|
|
|
static void run_test(enum vm_guest_mode mode, void *arg)
|
|
{
|
|
struct test_params *params = arg;
|
|
struct kvm_vm *vm;
|
|
pthread_t *vcpu_threads;
|
|
int vcpus = params->vcpus;
|
|
|
|
vm = perf_test_create_vm(mode, vcpus, params->vcpu_memory_bytes, 1,
|
|
params->backing_src);
|
|
|
|
perf_test_setup_vcpus(vm, vcpus, params->vcpu_memory_bytes,
|
|
!overlap_memory_access);
|
|
|
|
vcpu_threads = create_vcpu_threads(vcpus);
|
|
|
|
pr_info("\n");
|
|
access_memory(vm, vcpus, ACCESS_WRITE, "Populating memory");
|
|
|
|
/* As a control, read and write to the populated memory first. */
|
|
access_memory(vm, vcpus, ACCESS_WRITE, "Writing to populated memory");
|
|
access_memory(vm, vcpus, ACCESS_READ, "Reading from populated memory");
|
|
|
|
/* Repeat on memory that has been marked as idle. */
|
|
mark_memory_idle(vm, vcpus);
|
|
access_memory(vm, vcpus, ACCESS_WRITE, "Writing to idle memory");
|
|
mark_memory_idle(vm, vcpus);
|
|
access_memory(vm, vcpus, ACCESS_READ, "Reading from idle memory");
|
|
|
|
terminate_vcpu_threads(vcpu_threads, vcpus);
|
|
free(vcpu_threads);
|
|
perf_test_destroy_vm(vm);
|
|
}
|
|
|
|
static void help(char *name)
|
|
{
|
|
puts("");
|
|
printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o] [-s mem_type]\n",
|
|
name);
|
|
puts("");
|
|
printf(" -h: Display this help message.");
|
|
guest_modes_help();
|
|
printf(" -b: specify the size of the memory region which should be\n"
|
|
" dirtied by each vCPU. e.g. 10M or 3G.\n"
|
|
" (default: 1G)\n");
|
|
printf(" -v: specify the number of vCPUs to run.\n");
|
|
printf(" -o: Overlap guest memory accesses instead of partitioning\n"
|
|
" them into a separate region of memory for each vCPU.\n");
|
|
backing_src_help("-s");
|
|
puts("");
|
|
exit(0);
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
struct test_params params = {
|
|
.backing_src = DEFAULT_VM_MEM_SRC,
|
|
.vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE,
|
|
.vcpus = 1,
|
|
};
|
|
int page_idle_fd;
|
|
int opt;
|
|
|
|
guest_modes_append_default();
|
|
|
|
while ((opt = getopt(argc, argv, "hm:b:v:os:")) != -1) {
|
|
switch (opt) {
|
|
case 'm':
|
|
guest_modes_cmdline(optarg);
|
|
break;
|
|
case 'b':
|
|
params.vcpu_memory_bytes = parse_size(optarg);
|
|
break;
|
|
case 'v':
|
|
params.vcpus = atoi(optarg);
|
|
break;
|
|
case 'o':
|
|
overlap_memory_access = true;
|
|
break;
|
|
case 's':
|
|
params.backing_src = parse_backing_src_type(optarg);
|
|
break;
|
|
case 'h':
|
|
default:
|
|
help(argv[0]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR);
|
|
if (page_idle_fd < 0) {
|
|
print_skip("CONFIG_IDLE_PAGE_TRACKING is not enabled");
|
|
exit(KSFT_SKIP);
|
|
}
|
|
close(page_idle_fd);
|
|
|
|
for_each_guest_mode(run_test, ¶ms);
|
|
|
|
return 0;
|
|
}
|