linux/arch/avr32/mach-at32ap/at32ap700x.c

2222 lines
53 KiB
C

/*
* Copyright (C) 2005-2006 Atmel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dw_dmac.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/spi/spi.h>
#include <linux/usb/atmel_usba_udc.h>
#include <asm/atmel-mci.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/arch/at32ap700x.h>
#include <asm/arch/board.h>
#include <asm/arch/portmux.h>
#include <asm/arch/sram.h>
#include <video/atmel_lcdc.h>
#include "clock.h"
#include "hmatrix.h"
#include "pio.h"
#include "pm.h"
#define PBMEM(base) \
{ \
.start = base, \
.end = base + 0x3ff, \
.flags = IORESOURCE_MEM, \
}
#define IRQ(num) \
{ \
.start = num, \
.end = num, \
.flags = IORESOURCE_IRQ, \
}
#define NAMED_IRQ(num, _name) \
{ \
.start = num, \
.end = num, \
.name = _name, \
.flags = IORESOURCE_IRQ, \
}
/* REVISIT these assume *every* device supports DMA, but several
* don't ... tc, smc, pio, rtc, watchdog, pwm, ps2, and more.
*/
#define DEFINE_DEV(_name, _id) \
static u64 _name##_id##_dma_mask = DMA_32BIT_MASK; \
static struct platform_device _name##_id##_device = { \
.name = #_name, \
.id = _id, \
.dev = { \
.dma_mask = &_name##_id##_dma_mask, \
.coherent_dma_mask = DMA_32BIT_MASK, \
}, \
.resource = _name##_id##_resource, \
.num_resources = ARRAY_SIZE(_name##_id##_resource), \
}
#define DEFINE_DEV_DATA(_name, _id) \
static u64 _name##_id##_dma_mask = DMA_32BIT_MASK; \
static struct platform_device _name##_id##_device = { \
.name = #_name, \
.id = _id, \
.dev = { \
.dma_mask = &_name##_id##_dma_mask, \
.platform_data = &_name##_id##_data, \
.coherent_dma_mask = DMA_32BIT_MASK, \
}, \
.resource = _name##_id##_resource, \
.num_resources = ARRAY_SIZE(_name##_id##_resource), \
}
#define select_peripheral(pin, periph, flags) \
at32_select_periph(GPIO_PIN_##pin, GPIO_##periph, flags)
#define DEV_CLK(_name, devname, bus, _index) \
static struct clk devname##_##_name = { \
.name = #_name, \
.dev = &devname##_device.dev, \
.parent = &bus##_clk, \
.mode = bus##_clk_mode, \
.get_rate = bus##_clk_get_rate, \
.index = _index, \
}
static DEFINE_SPINLOCK(pm_lock);
static struct clk osc0;
static struct clk osc1;
static unsigned long osc_get_rate(struct clk *clk)
{
return at32_board_osc_rates[clk->index];
}
static unsigned long pll_get_rate(struct clk *clk, unsigned long control)
{
unsigned long div, mul, rate;
div = PM_BFEXT(PLLDIV, control) + 1;
mul = PM_BFEXT(PLLMUL, control) + 1;
rate = clk->parent->get_rate(clk->parent);
rate = (rate + div / 2) / div;
rate *= mul;
return rate;
}
static long pll_set_rate(struct clk *clk, unsigned long rate,
u32 *pll_ctrl)
{
unsigned long mul;
unsigned long mul_best_fit = 0;
unsigned long div;
unsigned long div_min;
unsigned long div_max;
unsigned long div_best_fit = 0;
unsigned long base;
unsigned long pll_in;
unsigned long actual = 0;
unsigned long rate_error;
unsigned long rate_error_prev = ~0UL;
u32 ctrl;
/* Rate must be between 80 MHz and 200 Mhz. */
if (rate < 80000000UL || rate > 200000000UL)
return -EINVAL;
ctrl = PM_BF(PLLOPT, 4);
base = clk->parent->get_rate(clk->parent);
/* PLL input frequency must be between 6 MHz and 32 MHz. */
div_min = DIV_ROUND_UP(base, 32000000UL);
div_max = base / 6000000UL;
if (div_max < div_min)
return -EINVAL;
for (div = div_min; div <= div_max; div++) {
pll_in = (base + div / 2) / div;
mul = (rate + pll_in / 2) / pll_in;
if (mul == 0)
continue;
actual = pll_in * mul;
rate_error = abs(actual - rate);
if (rate_error < rate_error_prev) {
mul_best_fit = mul;
div_best_fit = div;
rate_error_prev = rate_error;
}
if (rate_error == 0)
break;
}
if (div_best_fit == 0)
return -EINVAL;
ctrl |= PM_BF(PLLMUL, mul_best_fit - 1);
ctrl |= PM_BF(PLLDIV, div_best_fit - 1);
ctrl |= PM_BF(PLLCOUNT, 16);
if (clk->parent == &osc1)
ctrl |= PM_BIT(PLLOSC);
*pll_ctrl = ctrl;
return actual;
}
static unsigned long pll0_get_rate(struct clk *clk)
{
u32 control;
control = pm_readl(PLL0);
return pll_get_rate(clk, control);
}
static void pll1_mode(struct clk *clk, int enabled)
{
unsigned long timeout;
u32 status;
u32 ctrl;
ctrl = pm_readl(PLL1);
if (enabled) {
if (!PM_BFEXT(PLLMUL, ctrl) && !PM_BFEXT(PLLDIV, ctrl)) {
pr_debug("clk %s: failed to enable, rate not set\n",
clk->name);
return;
}
ctrl |= PM_BIT(PLLEN);
pm_writel(PLL1, ctrl);
/* Wait for PLL lock. */
for (timeout = 10000; timeout; timeout--) {
status = pm_readl(ISR);
if (status & PM_BIT(LOCK1))
break;
udelay(10);
}
if (!(status & PM_BIT(LOCK1)))
printk(KERN_ERR "clk %s: timeout waiting for lock\n",
clk->name);
} else {
ctrl &= ~PM_BIT(PLLEN);
pm_writel(PLL1, ctrl);
}
}
static unsigned long pll1_get_rate(struct clk *clk)
{
u32 control;
control = pm_readl(PLL1);
return pll_get_rate(clk, control);
}
static long pll1_set_rate(struct clk *clk, unsigned long rate, int apply)
{
u32 ctrl = 0;
unsigned long actual_rate;
actual_rate = pll_set_rate(clk, rate, &ctrl);
if (apply) {
if (actual_rate != rate)
return -EINVAL;
if (clk->users > 0)
return -EBUSY;
pr_debug(KERN_INFO "clk %s: new rate %lu (actual rate %lu)\n",
clk->name, rate, actual_rate);
pm_writel(PLL1, ctrl);
}
return actual_rate;
}
static int pll1_set_parent(struct clk *clk, struct clk *parent)
{
u32 ctrl;
if (clk->users > 0)
return -EBUSY;
ctrl = pm_readl(PLL1);
WARN_ON(ctrl & PM_BIT(PLLEN));
if (parent == &osc0)
ctrl &= ~PM_BIT(PLLOSC);
else if (parent == &osc1)
ctrl |= PM_BIT(PLLOSC);
else
return -EINVAL;
pm_writel(PLL1, ctrl);
clk->parent = parent;
return 0;
}
/*
* The AT32AP7000 has five primary clock sources: One 32kHz
* oscillator, two crystal oscillators and two PLLs.
*/
static struct clk osc32k = {
.name = "osc32k",
.get_rate = osc_get_rate,
.users = 1,
.index = 0,
};
static struct clk osc0 = {
.name = "osc0",
.get_rate = osc_get_rate,
.users = 1,
.index = 1,
};
static struct clk osc1 = {
.name = "osc1",
.get_rate = osc_get_rate,
.index = 2,
};
static struct clk pll0 = {
.name = "pll0",
.get_rate = pll0_get_rate,
.parent = &osc0,
};
static struct clk pll1 = {
.name = "pll1",
.mode = pll1_mode,
.get_rate = pll1_get_rate,
.set_rate = pll1_set_rate,
.set_parent = pll1_set_parent,
.parent = &osc0,
};
/*
* The main clock can be either osc0 or pll0. The boot loader may
* have chosen one for us, so we don't really know which one until we
* have a look at the SM.
*/
static struct clk *main_clock;
/*
* Synchronous clocks are generated from the main clock. The clocks
* must satisfy the constraint
* fCPU >= fHSB >= fPB
* i.e. each clock must not be faster than its parent.
*/
static unsigned long bus_clk_get_rate(struct clk *clk, unsigned int shift)
{
return main_clock->get_rate(main_clock) >> shift;
};
static void cpu_clk_mode(struct clk *clk, int enabled)
{
unsigned long flags;
u32 mask;
spin_lock_irqsave(&pm_lock, flags);
mask = pm_readl(CPU_MASK);
if (enabled)
mask |= 1 << clk->index;
else
mask &= ~(1 << clk->index);
pm_writel(CPU_MASK, mask);
spin_unlock_irqrestore(&pm_lock, flags);
}
static unsigned long cpu_clk_get_rate(struct clk *clk)
{
unsigned long cksel, shift = 0;
cksel = pm_readl(CKSEL);
if (cksel & PM_BIT(CPUDIV))
shift = PM_BFEXT(CPUSEL, cksel) + 1;
return bus_clk_get_rate(clk, shift);
}
static long cpu_clk_set_rate(struct clk *clk, unsigned long rate, int apply)
{
u32 control;
unsigned long parent_rate, child_div, actual_rate, div;
parent_rate = clk->parent->get_rate(clk->parent);
control = pm_readl(CKSEL);
if (control & PM_BIT(HSBDIV))
child_div = 1 << (PM_BFEXT(HSBSEL, control) + 1);
else
child_div = 1;
if (rate > 3 * (parent_rate / 4) || child_div == 1) {
actual_rate = parent_rate;
control &= ~PM_BIT(CPUDIV);
} else {
unsigned int cpusel;
div = (parent_rate + rate / 2) / rate;
if (div > child_div)
div = child_div;
cpusel = (div > 1) ? (fls(div) - 2) : 0;
control = PM_BIT(CPUDIV) | PM_BFINS(CPUSEL, cpusel, control);
actual_rate = parent_rate / (1 << (cpusel + 1));
}
pr_debug("clk %s: new rate %lu (actual rate %lu)\n",
clk->name, rate, actual_rate);
if (apply)
pm_writel(CKSEL, control);
return actual_rate;
}
static void hsb_clk_mode(struct clk *clk, int enabled)
{
unsigned long flags;
u32 mask;
spin_lock_irqsave(&pm_lock, flags);
mask = pm_readl(HSB_MASK);
if (enabled)
mask |= 1 << clk->index;
else
mask &= ~(1 << clk->index);
pm_writel(HSB_MASK, mask);
spin_unlock_irqrestore(&pm_lock, flags);
}
static unsigned long hsb_clk_get_rate(struct clk *clk)
{
unsigned long cksel, shift = 0;
cksel = pm_readl(CKSEL);
if (cksel & PM_BIT(HSBDIV))
shift = PM_BFEXT(HSBSEL, cksel) + 1;
return bus_clk_get_rate(clk, shift);
}
static void pba_clk_mode(struct clk *clk, int enabled)
{
unsigned long flags;
u32 mask;
spin_lock_irqsave(&pm_lock, flags);
mask = pm_readl(PBA_MASK);
if (enabled)
mask |= 1 << clk->index;
else
mask &= ~(1 << clk->index);
pm_writel(PBA_MASK, mask);
spin_unlock_irqrestore(&pm_lock, flags);
}
static unsigned long pba_clk_get_rate(struct clk *clk)
{
unsigned long cksel, shift = 0;
cksel = pm_readl(CKSEL);
if (cksel & PM_BIT(PBADIV))
shift = PM_BFEXT(PBASEL, cksel) + 1;
return bus_clk_get_rate(clk, shift);
}
static void pbb_clk_mode(struct clk *clk, int enabled)
{
unsigned long flags;
u32 mask;
spin_lock_irqsave(&pm_lock, flags);
mask = pm_readl(PBB_MASK);
if (enabled)
mask |= 1 << clk->index;
else
mask &= ~(1 << clk->index);
pm_writel(PBB_MASK, mask);
spin_unlock_irqrestore(&pm_lock, flags);
}
static unsigned long pbb_clk_get_rate(struct clk *clk)
{
unsigned long cksel, shift = 0;
cksel = pm_readl(CKSEL);
if (cksel & PM_BIT(PBBDIV))
shift = PM_BFEXT(PBBSEL, cksel) + 1;
return bus_clk_get_rate(clk, shift);
}
static struct clk cpu_clk = {
.name = "cpu",
.get_rate = cpu_clk_get_rate,
.set_rate = cpu_clk_set_rate,
.users = 1,
};
static struct clk hsb_clk = {
.name = "hsb",
.parent = &cpu_clk,
.get_rate = hsb_clk_get_rate,
};
static struct clk pba_clk = {
.name = "pba",
.parent = &hsb_clk,
.mode = hsb_clk_mode,
.get_rate = pba_clk_get_rate,
.index = 1,
};
static struct clk pbb_clk = {
.name = "pbb",
.parent = &hsb_clk,
.mode = hsb_clk_mode,
.get_rate = pbb_clk_get_rate,
.users = 1,
.index = 2,
};
/* --------------------------------------------------------------------
* Generic Clock operations
* -------------------------------------------------------------------- */
static void genclk_mode(struct clk *clk, int enabled)
{
u32 control;
control = pm_readl(GCCTRL(clk->index));
if (enabled)
control |= PM_BIT(CEN);
else
control &= ~PM_BIT(CEN);
pm_writel(GCCTRL(clk->index), control);
}
static unsigned long genclk_get_rate(struct clk *clk)
{
u32 control;
unsigned long div = 1;
control = pm_readl(GCCTRL(clk->index));
if (control & PM_BIT(DIVEN))
div = 2 * (PM_BFEXT(DIV, control) + 1);
return clk->parent->get_rate(clk->parent) / div;
}
static long genclk_set_rate(struct clk *clk, unsigned long rate, int apply)
{
u32 control;
unsigned long parent_rate, actual_rate, div;
parent_rate = clk->parent->get_rate(clk->parent);
control = pm_readl(GCCTRL(clk->index));
if (rate > 3 * parent_rate / 4) {
actual_rate = parent_rate;
control &= ~PM_BIT(DIVEN);
} else {
div = (parent_rate + rate) / (2 * rate) - 1;
control = PM_BFINS(DIV, div, control) | PM_BIT(DIVEN);
actual_rate = parent_rate / (2 * (div + 1));
}
dev_dbg(clk->dev, "clk %s: new rate %lu (actual rate %lu)\n",
clk->name, rate, actual_rate);
if (apply)
pm_writel(GCCTRL(clk->index), control);
return actual_rate;
}
int genclk_set_parent(struct clk *clk, struct clk *parent)
{
u32 control;
dev_dbg(clk->dev, "clk %s: new parent %s (was %s)\n",
clk->name, parent->name, clk->parent->name);
control = pm_readl(GCCTRL(clk->index));
if (parent == &osc1 || parent == &pll1)
control |= PM_BIT(OSCSEL);
else if (parent == &osc0 || parent == &pll0)
control &= ~PM_BIT(OSCSEL);
else
return -EINVAL;
if (parent == &pll0 || parent == &pll1)
control |= PM_BIT(PLLSEL);
else
control &= ~PM_BIT(PLLSEL);
pm_writel(GCCTRL(clk->index), control);
clk->parent = parent;
return 0;
}
static void __init genclk_init_parent(struct clk *clk)
{
u32 control;
struct clk *parent;
BUG_ON(clk->index > 7);
control = pm_readl(GCCTRL(clk->index));
if (control & PM_BIT(OSCSEL))
parent = (control & PM_BIT(PLLSEL)) ? &pll1 : &osc1;
else
parent = (control & PM_BIT(PLLSEL)) ? &pll0 : &osc0;
clk->parent = parent;
}
static struct dw_dma_platform_data dw_dmac0_data = {
.nr_channels = 3,
};
static struct resource dw_dmac0_resource[] = {
PBMEM(0xff200000),
IRQ(2),
};
DEFINE_DEV_DATA(dw_dmac, 0);
DEV_CLK(hclk, dw_dmac0, hsb, 10);
/* --------------------------------------------------------------------
* System peripherals
* -------------------------------------------------------------------- */
static struct resource at32_pm0_resource[] = {
{
.start = 0xfff00000,
.end = 0xfff0007f,
.flags = IORESOURCE_MEM,
},
IRQ(20),
};
static struct resource at32ap700x_rtc0_resource[] = {
{
.start = 0xfff00080,
.end = 0xfff000af,
.flags = IORESOURCE_MEM,
},
IRQ(21),
};
static struct resource at32_wdt0_resource[] = {
{
.start = 0xfff000b0,
.end = 0xfff000cf,
.flags = IORESOURCE_MEM,
},
};
static struct resource at32_eic0_resource[] = {
{
.start = 0xfff00100,
.end = 0xfff0013f,
.flags = IORESOURCE_MEM,
},
IRQ(19),
};
DEFINE_DEV(at32_pm, 0);
DEFINE_DEV(at32ap700x_rtc, 0);
DEFINE_DEV(at32_wdt, 0);
DEFINE_DEV(at32_eic, 0);
/*
* Peripheral clock for PM, RTC, WDT and EIC. PM will ensure that this
* is always running.
*/
static struct clk at32_pm_pclk = {
.name = "pclk",
.dev = &at32_pm0_device.dev,
.parent = &pbb_clk,
.mode = pbb_clk_mode,
.get_rate = pbb_clk_get_rate,
.users = 1,
.index = 0,
};
static struct resource intc0_resource[] = {
PBMEM(0xfff00400),
};
struct platform_device at32_intc0_device = {
.name = "intc",
.id = 0,
.resource = intc0_resource,
.num_resources = ARRAY_SIZE(intc0_resource),
};
DEV_CLK(pclk, at32_intc0, pbb, 1);
static struct clk ebi_clk = {
.name = "ebi",
.parent = &hsb_clk,
.mode = hsb_clk_mode,
.get_rate = hsb_clk_get_rate,
.users = 1,
};
static struct clk hramc_clk = {
.name = "hramc",
.parent = &hsb_clk,
.mode = hsb_clk_mode,
.get_rate = hsb_clk_get_rate,
.users = 1,
.index = 3,
};
static struct clk sdramc_clk = {
.name = "sdramc_clk",
.parent = &pbb_clk,
.mode = pbb_clk_mode,
.get_rate = pbb_clk_get_rate,
.users = 1,
.index = 14,
};
static struct resource smc0_resource[] = {
PBMEM(0xfff03400),
};
DEFINE_DEV(smc, 0);
DEV_CLK(pclk, smc0, pbb, 13);
DEV_CLK(mck, smc0, hsb, 0);
static struct platform_device pdc_device = {
.name = "pdc",
.id = 0,
};
DEV_CLK(hclk, pdc, hsb, 4);
DEV_CLK(pclk, pdc, pba, 16);
static struct clk pico_clk = {
.name = "pico",
.parent = &cpu_clk,
.mode = cpu_clk_mode,
.get_rate = cpu_clk_get_rate,
.users = 1,
};
/* --------------------------------------------------------------------
* HMATRIX
* -------------------------------------------------------------------- */
static struct clk hmatrix_clk = {
.name = "hmatrix_clk",
.parent = &pbb_clk,
.mode = pbb_clk_mode,
.get_rate = pbb_clk_get_rate,
.index = 2,
.users = 1,
};
#define HMATRIX_BASE ((void __iomem *)0xfff00800)
#define hmatrix_readl(reg) \
__raw_readl((HMATRIX_BASE) + HMATRIX_##reg)
#define hmatrix_writel(reg,value) \
__raw_writel((value), (HMATRIX_BASE) + HMATRIX_##reg)
/*
* Set bits in the HMATRIX Special Function Register (SFR) used by the
* External Bus Interface (EBI). This can be used to enable special
* features like CompactFlash support, NAND Flash support, etc. on
* certain chipselects.
*/
static inline void set_ebi_sfr_bits(u32 mask)
{
u32 sfr;
clk_enable(&hmatrix_clk);
sfr = hmatrix_readl(SFR4);
sfr |= mask;
hmatrix_writel(SFR4, sfr);
clk_disable(&hmatrix_clk);
}
/* --------------------------------------------------------------------
* Timer/Counter (TC)
* -------------------------------------------------------------------- */
static struct resource at32_tcb0_resource[] = {
PBMEM(0xfff00c00),
IRQ(22),
};
static struct platform_device at32_tcb0_device = {
.name = "atmel_tcb",
.id = 0,
.resource = at32_tcb0_resource,
.num_resources = ARRAY_SIZE(at32_tcb0_resource),
};
DEV_CLK(t0_clk, at32_tcb0, pbb, 3);
static struct resource at32_tcb1_resource[] = {
PBMEM(0xfff01000),
IRQ(23),
};
static struct platform_device at32_tcb1_device = {
.name = "atmel_tcb",
.id = 1,
.resource = at32_tcb1_resource,
.num_resources = ARRAY_SIZE(at32_tcb1_resource),
};
DEV_CLK(t0_clk, at32_tcb1, pbb, 4);
/* --------------------------------------------------------------------
* PIO
* -------------------------------------------------------------------- */
static struct resource pio0_resource[] = {
PBMEM(0xffe02800),
IRQ(13),
};
DEFINE_DEV(pio, 0);
DEV_CLK(mck, pio0, pba, 10);
static struct resource pio1_resource[] = {
PBMEM(0xffe02c00),
IRQ(14),
};
DEFINE_DEV(pio, 1);
DEV_CLK(mck, pio1, pba, 11);
static struct resource pio2_resource[] = {
PBMEM(0xffe03000),
IRQ(15),
};
DEFINE_DEV(pio, 2);
DEV_CLK(mck, pio2, pba, 12);
static struct resource pio3_resource[] = {
PBMEM(0xffe03400),
IRQ(16),
};
DEFINE_DEV(pio, 3);
DEV_CLK(mck, pio3, pba, 13);
static struct resource pio4_resource[] = {
PBMEM(0xffe03800),
IRQ(17),
};
DEFINE_DEV(pio, 4);
DEV_CLK(mck, pio4, pba, 14);
void __init at32_add_system_devices(void)
{
platform_device_register(&at32_pm0_device);
platform_device_register(&at32_intc0_device);
platform_device_register(&at32ap700x_rtc0_device);
platform_device_register(&at32_wdt0_device);
platform_device_register(&at32_eic0_device);
platform_device_register(&smc0_device);
platform_device_register(&pdc_device);
platform_device_register(&dw_dmac0_device);
platform_device_register(&at32_tcb0_device);
platform_device_register(&at32_tcb1_device);
platform_device_register(&pio0_device);
platform_device_register(&pio1_device);
platform_device_register(&pio2_device);
platform_device_register(&pio3_device);
platform_device_register(&pio4_device);
}
/* --------------------------------------------------------------------
* PSIF
* -------------------------------------------------------------------- */
static struct resource atmel_psif0_resource[] __initdata = {
{
.start = 0xffe03c00,
.end = 0xffe03cff,
.flags = IORESOURCE_MEM,
},
IRQ(18),
};
static struct clk atmel_psif0_pclk = {
.name = "pclk",
.parent = &pba_clk,
.mode = pba_clk_mode,
.get_rate = pba_clk_get_rate,
.index = 15,
};
static struct resource atmel_psif1_resource[] __initdata = {
{
.start = 0xffe03d00,
.end = 0xffe03dff,
.flags = IORESOURCE_MEM,
},
IRQ(18),
};
static struct clk atmel_psif1_pclk = {
.name = "pclk",
.parent = &pba_clk,
.mode = pba_clk_mode,
.get_rate = pba_clk_get_rate,
.index = 15,
};
struct platform_device *__init at32_add_device_psif(unsigned int id)
{
struct platform_device *pdev;
if (!(id == 0 || id == 1))
return NULL;
pdev = platform_device_alloc("atmel_psif", id);
if (!pdev)
return NULL;
switch (id) {
case 0:
if (platform_device_add_resources(pdev, atmel_psif0_resource,
ARRAY_SIZE(atmel_psif0_resource)))
goto err_add_resources;
atmel_psif0_pclk.dev = &pdev->dev;
select_peripheral(PA(8), PERIPH_A, 0); /* CLOCK */
select_peripheral(PA(9), PERIPH_A, 0); /* DATA */
break;
case 1:
if (platform_device_add_resources(pdev, atmel_psif1_resource,
ARRAY_SIZE(atmel_psif1_resource)))
goto err_add_resources;
atmel_psif1_pclk.dev = &pdev->dev;
select_peripheral(PB(11), PERIPH_A, 0); /* CLOCK */
select_peripheral(PB(12), PERIPH_A, 0); /* DATA */
break;
default:
return NULL;
}
platform_device_add(pdev);
return pdev;
err_add_resources:
platform_device_put(pdev);
return NULL;
}
/* --------------------------------------------------------------------
* USART
* -------------------------------------------------------------------- */
static struct atmel_uart_data atmel_usart0_data = {
.use_dma_tx = 1,
.use_dma_rx = 1,
};
static struct resource atmel_usart0_resource[] = {
PBMEM(0xffe00c00),
IRQ(6),
};
DEFINE_DEV_DATA(atmel_usart, 0);
DEV_CLK(usart, atmel_usart0, pba, 3);
static struct atmel_uart_data atmel_usart1_data = {
.use_dma_tx = 1,
.use_dma_rx = 1,
};
static struct resource atmel_usart1_resource[] = {
PBMEM(0xffe01000),
IRQ(7),
};
DEFINE_DEV_DATA(atmel_usart, 1);
DEV_CLK(usart, atmel_usart1, pba, 4);
static struct atmel_uart_data atmel_usart2_data = {
.use_dma_tx = 1,
.use_dma_rx = 1,
};
static struct resource atmel_usart2_resource[] = {
PBMEM(0xffe01400),
IRQ(8),
};
DEFINE_DEV_DATA(atmel_usart, 2);
DEV_CLK(usart, atmel_usart2, pba, 5);
static struct atmel_uart_data atmel_usart3_data = {
.use_dma_tx = 1,
.use_dma_rx = 1,
};
static struct resource atmel_usart3_resource[] = {
PBMEM(0xffe01800),
IRQ(9),
};
DEFINE_DEV_DATA(atmel_usart, 3);
DEV_CLK(usart, atmel_usart3, pba, 6);
static inline void configure_usart0_pins(void)
{
select_peripheral(PA(8), PERIPH_B, 0); /* RXD */
select_peripheral(PA(9), PERIPH_B, 0); /* TXD */
}
static inline void configure_usart1_pins(void)
{
select_peripheral(PA(17), PERIPH_A, 0); /* RXD */
select_peripheral(PA(18), PERIPH_A, 0); /* TXD */
}
static inline void configure_usart2_pins(void)
{
select_peripheral(PB(26), PERIPH_B, 0); /* RXD */
select_peripheral(PB(27), PERIPH_B, 0); /* TXD */
}
static inline void configure_usart3_pins(void)
{
select_peripheral(PB(18), PERIPH_B, 0); /* RXD */
select_peripheral(PB(17), PERIPH_B, 0); /* TXD */
}
static struct platform_device *__initdata at32_usarts[4];
void __init at32_map_usart(unsigned int hw_id, unsigned int line)
{
struct platform_device *pdev;
switch (hw_id) {
case 0:
pdev = &atmel_usart0_device;
configure_usart0_pins();
break;
case 1:
pdev = &atmel_usart1_device;
configure_usart1_pins();
break;
case 2:
pdev = &atmel_usart2_device;
configure_usart2_pins();
break;
case 3:
pdev = &atmel_usart3_device;
configure_usart3_pins();
break;
default:
return;
}
if (PXSEG(pdev->resource[0].start) == P4SEG) {
/* Addresses in the P4 segment are permanently mapped 1:1 */
struct atmel_uart_data *data = pdev->dev.platform_data;
data->regs = (void __iomem *)pdev->resource[0].start;
}
pdev->id = line;
at32_usarts[line] = pdev;
}
struct platform_device *__init at32_add_device_usart(unsigned int id)
{
platform_device_register(at32_usarts[id]);
return at32_usarts[id];
}
struct platform_device *atmel_default_console_device;
void __init at32_setup_serial_console(unsigned int usart_id)
{
atmel_default_console_device = at32_usarts[usart_id];
}
/* --------------------------------------------------------------------
* Ethernet
* -------------------------------------------------------------------- */
#ifdef CONFIG_CPU_AT32AP7000
static struct eth_platform_data macb0_data;
static struct resource macb0_resource[] = {
PBMEM(0xfff01800),
IRQ(25),
};
DEFINE_DEV_DATA(macb, 0);
DEV_CLK(hclk, macb0, hsb, 8);
DEV_CLK(pclk, macb0, pbb, 6);
static struct eth_platform_data macb1_data;
static struct resource macb1_resource[] = {
PBMEM(0xfff01c00),
IRQ(26),
};
DEFINE_DEV_DATA(macb, 1);
DEV_CLK(hclk, macb1, hsb, 9);
DEV_CLK(pclk, macb1, pbb, 7);
struct platform_device *__init
at32_add_device_eth(unsigned int id, struct eth_platform_data *data)
{
struct platform_device *pdev;
switch (id) {
case 0:
pdev = &macb0_device;
select_peripheral(PC(3), PERIPH_A, 0); /* TXD0 */
select_peripheral(PC(4), PERIPH_A, 0); /* TXD1 */
select_peripheral(PC(7), PERIPH_A, 0); /* TXEN */
select_peripheral(PC(8), PERIPH_A, 0); /* TXCK */
select_peripheral(PC(9), PERIPH_A, 0); /* RXD0 */
select_peripheral(PC(10), PERIPH_A, 0); /* RXD1 */
select_peripheral(PC(13), PERIPH_A, 0); /* RXER */
select_peripheral(PC(15), PERIPH_A, 0); /* RXDV */
select_peripheral(PC(16), PERIPH_A, 0); /* MDC */
select_peripheral(PC(17), PERIPH_A, 0); /* MDIO */
if (!data->is_rmii) {
select_peripheral(PC(0), PERIPH_A, 0); /* COL */
select_peripheral(PC(1), PERIPH_A, 0); /* CRS */
select_peripheral(PC(2), PERIPH_A, 0); /* TXER */
select_peripheral(PC(5), PERIPH_A, 0); /* TXD2 */
select_peripheral(PC(6), PERIPH_A, 0); /* TXD3 */
select_peripheral(PC(11), PERIPH_A, 0); /* RXD2 */
select_peripheral(PC(12), PERIPH_A, 0); /* RXD3 */
select_peripheral(PC(14), PERIPH_A, 0); /* RXCK */
select_peripheral(PC(18), PERIPH_A, 0); /* SPD */
}
break;
case 1:
pdev = &macb1_device;
select_peripheral(PD(13), PERIPH_B, 0); /* TXD0 */
select_peripheral(PD(14), PERIPH_B, 0); /* TXD1 */
select_peripheral(PD(11), PERIPH_B, 0); /* TXEN */
select_peripheral(PD(12), PERIPH_B, 0); /* TXCK */
select_peripheral(PD(10), PERIPH_B, 0); /* RXD0 */
select_peripheral(PD(6), PERIPH_B, 0); /* RXD1 */
select_peripheral(PD(5), PERIPH_B, 0); /* RXER */
select_peripheral(PD(4), PERIPH_B, 0); /* RXDV */
select_peripheral(PD(3), PERIPH_B, 0); /* MDC */
select_peripheral(PD(2), PERIPH_B, 0); /* MDIO */
if (!data->is_rmii) {
select_peripheral(PC(19), PERIPH_B, 0); /* COL */
select_peripheral(PC(23), PERIPH_B, 0); /* CRS */
select_peripheral(PC(26), PERIPH_B, 0); /* TXER */
select_peripheral(PC(27), PERIPH_B, 0); /* TXD2 */
select_peripheral(PC(28), PERIPH_B, 0); /* TXD3 */
select_peripheral(PC(29), PERIPH_B, 0); /* RXD2 */
select_peripheral(PC(30), PERIPH_B, 0); /* RXD3 */
select_peripheral(PC(24), PERIPH_B, 0); /* RXCK */
select_peripheral(PD(15), PERIPH_B, 0); /* SPD */
}
break;
default:
return NULL;
}
memcpy(pdev->dev.platform_data, data, sizeof(struct eth_platform_data));
platform_device_register(pdev);
return pdev;
}
#endif
/* --------------------------------------------------------------------
* SPI
* -------------------------------------------------------------------- */
static struct resource atmel_spi0_resource[] = {
PBMEM(0xffe00000),
IRQ(3),
};
DEFINE_DEV(atmel_spi, 0);
DEV_CLK(spi_clk, atmel_spi0, pba, 0);
static struct resource atmel_spi1_resource[] = {
PBMEM(0xffe00400),
IRQ(4),
};
DEFINE_DEV(atmel_spi, 1);
DEV_CLK(spi_clk, atmel_spi1, pba, 1);
static void __init
at32_spi_setup_slaves(unsigned int bus_num, struct spi_board_info *b,
unsigned int n, const u8 *pins)
{
unsigned int pin, mode;
for (; n; n--, b++) {
b->bus_num = bus_num;
if (b->chip_select >= 4)
continue;
pin = (unsigned)b->controller_data;
if (!pin) {
pin = pins[b->chip_select];
b->controller_data = (void *)pin;
}
mode = AT32_GPIOF_OUTPUT;
if (!(b->mode & SPI_CS_HIGH))
mode |= AT32_GPIOF_HIGH;
at32_select_gpio(pin, mode);
}
}
struct platform_device *__init
at32_add_device_spi(unsigned int id, struct spi_board_info *b, unsigned int n)
{
/*
* Manage the chipselects as GPIOs, normally using the same pins
* the SPI controller expects; but boards can use other pins.
*/
static u8 __initdata spi0_pins[] =
{ GPIO_PIN_PA(3), GPIO_PIN_PA(4),
GPIO_PIN_PA(5), GPIO_PIN_PA(20), };
static u8 __initdata spi1_pins[] =
{ GPIO_PIN_PB(2), GPIO_PIN_PB(3),
GPIO_PIN_PB(4), GPIO_PIN_PA(27), };
struct platform_device *pdev;
switch (id) {
case 0:
pdev = &atmel_spi0_device;
/* pullup MISO so a level is always defined */
select_peripheral(PA(0), PERIPH_A, AT32_GPIOF_PULLUP);
select_peripheral(PA(1), PERIPH_A, 0); /* MOSI */
select_peripheral(PA(2), PERIPH_A, 0); /* SCK */
at32_spi_setup_slaves(0, b, n, spi0_pins);
break;
case 1:
pdev = &atmel_spi1_device;
/* pullup MISO so a level is always defined */
select_peripheral(PB(0), PERIPH_B, AT32_GPIOF_PULLUP);
select_peripheral(PB(1), PERIPH_B, 0); /* MOSI */
select_peripheral(PB(5), PERIPH_B, 0); /* SCK */
at32_spi_setup_slaves(1, b, n, spi1_pins);
break;
default:
return NULL;
}
spi_register_board_info(b, n);
platform_device_register(pdev);
return pdev;
}
/* --------------------------------------------------------------------
* TWI
* -------------------------------------------------------------------- */
static struct resource atmel_twi0_resource[] __initdata = {
PBMEM(0xffe00800),
IRQ(5),
};
static struct clk atmel_twi0_pclk = {
.name = "twi_pclk",
.parent = &pba_clk,
.mode = pba_clk_mode,
.get_rate = pba_clk_get_rate,
.index = 2,
};
struct platform_device *__init at32_add_device_twi(unsigned int id,
struct i2c_board_info *b,
unsigned int n)
{
struct platform_device *pdev;
if (id != 0)
return NULL;
pdev = platform_device_alloc("atmel_twi", id);
if (!pdev)
return NULL;
if (platform_device_add_resources(pdev, atmel_twi0_resource,
ARRAY_SIZE(atmel_twi0_resource)))
goto err_add_resources;
select_peripheral(PA(6), PERIPH_A, 0); /* SDA */
select_peripheral(PA(7), PERIPH_A, 0); /* SDL */
atmel_twi0_pclk.dev = &pdev->dev;
if (b)
i2c_register_board_info(id, b, n);
platform_device_add(pdev);
return pdev;
err_add_resources:
platform_device_put(pdev);
return NULL;
}
/* --------------------------------------------------------------------
* MMC
* -------------------------------------------------------------------- */
static struct resource atmel_mci0_resource[] __initdata = {
PBMEM(0xfff02400),
IRQ(28),
};
static struct clk atmel_mci0_pclk = {
.name = "mci_clk",
.parent = &pbb_clk,
.mode = pbb_clk_mode,
.get_rate = pbb_clk_get_rate,
.index = 9,
};
struct platform_device *__init
at32_add_device_mci(unsigned int id, struct mci_platform_data *data)
{
struct mci_platform_data _data;
struct platform_device *pdev;
struct dw_dma_slave *dws;
if (id != 0)
return NULL;
pdev = platform_device_alloc("atmel_mci", id);
if (!pdev)
goto fail;
if (platform_device_add_resources(pdev, atmel_mci0_resource,
ARRAY_SIZE(atmel_mci0_resource)))
goto fail;
if (!data) {
data = &_data;
memset(data, 0, sizeof(struct mci_platform_data));
}
if (platform_device_add_data(pdev, data,
sizeof(struct mci_platform_data)))
goto fail;
select_peripheral(PA(10), PERIPH_A, 0); /* CLK */
select_peripheral(PA(11), PERIPH_A, 0); /* CMD */
select_peripheral(PA(12), PERIPH_A, 0); /* DATA0 */
select_peripheral(PA(13), PERIPH_A, 0); /* DATA1 */
select_peripheral(PA(14), PERIPH_A, 0); /* DATA2 */
select_peripheral(PA(15), PERIPH_A, 0); /* DATA3 */
if (data) {
if (data->detect_pin != GPIO_PIN_NONE)
at32_select_gpio(data->detect_pin, 0);
if (data->wp_pin != GPIO_PIN_NONE)
at32_select_gpio(data->wp_pin, 0);
}
atmel_mci0_pclk.dev = &pdev->dev;
platform_device_add(pdev);
return pdev;
fail:
platform_device_put(pdev);
return NULL;
}
/* --------------------------------------------------------------------
* LCDC
* -------------------------------------------------------------------- */
#if defined(CONFIG_CPU_AT32AP7000) || defined(CONFIG_CPU_AT32AP7002)
static struct atmel_lcdfb_info atmel_lcdfb0_data;
static struct resource atmel_lcdfb0_resource[] = {
{
.start = 0xff000000,
.end = 0xff000fff,
.flags = IORESOURCE_MEM,
},
IRQ(1),
{
/* Placeholder for pre-allocated fb memory */
.start = 0x00000000,
.end = 0x00000000,
.flags = 0,
},
};
DEFINE_DEV_DATA(atmel_lcdfb, 0);
DEV_CLK(hck1, atmel_lcdfb0, hsb, 7);
static struct clk atmel_lcdfb0_pixclk = {
.name = "lcdc_clk",
.dev = &atmel_lcdfb0_device.dev,
.mode = genclk_mode,
.get_rate = genclk_get_rate,
.set_rate = genclk_set_rate,
.set_parent = genclk_set_parent,
.index = 7,
};
struct platform_device *__init
at32_add_device_lcdc(unsigned int id, struct atmel_lcdfb_info *data,
unsigned long fbmem_start, unsigned long fbmem_len,
unsigned int pin_config)
{
struct platform_device *pdev;
struct atmel_lcdfb_info *info;
struct fb_monspecs *monspecs;
struct fb_videomode *modedb;
unsigned int modedb_size;
/*
* Do a deep copy of the fb data, monspecs and modedb. Make
* sure all allocations are done before setting up the
* portmux.
*/
monspecs = kmemdup(data->default_monspecs,
sizeof(struct fb_monspecs), GFP_KERNEL);
if (!monspecs)
return NULL;
modedb_size = sizeof(struct fb_videomode) * monspecs->modedb_len;
modedb = kmemdup(monspecs->modedb, modedb_size, GFP_KERNEL);
if (!modedb)
goto err_dup_modedb;
monspecs->modedb = modedb;
switch (id) {
case 0:
pdev = &atmel_lcdfb0_device;
switch (pin_config) {
case 0:
select_peripheral(PC(19), PERIPH_A, 0); /* CC */
select_peripheral(PC(20), PERIPH_A, 0); /* HSYNC */
select_peripheral(PC(21), PERIPH_A, 0); /* PCLK */
select_peripheral(PC(22), PERIPH_A, 0); /* VSYNC */
select_peripheral(PC(23), PERIPH_A, 0); /* DVAL */
select_peripheral(PC(24), PERIPH_A, 0); /* MODE */
select_peripheral(PC(25), PERIPH_A, 0); /* PWR */
select_peripheral(PC(26), PERIPH_A, 0); /* DATA0 */
select_peripheral(PC(27), PERIPH_A, 0); /* DATA1 */
select_peripheral(PC(28), PERIPH_A, 0); /* DATA2 */
select_peripheral(PC(29), PERIPH_A, 0); /* DATA3 */
select_peripheral(PC(30), PERIPH_A, 0); /* DATA4 */
select_peripheral(PC(31), PERIPH_A, 0); /* DATA5 */
select_peripheral(PD(0), PERIPH_A, 0); /* DATA6 */
select_peripheral(PD(1), PERIPH_A, 0); /* DATA7 */
select_peripheral(PD(2), PERIPH_A, 0); /* DATA8 */
select_peripheral(PD(3), PERIPH_A, 0); /* DATA9 */
select_peripheral(PD(4), PERIPH_A, 0); /* DATA10 */
select_peripheral(PD(5), PERIPH_A, 0); /* DATA11 */
select_peripheral(PD(6), PERIPH_A, 0); /* DATA12 */
select_peripheral(PD(7), PERIPH_A, 0); /* DATA13 */
select_peripheral(PD(8), PERIPH_A, 0); /* DATA14 */
select_peripheral(PD(9), PERIPH_A, 0); /* DATA15 */
select_peripheral(PD(10), PERIPH_A, 0); /* DATA16 */
select_peripheral(PD(11), PERIPH_A, 0); /* DATA17 */
select_peripheral(PD(12), PERIPH_A, 0); /* DATA18 */
select_peripheral(PD(13), PERIPH_A, 0); /* DATA19 */
select_peripheral(PD(14), PERIPH_A, 0); /* DATA20 */
select_peripheral(PD(15), PERIPH_A, 0); /* DATA21 */
select_peripheral(PD(16), PERIPH_A, 0); /* DATA22 */
select_peripheral(PD(17), PERIPH_A, 0); /* DATA23 */
break;
case 1:
select_peripheral(PE(0), PERIPH_B, 0); /* CC */
select_peripheral(PC(20), PERIPH_A, 0); /* HSYNC */
select_peripheral(PC(21), PERIPH_A, 0); /* PCLK */
select_peripheral(PC(22), PERIPH_A, 0); /* VSYNC */
select_peripheral(PE(1), PERIPH_B, 0); /* DVAL */
select_peripheral(PE(2), PERIPH_B, 0); /* MODE */
select_peripheral(PC(25), PERIPH_A, 0); /* PWR */
select_peripheral(PE(3), PERIPH_B, 0); /* DATA0 */
select_peripheral(PE(4), PERIPH_B, 0); /* DATA1 */
select_peripheral(PE(5), PERIPH_B, 0); /* DATA2 */
select_peripheral(PE(6), PERIPH_B, 0); /* DATA3 */
select_peripheral(PE(7), PERIPH_B, 0); /* DATA4 */
select_peripheral(PC(31), PERIPH_A, 0); /* DATA5 */
select_peripheral(PD(0), PERIPH_A, 0); /* DATA6 */
select_peripheral(PD(1), PERIPH_A, 0); /* DATA7 */
select_peripheral(PE(8), PERIPH_B, 0); /* DATA8 */
select_peripheral(PE(9), PERIPH_B, 0); /* DATA9 */
select_peripheral(PE(10), PERIPH_B, 0); /* DATA10 */
select_peripheral(PE(11), PERIPH_B, 0); /* DATA11 */
select_peripheral(PE(12), PERIPH_B, 0); /* DATA12 */
select_peripheral(PD(7), PERIPH_A, 0); /* DATA13 */
select_peripheral(PD(8), PERIPH_A, 0); /* DATA14 */
select_peripheral(PD(9), PERIPH_A, 0); /* DATA15 */
select_peripheral(PE(13), PERIPH_B, 0); /* DATA16 */
select_peripheral(PE(14), PERIPH_B, 0); /* DATA17 */
select_peripheral(PE(15), PERIPH_B, 0); /* DATA18 */
select_peripheral(PE(16), PERIPH_B, 0); /* DATA19 */
select_peripheral(PE(17), PERIPH_B, 0); /* DATA20 */
select_peripheral(PE(18), PERIPH_B, 0); /* DATA21 */
select_peripheral(PD(16), PERIPH_A, 0); /* DATA22 */
select_peripheral(PD(17), PERIPH_A, 0); /* DATA23 */
break;
default:
goto err_invalid_id;
}
clk_set_parent(&atmel_lcdfb0_pixclk, &pll0);
clk_set_rate(&atmel_lcdfb0_pixclk, clk_get_rate(&pll0));
break;
default:
goto err_invalid_id;
}
if (fbmem_len) {
pdev->resource[2].start = fbmem_start;
pdev->resource[2].end = fbmem_start + fbmem_len - 1;
pdev->resource[2].flags = IORESOURCE_MEM;
}
info = pdev->dev.platform_data;
memcpy(info, data, sizeof(struct atmel_lcdfb_info));
info->default_monspecs = monspecs;
platform_device_register(pdev);
return pdev;
err_invalid_id:
kfree(modedb);
err_dup_modedb:
kfree(monspecs);
return NULL;
}
#endif
/* --------------------------------------------------------------------
* PWM
* -------------------------------------------------------------------- */
static struct resource atmel_pwm0_resource[] __initdata = {
PBMEM(0xfff01400),
IRQ(24),
};
static struct clk atmel_pwm0_mck = {
.name = "pwm_clk",
.parent = &pbb_clk,
.mode = pbb_clk_mode,
.get_rate = pbb_clk_get_rate,
.index = 5,
};
struct platform_device *__init at32_add_device_pwm(u32 mask)
{
struct platform_device *pdev;
if (!mask)
return NULL;
pdev = platform_device_alloc("atmel_pwm", 0);
if (!pdev)
return NULL;
if (platform_device_add_resources(pdev, atmel_pwm0_resource,
ARRAY_SIZE(atmel_pwm0_resource)))
goto out_free_pdev;
if (platform_device_add_data(pdev, &mask, sizeof(mask)))
goto out_free_pdev;
if (mask & (1 << 0))
select_peripheral(PA(28), PERIPH_A, 0);
if (mask & (1 << 1))
select_peripheral(PA(29), PERIPH_A, 0);
if (mask & (1 << 2))
select_peripheral(PA(21), PERIPH_B, 0);
if (mask & (1 << 3))
select_peripheral(PA(22), PERIPH_B, 0);
atmel_pwm0_mck.dev = &pdev->dev;
platform_device_add(pdev);
return pdev;
out_free_pdev:
platform_device_put(pdev);
return NULL;
}
/* --------------------------------------------------------------------
* SSC
* -------------------------------------------------------------------- */
static struct resource ssc0_resource[] = {
PBMEM(0xffe01c00),
IRQ(10),
};
DEFINE_DEV(ssc, 0);
DEV_CLK(pclk, ssc0, pba, 7);
static struct resource ssc1_resource[] = {
PBMEM(0xffe02000),
IRQ(11),
};
DEFINE_DEV(ssc, 1);
DEV_CLK(pclk, ssc1, pba, 8);
static struct resource ssc2_resource[] = {
PBMEM(0xffe02400),
IRQ(12),
};
DEFINE_DEV(ssc, 2);
DEV_CLK(pclk, ssc2, pba, 9);
struct platform_device *__init
at32_add_device_ssc(unsigned int id, unsigned int flags)
{
struct platform_device *pdev;
switch (id) {
case 0:
pdev = &ssc0_device;
if (flags & ATMEL_SSC_RF)
select_peripheral(PA(21), PERIPH_A, 0); /* RF */
if (flags & ATMEL_SSC_RK)
select_peripheral(PA(22), PERIPH_A, 0); /* RK */
if (flags & ATMEL_SSC_TK)
select_peripheral(PA(23), PERIPH_A, 0); /* TK */
if (flags & ATMEL_SSC_TF)
select_peripheral(PA(24), PERIPH_A, 0); /* TF */
if (flags & ATMEL_SSC_TD)
select_peripheral(PA(25), PERIPH_A, 0); /* TD */
if (flags & ATMEL_SSC_RD)
select_peripheral(PA(26), PERIPH_A, 0); /* RD */
break;
case 1:
pdev = &ssc1_device;
if (flags & ATMEL_SSC_RF)
select_peripheral(PA(0), PERIPH_B, 0); /* RF */
if (flags & ATMEL_SSC_RK)
select_peripheral(PA(1), PERIPH_B, 0); /* RK */
if (flags & ATMEL_SSC_TK)
select_peripheral(PA(2), PERIPH_B, 0); /* TK */
if (flags & ATMEL_SSC_TF)
select_peripheral(PA(3), PERIPH_B, 0); /* TF */
if (flags & ATMEL_SSC_TD)
select_peripheral(PA(4), PERIPH_B, 0); /* TD */
if (flags & ATMEL_SSC_RD)
select_peripheral(PA(5), PERIPH_B, 0); /* RD */
break;
case 2:
pdev = &ssc2_device;
if (flags & ATMEL_SSC_TD)
select_peripheral(PB(13), PERIPH_A, 0); /* TD */
if (flags & ATMEL_SSC_RD)
select_peripheral(PB(14), PERIPH_A, 0); /* RD */
if (flags & ATMEL_SSC_TK)
select_peripheral(PB(15), PERIPH_A, 0); /* TK */
if (flags & ATMEL_SSC_TF)
select_peripheral(PB(16), PERIPH_A, 0); /* TF */
if (flags & ATMEL_SSC_RF)
select_peripheral(PB(17), PERIPH_A, 0); /* RF */
if (flags & ATMEL_SSC_RK)
select_peripheral(PB(18), PERIPH_A, 0); /* RK */
break;
default:
return NULL;
}
platform_device_register(pdev);
return pdev;
}
/* --------------------------------------------------------------------
* USB Device Controller
* -------------------------------------------------------------------- */
static struct resource usba0_resource[] __initdata = {
{
.start = 0xff300000,
.end = 0xff3fffff,
.flags = IORESOURCE_MEM,
}, {
.start = 0xfff03000,
.end = 0xfff033ff,
.flags = IORESOURCE_MEM,
},
IRQ(31),
};
static struct clk usba0_pclk = {
.name = "pclk",
.parent = &pbb_clk,
.mode = pbb_clk_mode,
.get_rate = pbb_clk_get_rate,
.index = 12,
};
static struct clk usba0_hclk = {
.name = "hclk",
.parent = &hsb_clk,
.mode = hsb_clk_mode,
.get_rate = hsb_clk_get_rate,
.index = 6,
};
#define EP(nam, idx, maxpkt, maxbk, dma, isoc) \
[idx] = { \
.name = nam, \
.index = idx, \
.fifo_size = maxpkt, \
.nr_banks = maxbk, \
.can_dma = dma, \
.can_isoc = isoc, \
}
static struct usba_ep_data at32_usba_ep[] __initdata = {
EP("ep0", 0, 64, 1, 0, 0),
EP("ep1", 1, 512, 2, 1, 1),
EP("ep2", 2, 512, 2, 1, 1),
EP("ep3-int", 3, 64, 3, 1, 0),
EP("ep4-int", 4, 64, 3, 1, 0),
EP("ep5", 5, 1024, 3, 1, 1),
EP("ep6", 6, 1024, 3, 1, 1),
};
#undef EP
struct platform_device *__init
at32_add_device_usba(unsigned int id, struct usba_platform_data *data)
{
/*
* pdata doesn't have room for any endpoints, so we need to
* append room for the ones we need right after it.
*/
struct {
struct usba_platform_data pdata;
struct usba_ep_data ep[7];
} usba_data;
struct platform_device *pdev;
if (id != 0)
return NULL;
pdev = platform_device_alloc("atmel_usba_udc", 0);
if (!pdev)
return NULL;
if (platform_device_add_resources(pdev, usba0_resource,
ARRAY_SIZE(usba0_resource)))
goto out_free_pdev;
if (data)
usba_data.pdata.vbus_pin = data->vbus_pin;
else
usba_data.pdata.vbus_pin = -EINVAL;
data = &usba_data.pdata;
data->num_ep = ARRAY_SIZE(at32_usba_ep);
memcpy(data->ep, at32_usba_ep, sizeof(at32_usba_ep));
if (platform_device_add_data(pdev, data, sizeof(usba_data)))
goto out_free_pdev;
if (data->vbus_pin >= 0)
at32_select_gpio(data->vbus_pin, 0);
usba0_pclk.dev = &pdev->dev;
usba0_hclk.dev = &pdev->dev;
platform_device_add(pdev);
return pdev;
out_free_pdev:
platform_device_put(pdev);
return NULL;
}
/* --------------------------------------------------------------------
* IDE / CompactFlash
* -------------------------------------------------------------------- */
#if defined(CONFIG_CPU_AT32AP7000) || defined(CONFIG_CPU_AT32AP7001)
static struct resource at32_smc_cs4_resource[] __initdata = {
{
.start = 0x04000000,
.end = 0x07ffffff,
.flags = IORESOURCE_MEM,
},
IRQ(~0UL), /* Magic IRQ will be overridden */
};
static struct resource at32_smc_cs5_resource[] __initdata = {
{
.start = 0x20000000,
.end = 0x23ffffff,
.flags = IORESOURCE_MEM,
},
IRQ(~0UL), /* Magic IRQ will be overridden */
};
static int __init at32_init_ide_or_cf(struct platform_device *pdev,
unsigned int cs, unsigned int extint)
{
static unsigned int extint_pin_map[4] __initdata = {
GPIO_PIN_PB(25),
GPIO_PIN_PB(26),
GPIO_PIN_PB(27),
GPIO_PIN_PB(28),
};
static bool common_pins_initialized __initdata = false;
unsigned int extint_pin;
int ret;
if (extint >= ARRAY_SIZE(extint_pin_map))
return -EINVAL;
extint_pin = extint_pin_map[extint];
switch (cs) {
case 4:
ret = platform_device_add_resources(pdev,
at32_smc_cs4_resource,
ARRAY_SIZE(at32_smc_cs4_resource));
if (ret)
return ret;
select_peripheral(PE(21), PERIPH_A, 0); /* NCS4 -> OE_N */
set_ebi_sfr_bits(HMATRIX_BIT(CS4A));
break;
case 5:
ret = platform_device_add_resources(pdev,
at32_smc_cs5_resource,
ARRAY_SIZE(at32_smc_cs5_resource));
if (ret)
return ret;
select_peripheral(PE(22), PERIPH_A, 0); /* NCS5 -> OE_N */
set_ebi_sfr_bits(HMATRIX_BIT(CS5A));
break;
default:
return -EINVAL;
}
if (!common_pins_initialized) {
select_peripheral(PE(19), PERIPH_A, 0); /* CFCE1 -> CS0_N */
select_peripheral(PE(20), PERIPH_A, 0); /* CFCE2 -> CS1_N */
select_peripheral(PE(23), PERIPH_A, 0); /* CFRNW -> DIR */
select_peripheral(PE(24), PERIPH_A, 0); /* NWAIT <- IORDY */
common_pins_initialized = true;
}
at32_select_periph(extint_pin, GPIO_PERIPH_A, AT32_GPIOF_DEGLITCH);
pdev->resource[1].start = EIM_IRQ_BASE + extint;
pdev->resource[1].end = pdev->resource[1].start;
return 0;
}
struct platform_device *__init
at32_add_device_ide(unsigned int id, unsigned int extint,
struct ide_platform_data *data)
{
struct platform_device *pdev;
pdev = platform_device_alloc("at32_ide", id);
if (!pdev)
goto fail;
if (platform_device_add_data(pdev, data,
sizeof(struct ide_platform_data)))
goto fail;
if (at32_init_ide_or_cf(pdev, data->cs, extint))
goto fail;
platform_device_add(pdev);
return pdev;
fail:
platform_device_put(pdev);
return NULL;
}
struct platform_device *__init
at32_add_device_cf(unsigned int id, unsigned int extint,
struct cf_platform_data *data)
{
struct platform_device *pdev;
pdev = platform_device_alloc("at32_cf", id);
if (!pdev)
goto fail;
if (platform_device_add_data(pdev, data,
sizeof(struct cf_platform_data)))
goto fail;
if (at32_init_ide_or_cf(pdev, data->cs, extint))
goto fail;
if (data->detect_pin != GPIO_PIN_NONE)
at32_select_gpio(data->detect_pin, AT32_GPIOF_DEGLITCH);
if (data->reset_pin != GPIO_PIN_NONE)
at32_select_gpio(data->reset_pin, 0);
if (data->vcc_pin != GPIO_PIN_NONE)
at32_select_gpio(data->vcc_pin, 0);
/* READY is used as extint, so we can't select it as gpio */
platform_device_add(pdev);
return pdev;
fail:
platform_device_put(pdev);
return NULL;
}
#endif
/* --------------------------------------------------------------------
* NAND Flash / SmartMedia
* -------------------------------------------------------------------- */
static struct resource smc_cs3_resource[] __initdata = {
{
.start = 0x0c000000,
.end = 0x0fffffff,
.flags = IORESOURCE_MEM,
}, {
.start = 0xfff03c00,
.end = 0xfff03fff,
.flags = IORESOURCE_MEM,
},
};
struct platform_device *__init
at32_add_device_nand(unsigned int id, struct atmel_nand_data *data)
{
struct platform_device *pdev;
if (id != 0 || !data)
return NULL;
pdev = platform_device_alloc("atmel_nand", id);
if (!pdev)
goto fail;
if (platform_device_add_resources(pdev, smc_cs3_resource,
ARRAY_SIZE(smc_cs3_resource)))
goto fail;
if (platform_device_add_data(pdev, data,
sizeof(struct atmel_nand_data)))
goto fail;
set_ebi_sfr_bits(HMATRIX_BIT(CS3A));
if (data->enable_pin)
at32_select_gpio(data->enable_pin,
AT32_GPIOF_OUTPUT | AT32_GPIOF_HIGH);
if (data->rdy_pin)
at32_select_gpio(data->rdy_pin, 0);
if (data->det_pin)
at32_select_gpio(data->det_pin, 0);
platform_device_add(pdev);
return pdev;
fail:
platform_device_put(pdev);
return NULL;
}
/* --------------------------------------------------------------------
* AC97C
* -------------------------------------------------------------------- */
static struct resource atmel_ac97c0_resource[] __initdata = {
PBMEM(0xfff02800),
IRQ(29),
};
static struct clk atmel_ac97c0_pclk = {
.name = "pclk",
.parent = &pbb_clk,
.mode = pbb_clk_mode,
.get_rate = pbb_clk_get_rate,
.index = 10,
};
struct platform_device *__init at32_add_device_ac97c(unsigned int id)
{
struct platform_device *pdev;
if (id != 0)
return NULL;
pdev = platform_device_alloc("atmel_ac97c", id);
if (!pdev)
return NULL;
if (platform_device_add_resources(pdev, atmel_ac97c0_resource,
ARRAY_SIZE(atmel_ac97c0_resource)))
goto err_add_resources;
select_peripheral(PB(20), PERIPH_B, 0); /* SYNC */
select_peripheral(PB(21), PERIPH_B, 0); /* SDO */
select_peripheral(PB(22), PERIPH_B, 0); /* SDI */
select_peripheral(PB(23), PERIPH_B, 0); /* SCLK */
atmel_ac97c0_pclk.dev = &pdev->dev;
platform_device_add(pdev);
return pdev;
err_add_resources:
platform_device_put(pdev);
return NULL;
}
/* --------------------------------------------------------------------
* ABDAC
* -------------------------------------------------------------------- */
static struct resource abdac0_resource[] __initdata = {
PBMEM(0xfff02000),
IRQ(27),
};
static struct clk abdac0_pclk = {
.name = "pclk",
.parent = &pbb_clk,
.mode = pbb_clk_mode,
.get_rate = pbb_clk_get_rate,
.index = 8,
};
static struct clk abdac0_sample_clk = {
.name = "sample_clk",
.mode = genclk_mode,
.get_rate = genclk_get_rate,
.set_rate = genclk_set_rate,
.set_parent = genclk_set_parent,
.index = 6,
};
struct platform_device *__init at32_add_device_abdac(unsigned int id)
{
struct platform_device *pdev;
if (id != 0)
return NULL;
pdev = platform_device_alloc("abdac", id);
if (!pdev)
return NULL;
if (platform_device_add_resources(pdev, abdac0_resource,
ARRAY_SIZE(abdac0_resource)))
goto err_add_resources;
select_peripheral(PB(20), PERIPH_A, 0); /* DATA1 */
select_peripheral(PB(21), PERIPH_A, 0); /* DATA0 */
select_peripheral(PB(22), PERIPH_A, 0); /* DATAN1 */
select_peripheral(PB(23), PERIPH_A, 0); /* DATAN0 */
abdac0_pclk.dev = &pdev->dev;
abdac0_sample_clk.dev = &pdev->dev;
platform_device_add(pdev);
return pdev;
err_add_resources:
platform_device_put(pdev);
return NULL;
}
/* --------------------------------------------------------------------
* GCLK
* -------------------------------------------------------------------- */
static struct clk gclk0 = {
.name = "gclk0",
.mode = genclk_mode,
.get_rate = genclk_get_rate,
.set_rate = genclk_set_rate,
.set_parent = genclk_set_parent,
.index = 0,
};
static struct clk gclk1 = {
.name = "gclk1",
.mode = genclk_mode,
.get_rate = genclk_get_rate,
.set_rate = genclk_set_rate,
.set_parent = genclk_set_parent,
.index = 1,
};
static struct clk gclk2 = {
.name = "gclk2",
.mode = genclk_mode,
.get_rate = genclk_get_rate,
.set_rate = genclk_set_rate,
.set_parent = genclk_set_parent,
.index = 2,
};
static struct clk gclk3 = {
.name = "gclk3",
.mode = genclk_mode,
.get_rate = genclk_get_rate,
.set_rate = genclk_set_rate,
.set_parent = genclk_set_parent,
.index = 3,
};
static struct clk gclk4 = {
.name = "gclk4",
.mode = genclk_mode,
.get_rate = genclk_get_rate,
.set_rate = genclk_set_rate,
.set_parent = genclk_set_parent,
.index = 4,
};
struct clk *at32_clock_list[] = {
&osc32k,
&osc0,
&osc1,
&pll0,
&pll1,
&cpu_clk,
&hsb_clk,
&pba_clk,
&pbb_clk,
&at32_pm_pclk,
&at32_intc0_pclk,
&hmatrix_clk,
&ebi_clk,
&hramc_clk,
&sdramc_clk,
&smc0_pclk,
&smc0_mck,
&pdc_hclk,
&pdc_pclk,
&dw_dmac0_hclk,
&pico_clk,
&pio0_mck,
&pio1_mck,
&pio2_mck,
&pio3_mck,
&pio4_mck,
&at32_tcb0_t0_clk,
&at32_tcb1_t0_clk,
&atmel_psif0_pclk,
&atmel_psif1_pclk,
&atmel_usart0_usart,
&atmel_usart1_usart,
&atmel_usart2_usart,
&atmel_usart3_usart,
&atmel_pwm0_mck,
#if defined(CONFIG_CPU_AT32AP7000)
&macb0_hclk,
&macb0_pclk,
&macb1_hclk,
&macb1_pclk,
#endif
&atmel_spi0_spi_clk,
&atmel_spi1_spi_clk,
&atmel_twi0_pclk,
&atmel_mci0_pclk,
#if defined(CONFIG_CPU_AT32AP7000) || defined(CONFIG_CPU_AT32AP7002)
&atmel_lcdfb0_hck1,
&atmel_lcdfb0_pixclk,
#endif
&ssc0_pclk,
&ssc1_pclk,
&ssc2_pclk,
&usba0_hclk,
&usba0_pclk,
&atmel_ac97c0_pclk,
&abdac0_pclk,
&abdac0_sample_clk,
&gclk0,
&gclk1,
&gclk2,
&gclk3,
&gclk4,
};
unsigned int at32_nr_clocks = ARRAY_SIZE(at32_clock_list);
void __init setup_platform(void)
{
u32 cpu_mask = 0, hsb_mask = 0, pba_mask = 0, pbb_mask = 0;
int i;
if (pm_readl(MCCTRL) & PM_BIT(PLLSEL)) {
main_clock = &pll0;
cpu_clk.parent = &pll0;
} else {
main_clock = &osc0;
cpu_clk.parent = &osc0;
}
if (pm_readl(PLL0) & PM_BIT(PLLOSC))
pll0.parent = &osc1;
if (pm_readl(PLL1) & PM_BIT(PLLOSC))
pll1.parent = &osc1;
genclk_init_parent(&gclk0);
genclk_init_parent(&gclk1);
genclk_init_parent(&gclk2);
genclk_init_parent(&gclk3);
genclk_init_parent(&gclk4);
#if defined(CONFIG_CPU_AT32AP7000) || defined(CONFIG_CPU_AT32AP7002)
genclk_init_parent(&atmel_lcdfb0_pixclk);
#endif
genclk_init_parent(&abdac0_sample_clk);
/*
* Turn on all clocks that have at least one user already, and
* turn off everything else. We only do this for module
* clocks, and even though it isn't particularly pretty to
* check the address of the mode function, it should do the
* trick...
*/
for (i = 0; i < ARRAY_SIZE(at32_clock_list); i++) {
struct clk *clk = at32_clock_list[i];
if (clk->users == 0)
continue;
if (clk->mode == &cpu_clk_mode)
cpu_mask |= 1 << clk->index;
else if (clk->mode == &hsb_clk_mode)
hsb_mask |= 1 << clk->index;
else if (clk->mode == &pba_clk_mode)
pba_mask |= 1 << clk->index;
else if (clk->mode == &pbb_clk_mode)
pbb_mask |= 1 << clk->index;
}
pm_writel(CPU_MASK, cpu_mask);
pm_writel(HSB_MASK, hsb_mask);
pm_writel(PBA_MASK, pba_mask);
pm_writel(PBB_MASK, pbb_mask);
/* Initialize the port muxes */
at32_init_pio(&pio0_device);
at32_init_pio(&pio1_device);
at32_init_pio(&pio2_device);
at32_init_pio(&pio3_device);
at32_init_pio(&pio4_device);
}
struct gen_pool *sram_pool;
static int __init sram_init(void)
{
struct gen_pool *pool;
/* 1KiB granularity */
pool = gen_pool_create(10, -1);
if (!pool)
goto fail;
if (gen_pool_add(pool, 0x24000000, 0x8000, -1))
goto err_pool_add;
sram_pool = pool;
return 0;
err_pool_add:
gen_pool_destroy(pool);
fail:
pr_err("Failed to create SRAM pool\n");
return -ENOMEM;
}
core_initcall(sram_init);