linux/drivers/hwmon/lm85.c
Jean Delvare d38b149794 hwmon: (lm85) Fix function RANGE_TO_REG()
Function RANGE_TO_REG() is broken. For a requested range of 2000 (2
degrees C), it will return an index value of 15, i.e. 80.0 degrees C,
instead of the expected index value of 0. All other values are handled
properly, just 2000 isn't.

The bug was introduced back in November 2004 by this patch:
http://git.kernel.org/?p=linux/kernel/git/tglx/history.git;a=commit;h=1c28d80f1992240373099d863e4996cdd5d646d0

While this can be fixed easily with the current code, I'd rather
rewrite the whole function in a way which is more obviously correct.

Signed-off-by: Jean Delvare <khali@linux-fr.org>
Cc: Justin Thiessen <jthiessen@penguincomputing.com>
Signed-off-by: Mark M. Hoffman <mhoffman@lightlink.com>
2008-06-19 06:50:31 -04:00

1653 lines
52 KiB
C

/*
lm85.c - Part of lm_sensors, Linux kernel modules for hardware
monitoring
Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
Chip details at <http://www.national.com/ds/LM/LM85.pdf>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
/* Insmod parameters */
I2C_CLIENT_INSMOD_6(lm85b, lm85c, adm1027, adt7463, emc6d100, emc6d102);
/* The LM85 registers */
#define LM85_REG_IN(nr) (0x20 + (nr))
#define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
#define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
#define LM85_REG_TEMP(nr) (0x25 + (nr))
#define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
#define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
/* Fan speeds are LSB, MSB (2 bytes) */
#define LM85_REG_FAN(nr) (0x28 + (nr) *2)
#define LM85_REG_FAN_MIN(nr) (0x54 + (nr) *2)
#define LM85_REG_PWM(nr) (0x30 + (nr))
#define ADT7463_REG_OPPOINT(nr) (0x33 + (nr))
#define ADT7463_REG_TMIN_CTL1 0x36
#define ADT7463_REG_TMIN_CTL2 0x37
#define LM85_REG_DEVICE 0x3d
#define LM85_REG_COMPANY 0x3e
#define LM85_REG_VERSTEP 0x3f
/* These are the recognized values for the above regs */
#define LM85_DEVICE_ADX 0x27
#define LM85_COMPANY_NATIONAL 0x01
#define LM85_COMPANY_ANALOG_DEV 0x41
#define LM85_COMPANY_SMSC 0x5c
#define LM85_VERSTEP_VMASK 0xf0
#define LM85_VERSTEP_GENERIC 0x60
#define LM85_VERSTEP_LM85C 0x60
#define LM85_VERSTEP_LM85B 0x62
#define LM85_VERSTEP_ADM1027 0x60
#define LM85_VERSTEP_ADT7463 0x62
#define LM85_VERSTEP_ADT7463C 0x6A
#define LM85_VERSTEP_EMC6D100_A0 0x60
#define LM85_VERSTEP_EMC6D100_A1 0x61
#define LM85_VERSTEP_EMC6D102 0x65
#define LM85_REG_CONFIG 0x40
#define LM85_REG_ALARM1 0x41
#define LM85_REG_ALARM2 0x42
#define LM85_REG_VID 0x43
/* Automated FAN control */
#define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
#define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
#define LM85_REG_AFAN_SPIKE1 0x62
#define LM85_REG_AFAN_SPIKE2 0x63
#define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
#define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
#define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
#define LM85_REG_AFAN_HYST1 0x6d
#define LM85_REG_AFAN_HYST2 0x6e
#define LM85_REG_TACH_MODE 0x74
#define LM85_REG_SPINUP_CTL 0x75
#define ADM1027_REG_TEMP_OFFSET(nr) (0x70 + (nr))
#define ADM1027_REG_CONFIG2 0x73
#define ADM1027_REG_INTMASK1 0x74
#define ADM1027_REG_INTMASK2 0x75
#define ADM1027_REG_EXTEND_ADC1 0x76
#define ADM1027_REG_EXTEND_ADC2 0x77
#define ADM1027_REG_CONFIG3 0x78
#define ADM1027_REG_FAN_PPR 0x7b
#define ADT7463_REG_THERM 0x79
#define ADT7463_REG_THERM_LIMIT 0x7A
#define EMC6D100_REG_ALARM3 0x7d
/* IN5, IN6 and IN7 */
#define EMC6D100_REG_IN(nr) (0x70 + ((nr)-5))
#define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr)-5) * 2)
#define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr)-5) * 2)
#define EMC6D102_REG_EXTEND_ADC1 0x85
#define EMC6D102_REG_EXTEND_ADC2 0x86
#define EMC6D102_REG_EXTEND_ADC3 0x87
#define EMC6D102_REG_EXTEND_ADC4 0x88
/* Conversions. Rounding and limit checking is only done on the TO_REG
variants. Note that you should be a bit careful with which arguments
these macros are called: arguments may be evaluated more than once.
*/
/* IN are scaled acording to built-in resistors */
static int lm85_scaling[] = { /* .001 Volts */
2500, 2250, 3300, 5000, 12000,
3300, 1500, 1800 /*EMC6D100*/
};
#define SCALE(val,from,to) (((val)*(to) + ((from)/2))/(from))
#define INS_TO_REG(n,val) \
SENSORS_LIMIT(SCALE(val,lm85_scaling[n],192),0,255)
#define INSEXT_FROM_REG(n,val,ext) \
SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
#define INS_FROM_REG(n,val) SCALE((val), 192, lm85_scaling[n])
/* FAN speed is measured using 90kHz clock */
static inline u16 FAN_TO_REG(unsigned long val)
{
if (!val)
return 0xffff;
return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
}
#define FAN_FROM_REG(val) ((val)==0?-1:(val)==0xffff?0:5400000/(val))
/* Temperature is reported in .001 degC increments */
#define TEMP_TO_REG(val) \
SENSORS_LIMIT(SCALE(val,1000,1),-127,127)
#define TEMPEXT_FROM_REG(val,ext) \
SCALE(((val) << 4) + (ext), 16, 1000)
#define TEMP_FROM_REG(val) ((val) * 1000)
#define PWM_TO_REG(val) (SENSORS_LIMIT(val,0,255))
#define PWM_FROM_REG(val) (val)
/* ZONEs have the following parameters:
* Limit (low) temp, 1. degC
* Hysteresis (below limit), 1. degC (0-15)
* Range of speed control, .1 degC (2-80)
* Critical (high) temp, 1. degC
*
* FAN PWMs have the following parameters:
* Reference Zone, 1, 2, 3, etc.
* Spinup time, .05 sec
* PWM value at limit/low temp, 1 count
* PWM Frequency, 1. Hz
* PWM is Min or OFF below limit, flag
* Invert PWM output, flag
*
* Some chips filter the temp, others the fan.
* Filter constant (or disabled) .1 seconds
*/
/* These are the zone temperature range encodings in .001 degree C */
static int lm85_range_map[] = {
2000, 2500, 3300, 4000, 5000, 6600,
8000, 10000, 13300, 16000, 20000, 26600,
32000, 40000, 53300, 80000
};
static int RANGE_TO_REG( int range )
{
int i;
if (range >= lm85_range_map[15])
return 15 ;
/* Find the closest match */
for (i = 14; i >= 0; --i) {
if (range >= lm85_range_map[i]) {
if ((lm85_range_map[i + 1] - range) <
(range - lm85_range_map[i]))
return i + 1;
return i;
}
}
return 0;
}
#define RANGE_FROM_REG(val) (lm85_range_map[(val)&0x0f])
/* These are the Acoustic Enhancement, or Temperature smoothing encodings
* NOTE: The enable/disable bit is INCLUDED in these encodings as the
* MSB (bit 3, value 8). If the enable bit is 0, the encoded value
* is ignored, or set to 0.
*/
/* These are the PWM frequency encodings */
static int lm85_freq_map[] = { /* .1 Hz */
100, 150, 230, 300, 380, 470, 620, 940
};
static int FREQ_TO_REG( int freq )
{
int i;
if( freq >= lm85_freq_map[7] ) { return 7 ; }
for( i = 0 ; i < 7 ; ++i )
if( freq <= lm85_freq_map[i] )
break ;
return( i & 0x07 );
}
#define FREQ_FROM_REG(val) (lm85_freq_map[(val)&0x07])
/* Since we can't use strings, I'm abusing these numbers
* to stand in for the following meanings:
* 1 -- PWM responds to Zone 1
* 2 -- PWM responds to Zone 2
* 3 -- PWM responds to Zone 3
* 23 -- PWM responds to the higher temp of Zone 2 or 3
* 123 -- PWM responds to highest of Zone 1, 2, or 3
* 0 -- PWM is always at 0% (ie, off)
* -1 -- PWM is always at 100%
* -2 -- PWM responds to manual control
*/
static int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
#define ZONE_FROM_REG(val) (lm85_zone_map[((val)>>5)&0x07])
static int ZONE_TO_REG( int zone )
{
int i;
for( i = 0 ; i <= 7 ; ++i )
if( zone == lm85_zone_map[i] )
break ;
if( i > 7 ) /* Not found. */
i = 3; /* Always 100% */
return( (i & 0x07)<<5 );
}
#define HYST_TO_REG(val) (SENSORS_LIMIT(((val)+500)/1000,0,15))
#define HYST_FROM_REG(val) ((val)*1000)
#define OFFSET_TO_REG(val) (SENSORS_LIMIT((val)/25,-127,127))
#define OFFSET_FROM_REG(val) ((val)*25)
#define PPR_MASK(fan) (0x03<<(fan *2))
#define PPR_TO_REG(val,fan) (SENSORS_LIMIT((val)-1,0,3)<<(fan *2))
#define PPR_FROM_REG(val,fan) ((((val)>>(fan * 2))&0x03)+1)
/* Chip sampling rates
*
* Some sensors are not updated more frequently than once per second
* so it doesn't make sense to read them more often than that.
* We cache the results and return the saved data if the driver
* is called again before a second has elapsed.
*
* Also, there is significant configuration data for this chip
* given the automatic PWM fan control that is possible. There
* are about 47 bytes of config data to only 22 bytes of actual
* readings. So, we keep the config data up to date in the cache
* when it is written and only sample it once every 1 *minute*
*/
#define LM85_DATA_INTERVAL (HZ + HZ / 2)
#define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
/* LM85 can automatically adjust fan speeds based on temperature
* This structure encapsulates an entire Zone config. There are
* three zones (one for each temperature input) on the lm85
*/
struct lm85_zone {
s8 limit; /* Low temp limit */
u8 hyst; /* Low limit hysteresis. (0-15) */
u8 range; /* Temp range, encoded */
s8 critical; /* "All fans ON" temp limit */
u8 off_desired; /* Actual "off" temperature specified. Preserved
* to prevent "drift" as other autofan control
* values change.
*/
u8 max_desired; /* Actual "max" temperature specified. Preserved
* to prevent "drift" as other autofan control
* values change.
*/
};
struct lm85_autofan {
u8 config; /* Register value */
u8 freq; /* PWM frequency, encoded */
u8 min_pwm; /* Minimum PWM value, encoded */
u8 min_off; /* Min PWM or OFF below "limit", flag */
};
/* For each registered chip, we need to keep some data in memory.
The structure is dynamically allocated. */
struct lm85_data {
struct i2c_client client;
struct device *hwmon_dev;
enum chips type;
struct mutex update_lock;
int valid; /* !=0 if following fields are valid */
unsigned long last_reading; /* In jiffies */
unsigned long last_config; /* In jiffies */
u8 in[8]; /* Register value */
u8 in_max[8]; /* Register value */
u8 in_min[8]; /* Register value */
s8 temp[3]; /* Register value */
s8 temp_min[3]; /* Register value */
s8 temp_max[3]; /* Register value */
s8 temp_offset[3]; /* Register value */
u16 fan[4]; /* Register value */
u16 fan_min[4]; /* Register value */
u8 pwm[3]; /* Register value */
u8 spinup_ctl; /* Register encoding, combined */
u8 tach_mode; /* Register encoding, combined */
u8 temp_ext[3]; /* Decoded values */
u8 in_ext[8]; /* Decoded values */
u8 fan_ppr; /* Register value */
u8 smooth[3]; /* Register encoding */
u8 vid; /* Register value */
u8 vrm; /* VRM version */
u8 syncpwm3; /* Saved PWM3 for TACH 2,3,4 config */
u8 oppoint[3]; /* Register value */
u16 tmin_ctl; /* Register value */
unsigned long therm_total; /* Cummulative therm count */
u8 therm_limit; /* Register value */
u32 alarms; /* Register encoding, combined */
struct lm85_autofan autofan[3];
struct lm85_zone zone[3];
};
static int lm85_attach_adapter(struct i2c_adapter *adapter);
static int lm85_detect(struct i2c_adapter *adapter, int address,
int kind);
static int lm85_detach_client(struct i2c_client *client);
static int lm85_read_value(struct i2c_client *client, u8 reg);
static int lm85_write_value(struct i2c_client *client, u8 reg, int value);
static struct lm85_data *lm85_update_device(struct device *dev);
static void lm85_init_client(struct i2c_client *client);
static struct i2c_driver lm85_driver = {
.driver = {
.name = "lm85",
},
.attach_adapter = lm85_attach_adapter,
.detach_client = lm85_detach_client,
};
/* 4 Fans */
static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", FAN_FROM_REG(data->fan[nr]) );
}
static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", FAN_FROM_REG(data->fan_min[nr]) );
}
static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
unsigned long val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val);
lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define show_fan_offset(offset) \
static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
show_fan, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
show_fan_min, set_fan_min, offset - 1)
show_fan_offset(1);
show_fan_offset(2);
show_fan_offset(3);
show_fan_offset(4);
/* vid, vrm, alarms */
static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct lm85_data *data = lm85_update_device(dev);
int vid;
if (data->type == adt7463 && (data->vid & 0x80)) {
/* 6-pin VID (VRM 10) */
vid = vid_from_reg(data->vid & 0x3f, data->vrm);
} else {
/* 5-pin VID (VRM 9) */
vid = vid_from_reg(data->vid & 0x1f, data->vrm);
}
return sprintf(buf, "%d\n", vid);
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct lm85_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%ld\n", (long) data->vrm);
}
static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct lm85_data *data = dev_get_drvdata(dev);
data->vrm = simple_strtoul(buf, NULL, 10);
return count;
}
static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
static ssize_t show_alarms_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
}
static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
/* pwm */
static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", PWM_FROM_REG(data->pwm[nr]) );
}
static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->pwm[nr] = PWM_TO_REG(val);
lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
*attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
int pwm_zone, enable;
pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
switch (pwm_zone) {
case -1: /* PWM is always at 100% */
enable = 0;
break;
case 0: /* PWM is always at 0% */
case -2: /* PWM responds to manual control */
enable = 1;
break;
default: /* PWM in automatic mode */
enable = 2;
}
return sprintf(buf, "%d\n", enable);
}
static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
*attr, const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
u8 config;
switch (val) {
case 0:
config = 3;
break;
case 1:
config = 7;
break;
case 2:
/* Here we have to choose arbitrarily one of the 5 possible
configurations; I go for the safest */
config = 6;
break;
default:
return -EINVAL;
}
mutex_lock(&data->update_lock);
data->autofan[nr].config = lm85_read_value(client,
LM85_REG_AFAN_CONFIG(nr));
data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
| (config << 5);
lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
data->autofan[nr].config);
mutex_unlock(&data->update_lock);
return count;
}
#define show_pwm_reg(offset) \
static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
show_pwm, set_pwm, offset - 1); \
static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
show_pwm_enable, set_pwm_enable, offset - 1)
show_pwm_reg(1);
show_pwm_reg(2);
show_pwm_reg(3);
/* Voltages */
static ssize_t show_in(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf( buf, "%d\n", INSEXT_FROM_REG(nr,
data->in[nr],
data->in_ext[nr]));
}
static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in_min[nr]) );
}
static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_min[nr] = INS_TO_REG(nr, val);
lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in_max[nr]) );
}
static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_max[nr] = INS_TO_REG(nr, val);
lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define show_in_reg(offset) \
static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
show_in, NULL, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
show_in_min, set_in_min, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
show_in_max, set_in_max, offset)
show_in_reg(0);
show_in_reg(1);
show_in_reg(2);
show_in_reg(3);
show_in_reg(4);
show_in_reg(5);
show_in_reg(6);
show_in_reg(7);
/* Temps */
static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", TEMPEXT_FROM_REG(data->temp[nr],
data->temp_ext[nr]));
}
static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_min[nr]) );
}
static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_min[nr] = TEMP_TO_REG(val);
lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_max[nr]) );
}
static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_max[nr] = TEMP_TO_REG(val);
lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define show_temp_reg(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
show_temp, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
show_temp_min, set_temp_min, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
show_temp_max, set_temp_max, offset - 1);
show_temp_reg(1);
show_temp_reg(2);
show_temp_reg(3);
/* Automatic PWM control */
static ssize_t show_pwm_auto_channels(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", ZONE_FROM_REG(data->autofan[nr].config));
}
static ssize_t set_pwm_auto_channels(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
| ZONE_TO_REG(val) ;
lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
data->autofan[nr].config);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_pwm_auto_pwm_min(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
}
static ssize_t set_pwm_auto_pwm_min(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->autofan[nr].min_pwm = PWM_TO_REG(val);
lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
data->autofan[nr].min_pwm);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", data->autofan[nr].min_off);
}
static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->autofan[nr].min_off = val;
lm85_write_value(client, LM85_REG_AFAN_SPIKE1, data->smooth[0]
| data->syncpwm3
| (data->autofan[0].min_off ? 0x20 : 0)
| (data->autofan[1].min_off ? 0x40 : 0)
| (data->autofan[2].min_off ? 0x80 : 0)
);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_pwm_auto_pwm_freq(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", FREQ_FROM_REG(data->autofan[nr].freq));
}
static ssize_t set_pwm_auto_pwm_freq(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->autofan[nr].freq = FREQ_TO_REG(val);
lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
(data->zone[nr].range << 4)
| data->autofan[nr].freq
);
mutex_unlock(&data->update_lock);
return count;
}
#define pwm_auto(offset) \
static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
set_pwm_auto_channels, offset - 1); \
static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
set_pwm_auto_pwm_min, offset - 1); \
static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
set_pwm_auto_pwm_minctl, offset - 1); \
static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_freq, \
S_IRUGO | S_IWUSR, show_pwm_auto_pwm_freq, \
set_pwm_auto_pwm_freq, offset - 1);
pwm_auto(1);
pwm_auto(2);
pwm_auto(3);
/* Temperature settings for automatic PWM control */
static ssize_t show_temp_auto_temp_off(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
HYST_FROM_REG(data->zone[nr].hyst));
}
static ssize_t set_temp_auto_temp_off(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
int min;
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
min = TEMP_FROM_REG(data->zone[nr].limit);
data->zone[nr].off_desired = TEMP_TO_REG(val);
data->zone[nr].hyst = HYST_TO_REG(min - val);
if ( nr == 0 || nr == 1 ) {
lm85_write_value(client, LM85_REG_AFAN_HYST1,
(data->zone[0].hyst << 4)
| data->zone[1].hyst
);
} else {
lm85_write_value(client, LM85_REG_AFAN_HYST2,
(data->zone[2].hyst << 4)
);
}
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_auto_temp_min(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].limit) );
}
static ssize_t set_temp_auto_temp_min(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->zone[nr].limit = TEMP_TO_REG(val);
lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
data->zone[nr].limit);
/* Update temp_auto_max and temp_auto_range */
data->zone[nr].range = RANGE_TO_REG(
TEMP_FROM_REG(data->zone[nr].max_desired) -
TEMP_FROM_REG(data->zone[nr].limit));
lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
((data->zone[nr].range & 0x0f) << 4)
| (data->autofan[nr].freq & 0x07));
/* Update temp_auto_hyst and temp_auto_off */
data->zone[nr].hyst = HYST_TO_REG(TEMP_FROM_REG(
data->zone[nr].limit) - TEMP_FROM_REG(
data->zone[nr].off_desired));
if ( nr == 0 || nr == 1 ) {
lm85_write_value(client, LM85_REG_AFAN_HYST1,
(data->zone[0].hyst << 4)
| data->zone[1].hyst
);
} else {
lm85_write_value(client, LM85_REG_AFAN_HYST2,
(data->zone[2].hyst << 4)
);
}
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_auto_temp_max(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
RANGE_FROM_REG(data->zone[nr].range));
}
static ssize_t set_temp_auto_temp_max(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
int min;
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
min = TEMP_FROM_REG(data->zone[nr].limit);
data->zone[nr].max_desired = TEMP_TO_REG(val);
data->zone[nr].range = RANGE_TO_REG(
val - min);
lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
((data->zone[nr].range & 0x0f) << 4)
| (data->autofan[nr].freq & 0x07));
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_auto_temp_crit(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].critical));
}
static ssize_t set_temp_auto_temp_crit(struct device *dev,
struct device_attribute *attr,const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->zone[nr].critical = TEMP_TO_REG(val);
lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
data->zone[nr].critical);
mutex_unlock(&data->update_lock);
return count;
}
#define temp_auto(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
set_temp_auto_temp_off, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
set_temp_auto_temp_min, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
set_temp_auto_temp_max, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
set_temp_auto_temp_crit, offset - 1);
temp_auto(1);
temp_auto(2);
temp_auto(3);
static int lm85_attach_adapter(struct i2c_adapter *adapter)
{
if (!(adapter->class & I2C_CLASS_HWMON))
return 0;
return i2c_probe(adapter, &addr_data, lm85_detect);
}
static struct attribute *lm85_attributes[] = {
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan4_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan4_min.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan3_alarm.dev_attr.attr,
&sensor_dev_attr_fan4_alarm.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_pwm3.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm2_enable.dev_attr.attr,
&sensor_dev_attr_pwm3_enable.dev_attr.attr,
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_fault.dev_attr.attr,
&sensor_dev_attr_temp3_fault.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_pwm_freq.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_pwm_freq.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_pwm_freq.dev_attr.attr,
&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
&dev_attr_vrm.attr,
&dev_attr_cpu0_vid.attr,
&dev_attr_alarms.attr,
NULL
};
static const struct attribute_group lm85_group = {
.attrs = lm85_attributes,
};
static struct attribute *lm85_attributes_in4[] = {
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group lm85_group_in4 = {
.attrs = lm85_attributes_in4,
};
static struct attribute *lm85_attributes_in567[] = {
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in6_input.dev_attr.attr,
&sensor_dev_attr_in7_input.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in6_min.dev_attr.attr,
&sensor_dev_attr_in7_min.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in6_max.dev_attr.attr,
&sensor_dev_attr_in7_max.dev_attr.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
&sensor_dev_attr_in6_alarm.dev_attr.attr,
&sensor_dev_attr_in7_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group lm85_group_in567 = {
.attrs = lm85_attributes_in567,
};
static int lm85_detect(struct i2c_adapter *adapter, int address,
int kind)
{
int company, verstep ;
struct i2c_client *new_client = NULL;
struct lm85_data *data;
int err = 0;
const char *type_name = "";
if (!i2c_check_functionality(adapter,
I2C_FUNC_SMBUS_BYTE_DATA)) {
/* We need to be able to do byte I/O */
goto ERROR0 ;
};
/* OK. For now, we presume we have a valid client. We now create the
client structure, even though we cannot fill it completely yet.
But it allows us to access lm85_{read,write}_value. */
if (!(data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL))) {
err = -ENOMEM;
goto ERROR0;
}
new_client = &data->client;
i2c_set_clientdata(new_client, data);
new_client->addr = address;
new_client->adapter = adapter;
new_client->driver = &lm85_driver;
new_client->flags = 0;
/* Now, we do the remaining detection. */
company = lm85_read_value(new_client, LM85_REG_COMPANY);
verstep = lm85_read_value(new_client, LM85_REG_VERSTEP);
dev_dbg(&adapter->dev, "Detecting device at %d,0x%02x with"
" COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
i2c_adapter_id(new_client->adapter), new_client->addr,
company, verstep);
/* If auto-detecting, Determine the chip type. */
if (kind <= 0) {
dev_dbg(&adapter->dev, "Autodetecting device at %d,0x%02x ...\n",
i2c_adapter_id(adapter), address );
if( company == LM85_COMPANY_NATIONAL
&& verstep == LM85_VERSTEP_LM85C ) {
kind = lm85c ;
} else if( company == LM85_COMPANY_NATIONAL
&& verstep == LM85_VERSTEP_LM85B ) {
kind = lm85b ;
} else if( company == LM85_COMPANY_NATIONAL
&& (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC ) {
dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x"
" Defaulting to LM85.\n", verstep);
kind = any_chip ;
} else if( company == LM85_COMPANY_ANALOG_DEV
&& verstep == LM85_VERSTEP_ADM1027 ) {
kind = adm1027 ;
} else if( company == LM85_COMPANY_ANALOG_DEV
&& (verstep == LM85_VERSTEP_ADT7463
|| verstep == LM85_VERSTEP_ADT7463C) ) {
kind = adt7463 ;
} else if( company == LM85_COMPANY_ANALOG_DEV
&& (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC ) {
dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x"
" Defaulting to Generic LM85.\n", verstep );
kind = any_chip ;
} else if( company == LM85_COMPANY_SMSC
&& (verstep == LM85_VERSTEP_EMC6D100_A0
|| verstep == LM85_VERSTEP_EMC6D100_A1) ) {
/* Unfortunately, we can't tell a '100 from a '101
* from the registers. Since a '101 is a '100
* in a package with fewer pins and therefore no
* 3.3V, 1.5V or 1.8V inputs, perhaps if those
* inputs read 0, then it's a '101.
*/
kind = emc6d100 ;
} else if( company == LM85_COMPANY_SMSC
&& verstep == LM85_VERSTEP_EMC6D102) {
kind = emc6d102 ;
} else if( company == LM85_COMPANY_SMSC
&& (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
dev_err(&adapter->dev, "lm85: Detected SMSC chip\n");
dev_err(&adapter->dev, "lm85: Unrecognized version/stepping 0x%02x"
" Defaulting to Generic LM85.\n", verstep );
kind = any_chip ;
} else if( kind == any_chip
&& (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
dev_err(&adapter->dev, "Generic LM85 Version 6 detected\n");
/* Leave kind as "any_chip" */
} else {
dev_dbg(&adapter->dev, "Autodetection failed\n");
/* Not an LM85 ... */
if( kind == any_chip ) { /* User used force=x,y */
dev_err(&adapter->dev, "Generic LM85 Version 6 not"
" found at %d,0x%02x. Try force_lm85c.\n",
i2c_adapter_id(adapter), address );
}
err = 0 ;
goto ERROR1;
}
}
/* Fill in the chip specific driver values */
if ( kind == any_chip ) {
type_name = "lm85";
} else if ( kind == lm85b ) {
type_name = "lm85b";
} else if ( kind == lm85c ) {
type_name = "lm85c";
} else if ( kind == adm1027 ) {
type_name = "adm1027";
} else if ( kind == adt7463 ) {
type_name = "adt7463";
} else if ( kind == emc6d100){
type_name = "emc6d100";
} else if ( kind == emc6d102 ) {
type_name = "emc6d102";
}
strlcpy(new_client->name, type_name, I2C_NAME_SIZE);
/* Fill in the remaining client fields */
data->type = kind;
data->valid = 0;
mutex_init(&data->update_lock);
/* Tell the I2C layer a new client has arrived */
if ((err = i2c_attach_client(new_client)))
goto ERROR1;
/* Set the VRM version */
data->vrm = vid_which_vrm();
/* Initialize the LM85 chip */
lm85_init_client(new_client);
/* Register sysfs hooks */
if ((err = sysfs_create_group(&new_client->dev.kobj, &lm85_group)))
goto ERROR2;
/* The ADT7463 has an optional VRM 10 mode where pin 21 is used
as a sixth digital VID input rather than an analog input. */
data->vid = lm85_read_value(new_client, LM85_REG_VID);
if (!(kind == adt7463 && (data->vid & 0x80)))
if ((err = sysfs_create_group(&new_client->dev.kobj,
&lm85_group_in4)))
goto ERROR3;
/* The EMC6D100 has 3 additional voltage inputs */
if (kind == emc6d100)
if ((err = sysfs_create_group(&new_client->dev.kobj,
&lm85_group_in567)))
goto ERROR3;
data->hwmon_dev = hwmon_device_register(&new_client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto ERROR3;
}
return 0;
/* Error out and cleanup code */
ERROR3:
sysfs_remove_group(&new_client->dev.kobj, &lm85_group);
sysfs_remove_group(&new_client->dev.kobj, &lm85_group_in4);
if (kind == emc6d100)
sysfs_remove_group(&new_client->dev.kobj, &lm85_group_in567);
ERROR2:
i2c_detach_client(new_client);
ERROR1:
kfree(data);
ERROR0:
return err;
}
static int lm85_detach_client(struct i2c_client *client)
{
struct lm85_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &lm85_group);
sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
if (data->type == emc6d100)
sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
i2c_detach_client(client);
kfree(data);
return 0;
}
static int lm85_read_value(struct i2c_client *client, u8 reg)
{
int res;
/* What size location is it? */
switch( reg ) {
case LM85_REG_FAN(0) : /* Read WORD data */
case LM85_REG_FAN(1) :
case LM85_REG_FAN(2) :
case LM85_REG_FAN(3) :
case LM85_REG_FAN_MIN(0) :
case LM85_REG_FAN_MIN(1) :
case LM85_REG_FAN_MIN(2) :
case LM85_REG_FAN_MIN(3) :
case LM85_REG_ALARM1 : /* Read both bytes at once */
res = i2c_smbus_read_byte_data(client, reg) & 0xff ;
res |= i2c_smbus_read_byte_data(client, reg+1) << 8 ;
break ;
case ADT7463_REG_TMIN_CTL1 : /* Read WORD MSB, LSB */
res = i2c_smbus_read_byte_data(client, reg) << 8 ;
res |= i2c_smbus_read_byte_data(client, reg+1) & 0xff ;
break ;
default: /* Read BYTE data */
res = i2c_smbus_read_byte_data(client, reg);
break ;
}
return res ;
}
static int lm85_write_value(struct i2c_client *client, u8 reg, int value)
{
int res ;
switch( reg ) {
case LM85_REG_FAN(0) : /* Write WORD data */
case LM85_REG_FAN(1) :
case LM85_REG_FAN(2) :
case LM85_REG_FAN(3) :
case LM85_REG_FAN_MIN(0) :
case LM85_REG_FAN_MIN(1) :
case LM85_REG_FAN_MIN(2) :
case LM85_REG_FAN_MIN(3) :
/* NOTE: ALARM is read only, so not included here */
res = i2c_smbus_write_byte_data(client, reg, value & 0xff) ;
res |= i2c_smbus_write_byte_data(client, reg+1, (value>>8) & 0xff) ;
break ;
case ADT7463_REG_TMIN_CTL1 : /* Write WORD MSB, LSB */
res = i2c_smbus_write_byte_data(client, reg, (value>>8) & 0xff);
res |= i2c_smbus_write_byte_data(client, reg+1, value & 0xff) ;
break ;
default: /* Write BYTE data */
res = i2c_smbus_write_byte_data(client, reg, value);
break ;
}
return res ;
}
static void lm85_init_client(struct i2c_client *client)
{
int value;
struct lm85_data *data = i2c_get_clientdata(client);
dev_dbg(&client->dev, "Initializing device\n");
/* Warn if part was not "READY" */
value = lm85_read_value(client, LM85_REG_CONFIG);
dev_dbg(&client->dev, "LM85_REG_CONFIG is: 0x%02x\n", value);
if( value & 0x02 ) {
dev_err(&client->dev, "Client (%d,0x%02x) config is locked.\n",
i2c_adapter_id(client->adapter), client->addr );
};
if( ! (value & 0x04) ) {
dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
i2c_adapter_id(client->adapter), client->addr );
};
if( value & 0x10
&& ( data->type == adm1027
|| data->type == adt7463 ) ) {
dev_err(&client->dev, "Client (%d,0x%02x) VxI mode is set. "
"Please report this to the lm85 maintainer.\n",
i2c_adapter_id(client->adapter), client->addr );
};
/* WE INTENTIONALLY make no changes to the limits,
* offsets, pwms, fans and zones. If they were
* configured, we don't want to mess with them.
* If they weren't, the default is 100% PWM, no
* control and will suffice until 'sensors -s'
* can be run by the user.
*/
/* Start monitoring */
value = lm85_read_value(client, LM85_REG_CONFIG);
/* Try to clear LOCK, Set START, save everything else */
value = (value & ~ 0x02) | 0x01 ;
dev_dbg(&client->dev, "Setting CONFIG to: 0x%02x\n", value);
lm85_write_value(client, LM85_REG_CONFIG, value);
}
static struct lm85_data *lm85_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
int i;
mutex_lock(&data->update_lock);
if ( !data->valid ||
time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL) ) {
/* Things that change quickly */
dev_dbg(&client->dev, "Reading sensor values\n");
/* Have to read extended bits first to "freeze" the
* more significant bits that are read later.
* There are 2 additional resolution bits per channel and we
* have room for 4, so we shift them to the left.
*/
if ( (data->type == adm1027) || (data->type == adt7463) ) {
int ext1 = lm85_read_value(client,
ADM1027_REG_EXTEND_ADC1);
int ext2 = lm85_read_value(client,
ADM1027_REG_EXTEND_ADC2);
int val = (ext1 << 8) + ext2;
for(i = 0; i <= 4; i++)
data->in_ext[i] = ((val>>(i * 2))&0x03) << 2;
for(i = 0; i <= 2; i++)
data->temp_ext[i] = (val>>((i + 4) * 2))&0x0c;
}
data->vid = lm85_read_value(client, LM85_REG_VID);
for (i = 0; i <= 3; ++i) {
data->in[i] =
lm85_read_value(client, LM85_REG_IN(i));
}
if (!(data->type == adt7463 && (data->vid & 0x80))) {
data->in[4] = lm85_read_value(client,
LM85_REG_IN(4));
}
for (i = 0; i <= 3; ++i) {
data->fan[i] =
lm85_read_value(client, LM85_REG_FAN(i));
}
for (i = 0; i <= 2; ++i) {
data->temp[i] =
lm85_read_value(client, LM85_REG_TEMP(i));
}
for (i = 0; i <= 2; ++i) {
data->pwm[i] =
lm85_read_value(client, LM85_REG_PWM(i));
}
data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
if ( data->type == adt7463 ) {
if( data->therm_total < ULONG_MAX - 256 ) {
data->therm_total +=
lm85_read_value(client, ADT7463_REG_THERM );
}
} else if ( data->type == emc6d100 ) {
/* Three more voltage sensors */
for (i = 5; i <= 7; ++i) {
data->in[i] =
lm85_read_value(client, EMC6D100_REG_IN(i));
}
/* More alarm bits */
data->alarms |=
lm85_read_value(client, EMC6D100_REG_ALARM3) << 16;
} else if (data->type == emc6d102 ) {
/* Have to read LSB bits after the MSB ones because
the reading of the MSB bits has frozen the
LSBs (backward from the ADM1027).
*/
int ext1 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC1);
int ext2 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC2);
int ext3 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC3);
int ext4 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC4);
data->in_ext[0] = ext3 & 0x0f;
data->in_ext[1] = ext4 & 0x0f;
data->in_ext[2] = (ext4 >> 4) & 0x0f;
data->in_ext[3] = (ext3 >> 4) & 0x0f;
data->in_ext[4] = (ext2 >> 4) & 0x0f;
data->temp_ext[0] = ext1 & 0x0f;
data->temp_ext[1] = ext2 & 0x0f;
data->temp_ext[2] = (ext1 >> 4) & 0x0f;
}
data->last_reading = jiffies ;
}; /* last_reading */
if ( !data->valid ||
time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL) ) {
/* Things that don't change often */
dev_dbg(&client->dev, "Reading config values\n");
for (i = 0; i <= 3; ++i) {
data->in_min[i] =
lm85_read_value(client, LM85_REG_IN_MIN(i));
data->in_max[i] =
lm85_read_value(client, LM85_REG_IN_MAX(i));
}
if (!(data->type == adt7463 && (data->vid & 0x80))) {
data->in_min[4] = lm85_read_value(client,
LM85_REG_IN_MIN(4));
data->in_max[4] = lm85_read_value(client,
LM85_REG_IN_MAX(4));
}
if ( data->type == emc6d100 ) {
for (i = 5; i <= 7; ++i) {
data->in_min[i] =
lm85_read_value(client, EMC6D100_REG_IN_MIN(i));
data->in_max[i] =
lm85_read_value(client, EMC6D100_REG_IN_MAX(i));
}
}
for (i = 0; i <= 3; ++i) {
data->fan_min[i] =
lm85_read_value(client, LM85_REG_FAN_MIN(i));
}
for (i = 0; i <= 2; ++i) {
data->temp_min[i] =
lm85_read_value(client, LM85_REG_TEMP_MIN(i));
data->temp_max[i] =
lm85_read_value(client, LM85_REG_TEMP_MAX(i));
}
for (i = 0; i <= 2; ++i) {
int val ;
data->autofan[i].config =
lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
data->autofan[i].freq = val & 0x07 ;
data->zone[i].range = (val >> 4) & 0x0f ;
data->autofan[i].min_pwm =
lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
data->zone[i].limit =
lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
data->zone[i].critical =
lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
}
i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
data->smooth[0] = i & 0x0f ;
data->syncpwm3 = i & 0x10 ; /* Save PWM3 config */
data->autofan[0].min_off = (i & 0x20) != 0 ;
data->autofan[1].min_off = (i & 0x40) != 0 ;
data->autofan[2].min_off = (i & 0x80) != 0 ;
i = lm85_read_value(client, LM85_REG_AFAN_SPIKE2);
data->smooth[1] = (i>>4) & 0x0f ;
data->smooth[2] = i & 0x0f ;
i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
data->zone[0].hyst = (i>>4) & 0x0f ;
data->zone[1].hyst = i & 0x0f ;
i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
data->zone[2].hyst = (i>>4) & 0x0f ;
if ( (data->type == lm85b) || (data->type == lm85c) ) {
data->tach_mode = lm85_read_value(client,
LM85_REG_TACH_MODE );
data->spinup_ctl = lm85_read_value(client,
LM85_REG_SPINUP_CTL );
} else if ( (data->type == adt7463) || (data->type == adm1027) ) {
if ( data->type == adt7463 ) {
for (i = 0; i <= 2; ++i) {
data->oppoint[i] = lm85_read_value(client,
ADT7463_REG_OPPOINT(i) );
}
data->tmin_ctl = lm85_read_value(client,
ADT7463_REG_TMIN_CTL1 );
data->therm_limit = lm85_read_value(client,
ADT7463_REG_THERM_LIMIT );
}
for (i = 0; i <= 2; ++i) {
data->temp_offset[i] = lm85_read_value(client,
ADM1027_REG_TEMP_OFFSET(i) );
}
data->tach_mode = lm85_read_value(client,
ADM1027_REG_CONFIG3 );
data->fan_ppr = lm85_read_value(client,
ADM1027_REG_FAN_PPR );
}
data->last_config = jiffies;
}; /* last_config */
data->valid = 1;
mutex_unlock(&data->update_lock);
return data;
}
static int __init sm_lm85_init(void)
{
return i2c_add_driver(&lm85_driver);
}
static void __exit sm_lm85_exit(void)
{
i2c_del_driver(&lm85_driver);
}
/* Thanks to Richard Barrington for adding the LM85 to sensors-detect.
* Thanks to Margit Schubert-While <margitsw@t-online.de> for help with
* post 2.7.0 CVS changes.
*/
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, Margit Schubert-While <margitsw@t-online.de>, Justin Thiessen <jthiessen@penguincomputing.com");
MODULE_DESCRIPTION("LM85-B, LM85-C driver");
module_init(sm_lm85_init);
module_exit(sm_lm85_exit);