linux/drivers/pci/msi/api.c
Reinette Chatre e6cc6f1755 PCI/MSI: Clarify usage of pci_msix_free_irq()
pci_msix_free_irq() is used to free an interrupt on a PCI/MSI-X interrupt
domain.

The API description specifies that the interrupt to be freed was allocated
via pci_msix_alloc_irq_at().  This description limits the usage of
pci_msix_free_irq() since pci_msix_free_irq() can also be used to free
MSI-X interrupts allocated with, for example, pci_alloc_irq_vectors().

Remove the text stating that the interrupt to be freed had to be allocated
with pci_msix_alloc_irq_at(). The needed struct msi_map need not be from
pci_msix_alloc_irq_at() but can be created from scratch using
pci_irq_vector() to obtain the Linux IRQ number. Highlight that
pci_msix_free_irq() cannot be used to disable MSI-X to guide users that,
for example, pci_free_irq_vectors() remains to be needed.

Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Link: https://lore.kernel.org/lkml/87r0xsd8j4.ffs@tglx
Link: https://lore.kernel.org/r/4c3e7a50d6e70f408812cd7ab199c6b4b326f9de.1676408572.git.reinette.chatre@intel.com
2023-02-21 08:25:14 +01:00

459 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* PCI MSI/MSI-X — Exported APIs for device drivers
*
* Copyright (C) 2003-2004 Intel
* Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
* Copyright (C) 2016 Christoph Hellwig.
* Copyright (C) 2022 Linutronix GmbH
*/
#include <linux/export.h>
#include <linux/irq.h>
#include "msi.h"
/**
* pci_enable_msi() - Enable MSI interrupt mode on device
* @dev: the PCI device to operate on
*
* Legacy device driver API to enable MSI interrupts mode on device and
* allocate a single interrupt vector. On success, the allocated vector
* Linux IRQ will be saved at @dev->irq. The driver must invoke
* pci_disable_msi() on cleanup.
*
* NOTE: The newer pci_alloc_irq_vectors() / pci_free_irq_vectors() API
* pair should, in general, be used instead.
*
* Return: 0 on success, errno otherwise
*/
int pci_enable_msi(struct pci_dev *dev)
{
int rc = __pci_enable_msi_range(dev, 1, 1, NULL);
if (rc < 0)
return rc;
return 0;
}
EXPORT_SYMBOL(pci_enable_msi);
/**
* pci_disable_msi() - Disable MSI interrupt mode on device
* @dev: the PCI device to operate on
*
* Legacy device driver API to disable MSI interrupt mode on device,
* free earlier allocated interrupt vectors, and restore INTx emulation.
* The PCI device Linux IRQ (@dev->irq) is restored to its default
* pin-assertion IRQ. This is the cleanup pair of pci_enable_msi().
*
* NOTE: The newer pci_alloc_irq_vectors() / pci_free_irq_vectors() API
* pair should, in general, be used instead.
*/
void pci_disable_msi(struct pci_dev *dev)
{
if (!pci_msi_enabled() || !dev || !dev->msi_enabled)
return;
msi_lock_descs(&dev->dev);
pci_msi_shutdown(dev);
pci_free_msi_irqs(dev);
msi_unlock_descs(&dev->dev);
}
EXPORT_SYMBOL(pci_disable_msi);
/**
* pci_msix_vec_count() - Get number of MSI-X interrupt vectors on device
* @dev: the PCI device to operate on
*
* Return: number of MSI-X interrupt vectors available on this device
* (i.e., the device's MSI-X capability structure "table size"), -EINVAL
* if the device is not MSI-X capable, other errnos otherwise.
*/
int pci_msix_vec_count(struct pci_dev *dev)
{
u16 control;
if (!dev->msix_cap)
return -EINVAL;
pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
return msix_table_size(control);
}
EXPORT_SYMBOL(pci_msix_vec_count);
/**
* pci_enable_msix_range() - Enable MSI-X interrupt mode on device
* @dev: the PCI device to operate on
* @entries: input/output parameter, array of MSI-X configuration entries
* @minvec: minimum required number of MSI-X vectors
* @maxvec: maximum desired number of MSI-X vectors
*
* Legacy device driver API to enable MSI-X interrupt mode on device and
* configure its MSI-X capability structure as appropriate. The passed
* @entries array must have each of its members "entry" field set to a
* desired (valid) MSI-X vector number, where the range of valid MSI-X
* vector numbers can be queried through pci_msix_vec_count(). If
* successful, the driver must invoke pci_disable_msix() on cleanup.
*
* NOTE: The newer pci_alloc_irq_vectors() / pci_free_irq_vectors() API
* pair should, in general, be used instead.
*
* Return: number of MSI-X vectors allocated (which might be smaller
* than @maxvecs), where Linux IRQ numbers for such allocated vectors
* are saved back in the @entries array elements' "vector" field. Return
* -ENOSPC if less than @minvecs interrupt vectors are available.
* Return -EINVAL if one of the passed @entries members "entry" field
* was invalid or a duplicate, or if plain MSI interrupts mode was
* earlier enabled on device. Return other errnos otherwise.
*/
int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries,
int minvec, int maxvec)
{
return __pci_enable_msix_range(dev, entries, minvec, maxvec, NULL, 0);
}
EXPORT_SYMBOL(pci_enable_msix_range);
/**
* pci_msix_can_alloc_dyn - Query whether dynamic allocation after enabling
* MSI-X is supported
*
* @dev: PCI device to operate on
*
* Return: True if supported, false otherwise
*/
bool pci_msix_can_alloc_dyn(struct pci_dev *dev)
{
if (!dev->msix_cap)
return false;
return pci_msi_domain_supports(dev, MSI_FLAG_PCI_MSIX_ALLOC_DYN, DENY_LEGACY);
}
EXPORT_SYMBOL_GPL(pci_msix_can_alloc_dyn);
/**
* pci_msix_alloc_irq_at - Allocate an MSI-X interrupt after enabling MSI-X
* at a given MSI-X vector index or any free vector index
*
* @dev: PCI device to operate on
* @index: Index to allocate. If @index == MSI_ANY_INDEX this allocates
* the next free index in the MSI-X table
* @affdesc: Optional pointer to an affinity descriptor structure. NULL otherwise
*
* Return: A struct msi_map
*
* On success msi_map::index contains the allocated index (>= 0) and
* msi_map::virq contains the allocated Linux interrupt number (> 0).
*
* On fail msi_map::index contains the error code and msi_map::virq
* is set to 0.
*/
struct msi_map pci_msix_alloc_irq_at(struct pci_dev *dev, unsigned int index,
const struct irq_affinity_desc *affdesc)
{
struct msi_map map = { .index = -ENOTSUPP };
if (!dev->msix_enabled)
return map;
if (!pci_msix_can_alloc_dyn(dev))
return map;
return msi_domain_alloc_irq_at(&dev->dev, MSI_DEFAULT_DOMAIN, index, affdesc, NULL);
}
EXPORT_SYMBOL_GPL(pci_msix_alloc_irq_at);
/**
* pci_msix_free_irq - Free an interrupt on a PCI/MSIX interrupt domain
*
* @dev: The PCI device to operate on
* @map: A struct msi_map describing the interrupt to free
*
* Undo an interrupt vector allocation. Does not disable MSI-X.
*/
void pci_msix_free_irq(struct pci_dev *dev, struct msi_map map)
{
if (WARN_ON_ONCE(map.index < 0 || map.virq <= 0))
return;
if (WARN_ON_ONCE(!pci_msix_can_alloc_dyn(dev)))
return;
msi_domain_free_irqs_range(&dev->dev, MSI_DEFAULT_DOMAIN, map.index, map.index);
}
EXPORT_SYMBOL_GPL(pci_msix_free_irq);
/**
* pci_disable_msix() - Disable MSI-X interrupt mode on device
* @dev: the PCI device to operate on
*
* Legacy device driver API to disable MSI-X interrupt mode on device,
* free earlier-allocated interrupt vectors, and restore INTx.
* The PCI device Linux IRQ (@dev->irq) is restored to its default pin
* assertion IRQ. This is the cleanup pair of pci_enable_msix_range().
*
* NOTE: The newer pci_alloc_irq_vectors() / pci_free_irq_vectors() API
* pair should, in general, be used instead.
*/
void pci_disable_msix(struct pci_dev *dev)
{
if (!pci_msi_enabled() || !dev || !dev->msix_enabled)
return;
msi_lock_descs(&dev->dev);
pci_msix_shutdown(dev);
pci_free_msi_irqs(dev);
msi_unlock_descs(&dev->dev);
}
EXPORT_SYMBOL(pci_disable_msix);
/**
* pci_alloc_irq_vectors() - Allocate multiple device interrupt vectors
* @dev: the PCI device to operate on
* @min_vecs: minimum required number of vectors (must be >= 1)
* @max_vecs: maximum desired number of vectors
* @flags: One or more of:
*
* * %PCI_IRQ_MSIX Allow trying MSI-X vector allocations
* * %PCI_IRQ_MSI Allow trying MSI vector allocations
*
* * %PCI_IRQ_LEGACY Allow trying legacy INTx interrupts, if
* and only if @min_vecs == 1
*
* * %PCI_IRQ_AFFINITY Auto-manage IRQs affinity by spreading
* the vectors around available CPUs
*
* Allocate up to @max_vecs interrupt vectors on device. MSI-X irq
* vector allocation has a higher precedence over plain MSI, which has a
* higher precedence over legacy INTx emulation.
*
* Upon a successful allocation, the caller should use pci_irq_vector()
* to get the Linux IRQ number to be passed to request_threaded_irq().
* The driver must call pci_free_irq_vectors() on cleanup.
*
* Return: number of allocated vectors (which might be smaller than
* @max_vecs), -ENOSPC if less than @min_vecs interrupt vectors are
* available, other errnos otherwise.
*/
int pci_alloc_irq_vectors(struct pci_dev *dev, unsigned int min_vecs,
unsigned int max_vecs, unsigned int flags)
{
return pci_alloc_irq_vectors_affinity(dev, min_vecs, max_vecs,
flags, NULL);
}
EXPORT_SYMBOL(pci_alloc_irq_vectors);
/**
* pci_alloc_irq_vectors_affinity() - Allocate multiple device interrupt
* vectors with affinity requirements
* @dev: the PCI device to operate on
* @min_vecs: minimum required number of vectors (must be >= 1)
* @max_vecs: maximum desired number of vectors
* @flags: allocation flags, as in pci_alloc_irq_vectors()
* @affd: affinity requirements (can be %NULL).
*
* Same as pci_alloc_irq_vectors(), but with the extra @affd parameter.
* Check that function docs, and &struct irq_affinity, for more details.
*/
int pci_alloc_irq_vectors_affinity(struct pci_dev *dev, unsigned int min_vecs,
unsigned int max_vecs, unsigned int flags,
struct irq_affinity *affd)
{
struct irq_affinity msi_default_affd = {0};
int nvecs = -ENOSPC;
if (flags & PCI_IRQ_AFFINITY) {
if (!affd)
affd = &msi_default_affd;
} else {
if (WARN_ON(affd))
affd = NULL;
}
if (flags & PCI_IRQ_MSIX) {
nvecs = __pci_enable_msix_range(dev, NULL, min_vecs, max_vecs,
affd, flags);
if (nvecs > 0)
return nvecs;
}
if (flags & PCI_IRQ_MSI) {
nvecs = __pci_enable_msi_range(dev, min_vecs, max_vecs, affd);
if (nvecs > 0)
return nvecs;
}
/* use legacy IRQ if allowed */
if (flags & PCI_IRQ_LEGACY) {
if (min_vecs == 1 && dev->irq) {
/*
* Invoke the affinity spreading logic to ensure that
* the device driver can adjust queue configuration
* for the single interrupt case.
*/
if (affd)
irq_create_affinity_masks(1, affd);
pci_intx(dev, 1);
return 1;
}
}
return nvecs;
}
EXPORT_SYMBOL(pci_alloc_irq_vectors_affinity);
/**
* pci_irq_vector() - Get Linux IRQ number of a device interrupt vector
* @dev: the PCI device to operate on
* @nr: device-relative interrupt vector index (0-based); has different
* meanings, depending on interrupt mode:
*
* * MSI-X the index in the MSI-X vector table
* * MSI the index of the enabled MSI vectors
* * INTx must be 0
*
* Return: the Linux IRQ number, or -EINVAL if @nr is out of range
*/
int pci_irq_vector(struct pci_dev *dev, unsigned int nr)
{
unsigned int irq;
if (!dev->msi_enabled && !dev->msix_enabled)
return !nr ? dev->irq : -EINVAL;
irq = msi_get_virq(&dev->dev, nr);
return irq ? irq : -EINVAL;
}
EXPORT_SYMBOL(pci_irq_vector);
/**
* pci_irq_get_affinity() - Get a device interrupt vector affinity
* @dev: the PCI device to operate on
* @nr: device-relative interrupt vector index (0-based); has different
* meanings, depending on interrupt mode:
*
* * MSI-X the index in the MSI-X vector table
* * MSI the index of the enabled MSI vectors
* * INTx must be 0
*
* Return: MSI/MSI-X vector affinity, NULL if @nr is out of range or if
* the MSI(-X) vector was allocated without explicit affinity
* requirements (e.g., by pci_enable_msi(), pci_enable_msix_range(), or
* pci_alloc_irq_vectors() without the %PCI_IRQ_AFFINITY flag). Return a
* generic set of CPU IDs representing all possible CPUs available
* during system boot if the device is in legacy INTx mode.
*/
const struct cpumask *pci_irq_get_affinity(struct pci_dev *dev, int nr)
{
int idx, irq = pci_irq_vector(dev, nr);
struct msi_desc *desc;
if (WARN_ON_ONCE(irq <= 0))
return NULL;
desc = irq_get_msi_desc(irq);
/* Non-MSI does not have the information handy */
if (!desc)
return cpu_possible_mask;
/* MSI[X] interrupts can be allocated without affinity descriptor */
if (!desc->affinity)
return NULL;
/*
* MSI has a mask array in the descriptor.
* MSI-X has a single mask.
*/
idx = dev->msi_enabled ? nr : 0;
return &desc->affinity[idx].mask;
}
EXPORT_SYMBOL(pci_irq_get_affinity);
/**
* pci_ims_alloc_irq - Allocate an interrupt on a PCI/IMS interrupt domain
* @dev: The PCI device to operate on
* @icookie: Pointer to an IMS implementation specific cookie for this
* IMS instance (PASID, queue ID, pointer...).
* The cookie content is copied into the MSI descriptor for the
* interrupt chip callbacks or domain specific setup functions.
* @affdesc: Optional pointer to an interrupt affinity descriptor
*
* There is no index for IMS allocations as IMS is an implementation
* specific storage and does not have any direct associations between
* index, which might be a pure software construct, and device
* functionality. This association is established by the driver either via
* the index - if there is a hardware table - or in case of purely software
* managed IMS implementation the association happens via the
* irq_write_msi_msg() callback of the implementation specific interrupt
* chip, which utilizes the provided @icookie to store the MSI message in
* the appropriate place.
*
* Return: A struct msi_map
*
* On success msi_map::index contains the allocated index (>= 0) and
* msi_map::virq the allocated Linux interrupt number (> 0).
*
* On fail msi_map::index contains the error code and msi_map::virq
* is set to 0.
*/
struct msi_map pci_ims_alloc_irq(struct pci_dev *dev, union msi_instance_cookie *icookie,
const struct irq_affinity_desc *affdesc)
{
return msi_domain_alloc_irq_at(&dev->dev, MSI_SECONDARY_DOMAIN, MSI_ANY_INDEX,
affdesc, icookie);
}
EXPORT_SYMBOL_GPL(pci_ims_alloc_irq);
/**
* pci_ims_free_irq - Allocate an interrupt on a PCI/IMS interrupt domain
* which was allocated via pci_ims_alloc_irq()
* @dev: The PCI device to operate on
* @map: A struct msi_map describing the interrupt to free as
* returned from pci_ims_alloc_irq()
*/
void pci_ims_free_irq(struct pci_dev *dev, struct msi_map map)
{
if (WARN_ON_ONCE(map.index < 0 || map.virq <= 0))
return;
msi_domain_free_irqs_range(&dev->dev, MSI_SECONDARY_DOMAIN, map.index, map.index);
}
EXPORT_SYMBOL_GPL(pci_ims_free_irq);
/**
* pci_free_irq_vectors() - Free previously allocated IRQs for a device
* @dev: the PCI device to operate on
*
* Undo the interrupt vector allocations and possible device MSI/MSI-X
* enablement earlier done through pci_alloc_irq_vectors_affinity() or
* pci_alloc_irq_vectors().
*/
void pci_free_irq_vectors(struct pci_dev *dev)
{
pci_disable_msix(dev);
pci_disable_msi(dev);
}
EXPORT_SYMBOL(pci_free_irq_vectors);
/**
* pci_restore_msi_state() - Restore cached MSI(-X) state on device
* @dev: the PCI device to operate on
*
* Write the Linux-cached MSI(-X) state back on device. This is
* typically useful upon system resume, or after an error-recovery PCI
* adapter reset.
*/
void pci_restore_msi_state(struct pci_dev *dev)
{
__pci_restore_msi_state(dev);
__pci_restore_msix_state(dev);
}
EXPORT_SYMBOL_GPL(pci_restore_msi_state);
/**
* pci_msi_enabled() - Are MSI(-X) interrupts enabled system-wide?
*
* Return: true if MSI has not been globally disabled through ACPI FADT,
* PCI bridge quirks, or the "pci=nomsi" kernel command-line option.
*/
int pci_msi_enabled(void)
{
return pci_msi_enable;
}
EXPORT_SYMBOL(pci_msi_enabled);