mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-10 15:54:39 +08:00
e84665c9cb
The initial version of the DSA driver only supported a single switch chip per network interface, while DSA-capable switch chips can be interconnected to form a tree of switch chips. This patch adds support for multiple switch chips on a network interface. An example topology for a 16-port device with an embedded CPU is as follows: +-----+ +--------+ +--------+ | |eth0 10| switch |9 10| switch | | CPU +----------+ +-------+ | | | | chip 0 | | chip 1 | +-----+ +---++---+ +---++---+ || || || || ||1000baseT ||1000baseT ||ports 1-8 ||ports 9-16 This requires a couple of interdependent changes in the DSA layer: - The dsa platform driver data needs to be extended: there is still only one netdevice per DSA driver instance (eth0 in the example above), but each of the switch chips in the tree needs its own mii_bus device pointer, MII management bus address, and port name array. (include/net/dsa.h) The existing in-tree dsa users need some small changes to deal with this. (arch/arm) - The DSA and Ethertype DSA tagging modules need to be extended to use the DSA device ID field on receive and demultiplex the packet accordingly, and fill in the DSA device ID field on transmit according to which switch chip the packet is heading to. (net/dsa/tag_{dsa,edsa}.c) - The concept of "CPU port", which is the switch chip port that the CPU is connected to (port 10 on switch chip 0 in the example), needs to be extended with the concept of "upstream port", which is the port on the switch chip that will bring us one hop closer to the CPU (port 10 for both switch chips in the example above). - The dsa platform data needs to specify which ports on which switch chips are links to other switch chips, so that we can enable DSA tagging mode on them. (For inter-switch links, we always use non-EtherType DSA tagging, since it has lower overhead. The CPU link uses dsa or edsa tagging depending on what the 'root' switch chip supports.) This is done by specifying "dsa" for the given port in the port array. - The dsa platform data needs to be extended with information on via which port to reach any given switch chip from any given switch chip. This info is specified via the per-switch chip data struct ->rtable[] array, which gives the nexthop ports for each of the other switches in the tree. For the example topology above, the dsa platform data would look something like this: static struct dsa_chip_data sw[2] = { { .mii_bus = &foo, .sw_addr = 1, .port_names[0] = "p1", .port_names[1] = "p2", .port_names[2] = "p3", .port_names[3] = "p4", .port_names[4] = "p5", .port_names[5] = "p6", .port_names[6] = "p7", .port_names[7] = "p8", .port_names[9] = "dsa", .port_names[10] = "cpu", .rtable = (s8 []){ -1, 9, }, }, { .mii_bus = &foo, .sw_addr = 2, .port_names[0] = "p9", .port_names[1] = "p10", .port_names[2] = "p11", .port_names[3] = "p12", .port_names[4] = "p13", .port_names[5] = "p14", .port_names[6] = "p15", .port_names[7] = "p16", .port_names[10] = "dsa", .rtable = (s8 []){ 10, -1, }, }, }, static struct dsa_platform_data pd = { .netdev = &foo, .nr_switches = 2, .sw = sw, }; Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Gary Thomas <gary@mlbassoc.com> Signed-off-by: David S. Miller <davem@davemloft.net>
448 lines
11 KiB
C
448 lines
11 KiB
C
/*
|
|
* net/dsa/mv88e6123_61_65.c - Marvell 88e6123/6161/6165 switch chip support
|
|
* Copyright (c) 2008-2009 Marvell Semiconductor
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/phy.h>
|
|
#include "dsa_priv.h"
|
|
#include "mv88e6xxx.h"
|
|
|
|
static char *mv88e6123_61_65_probe(struct mii_bus *bus, int sw_addr)
|
|
{
|
|
int ret;
|
|
|
|
ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), 0x03);
|
|
if (ret >= 0) {
|
|
ret &= 0xfff0;
|
|
if (ret == 0x1210)
|
|
return "Marvell 88E6123";
|
|
if (ret == 0x1610)
|
|
return "Marvell 88E6161";
|
|
if (ret == 0x1650)
|
|
return "Marvell 88E6165";
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int mv88e6123_61_65_switch_reset(struct dsa_switch *ds)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
/*
|
|
* Set all ports to the disabled state.
|
|
*/
|
|
for (i = 0; i < 8; i++) {
|
|
ret = REG_READ(REG_PORT(i), 0x04);
|
|
REG_WRITE(REG_PORT(i), 0x04, ret & 0xfffc);
|
|
}
|
|
|
|
/*
|
|
* Wait for transmit queues to drain.
|
|
*/
|
|
msleep(2);
|
|
|
|
/*
|
|
* Reset the switch.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL, 0x04, 0xc400);
|
|
|
|
/*
|
|
* Wait up to one second for reset to complete.
|
|
*/
|
|
for (i = 0; i < 1000; i++) {
|
|
ret = REG_READ(REG_GLOBAL, 0x00);
|
|
if ((ret & 0xc800) == 0xc800)
|
|
break;
|
|
|
|
msleep(1);
|
|
}
|
|
if (i == 1000)
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6123_61_65_setup_global(struct dsa_switch *ds)
|
|
{
|
|
int ret;
|
|
int i;
|
|
|
|
/*
|
|
* Disable the PHY polling unit (since there won't be any
|
|
* external PHYs to poll), don't discard packets with
|
|
* excessive collisions, and mask all interrupt sources.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL, 0x04, 0x0000);
|
|
|
|
/*
|
|
* Set the default address aging time to 5 minutes, and
|
|
* enable address learn messages to be sent to all message
|
|
* ports.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL, 0x0a, 0x0148);
|
|
|
|
/*
|
|
* Configure the priority mapping registers.
|
|
*/
|
|
ret = mv88e6xxx_config_prio(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* Configure the upstream port, and configure the upstream
|
|
* port as the port to which ingress and egress monitor frames
|
|
* are to be sent.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL, 0x1a, (dsa_upstream_port(ds) * 0x1110));
|
|
|
|
/*
|
|
* Disable remote management for now, and set the switch's
|
|
* DSA device number.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL, 0x1c, ds->index & 0x1f);
|
|
|
|
/*
|
|
* Send all frames with destination addresses matching
|
|
* 01:80:c2:00:00:2x to the CPU port.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL2, 0x02, 0xffff);
|
|
|
|
/*
|
|
* Send all frames with destination addresses matching
|
|
* 01:80:c2:00:00:0x to the CPU port.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL2, 0x03, 0xffff);
|
|
|
|
/*
|
|
* Disable the loopback filter, disable flow control
|
|
* messages, disable flood broadcast override, disable
|
|
* removing of provider tags, disable ATU age violation
|
|
* interrupts, disable tag flow control, force flow
|
|
* control priority to the highest, and send all special
|
|
* multicast frames to the CPU at the highest priority.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL2, 0x05, 0x00ff);
|
|
|
|
/*
|
|
* Program the DSA routing table.
|
|
*/
|
|
for (i = 0; i < 32; i++) {
|
|
int nexthop;
|
|
|
|
nexthop = 0x1f;
|
|
if (i != ds->index && i < ds->dst->pd->nr_chips)
|
|
nexthop = ds->pd->rtable[i] & 0x1f;
|
|
|
|
REG_WRITE(REG_GLOBAL2, 0x06, 0x8000 | (i << 8) | nexthop);
|
|
}
|
|
|
|
/*
|
|
* Clear all trunk masks.
|
|
*/
|
|
for (i = 0; i < 8; i++)
|
|
REG_WRITE(REG_GLOBAL2, 0x07, 0x8000 | (i << 12) | 0xff);
|
|
|
|
/*
|
|
* Clear all trunk mappings.
|
|
*/
|
|
for (i = 0; i < 16; i++)
|
|
REG_WRITE(REG_GLOBAL2, 0x08, 0x8000 | (i << 11));
|
|
|
|
/*
|
|
* Disable ingress rate limiting by resetting all ingress
|
|
* rate limit registers to their initial state.
|
|
*/
|
|
for (i = 0; i < 6; i++)
|
|
REG_WRITE(REG_GLOBAL2, 0x09, 0x9000 | (i << 8));
|
|
|
|
/*
|
|
* Initialise cross-chip port VLAN table to reset defaults.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL2, 0x0b, 0x9000);
|
|
|
|
/*
|
|
* Clear the priority override table.
|
|
*/
|
|
for (i = 0; i < 16; i++)
|
|
REG_WRITE(REG_GLOBAL2, 0x0f, 0x8000 | (i << 8));
|
|
|
|
/* @@@ initialise AVB (22/23) watchdog (27) sdet (29) registers */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6123_61_65_setup_port(struct dsa_switch *ds, int p)
|
|
{
|
|
int addr = REG_PORT(p);
|
|
u16 val;
|
|
|
|
/*
|
|
* MAC Forcing register: don't force link, speed, duplex
|
|
* or flow control state to any particular values on physical
|
|
* ports, but force the CPU port and all DSA ports to 1000 Mb/s
|
|
* full duplex.
|
|
*/
|
|
if (dsa_is_cpu_port(ds, p) || ds->dsa_port_mask & (1 << p))
|
|
REG_WRITE(addr, 0x01, 0x003e);
|
|
else
|
|
REG_WRITE(addr, 0x01, 0x0003);
|
|
|
|
/*
|
|
* Do not limit the period of time that this port can be
|
|
* paused for by the remote end or the period of time that
|
|
* this port can pause the remote end.
|
|
*/
|
|
REG_WRITE(addr, 0x02, 0x0000);
|
|
|
|
/*
|
|
* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
|
|
* disable Header mode, enable IGMP/MLD snooping, disable VLAN
|
|
* tunneling, determine priority by looking at 802.1p and IP
|
|
* priority fields (IP prio has precedence), and set STP state
|
|
* to Forwarding.
|
|
*
|
|
* If this is the CPU link, use DSA or EDSA tagging depending
|
|
* on which tagging mode was configured.
|
|
*
|
|
* If this is a link to another switch, use DSA tagging mode.
|
|
*
|
|
* If this is the upstream port for this switch, enable
|
|
* forwarding of unknown unicasts and multicasts.
|
|
*/
|
|
val = 0x0433;
|
|
if (dsa_is_cpu_port(ds, p)) {
|
|
if (ds->dst->tag_protocol == htons(ETH_P_EDSA))
|
|
val |= 0x3300;
|
|
else
|
|
val |= 0x0100;
|
|
}
|
|
if (ds->dsa_port_mask & (1 << p))
|
|
val |= 0x0100;
|
|
if (p == dsa_upstream_port(ds))
|
|
val |= 0x000c;
|
|
REG_WRITE(addr, 0x04, val);
|
|
|
|
/*
|
|
* Port Control 1: disable trunking. Also, if this is the
|
|
* CPU port, enable learn messages to be sent to this port.
|
|
*/
|
|
REG_WRITE(addr, 0x05, dsa_is_cpu_port(ds, p) ? 0x8000 : 0x0000);
|
|
|
|
/*
|
|
* Port based VLAN map: give each port its own address
|
|
* database, allow the CPU port to talk to each of the 'real'
|
|
* ports, and allow each of the 'real' ports to only talk to
|
|
* the upstream port.
|
|
*/
|
|
val = (p & 0xf) << 12;
|
|
if (dsa_is_cpu_port(ds, p))
|
|
val |= ds->phys_port_mask;
|
|
else
|
|
val |= 1 << dsa_upstream_port(ds);
|
|
REG_WRITE(addr, 0x06, val);
|
|
|
|
/*
|
|
* Default VLAN ID and priority: don't set a default VLAN
|
|
* ID, and set the default packet priority to zero.
|
|
*/
|
|
REG_WRITE(addr, 0x07, 0x0000);
|
|
|
|
/*
|
|
* Port Control 2: don't force a good FCS, set the maximum
|
|
* frame size to 10240 bytes, don't let the switch add or
|
|
* strip 802.1q tags, don't discard tagged or untagged frames
|
|
* on this port, do a destination address lookup on all
|
|
* received packets as usual, disable ARP mirroring and don't
|
|
* send a copy of all transmitted/received frames on this port
|
|
* to the CPU.
|
|
*/
|
|
REG_WRITE(addr, 0x08, 0x2080);
|
|
|
|
/*
|
|
* Egress rate control: disable egress rate control.
|
|
*/
|
|
REG_WRITE(addr, 0x09, 0x0001);
|
|
|
|
/*
|
|
* Egress rate control 2: disable egress rate control.
|
|
*/
|
|
REG_WRITE(addr, 0x0a, 0x0000);
|
|
|
|
/*
|
|
* Port Association Vector: when learning source addresses
|
|
* of packets, add the address to the address database using
|
|
* a port bitmap that has only the bit for this port set and
|
|
* the other bits clear.
|
|
*/
|
|
REG_WRITE(addr, 0x0b, 1 << p);
|
|
|
|
/*
|
|
* Port ATU control: disable limiting the number of address
|
|
* database entries that this port is allowed to use.
|
|
*/
|
|
REG_WRITE(addr, 0x0c, 0x0000);
|
|
|
|
/*
|
|
* Priorit Override: disable DA, SA and VTU priority override.
|
|
*/
|
|
REG_WRITE(addr, 0x0d, 0x0000);
|
|
|
|
/*
|
|
* Port Ethertype: use the Ethertype DSA Ethertype value.
|
|
*/
|
|
REG_WRITE(addr, 0x0f, ETH_P_EDSA);
|
|
|
|
/*
|
|
* Tag Remap: use an identity 802.1p prio -> switch prio
|
|
* mapping.
|
|
*/
|
|
REG_WRITE(addr, 0x18, 0x3210);
|
|
|
|
/*
|
|
* Tag Remap 2: use an identity 802.1p prio -> switch prio
|
|
* mapping.
|
|
*/
|
|
REG_WRITE(addr, 0x19, 0x7654);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6123_61_65_setup(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
|
|
int i;
|
|
int ret;
|
|
|
|
mutex_init(&ps->smi_mutex);
|
|
mutex_init(&ps->stats_mutex);
|
|
|
|
ret = mv88e6123_61_65_switch_reset(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* @@@ initialise vtu and atu */
|
|
|
|
ret = mv88e6123_61_65_setup_global(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
ret = mv88e6123_61_65_setup_port(ds, i);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6123_61_65_port_to_phy_addr(int port)
|
|
{
|
|
if (port >= 0 && port <= 4)
|
|
return port;
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
mv88e6123_61_65_phy_read(struct dsa_switch *ds, int port, int regnum)
|
|
{
|
|
int addr = mv88e6123_61_65_port_to_phy_addr(port);
|
|
return mv88e6xxx_phy_read(ds, addr, regnum);
|
|
}
|
|
|
|
static int
|
|
mv88e6123_61_65_phy_write(struct dsa_switch *ds,
|
|
int port, int regnum, u16 val)
|
|
{
|
|
int addr = mv88e6123_61_65_port_to_phy_addr(port);
|
|
return mv88e6xxx_phy_write(ds, addr, regnum, val);
|
|
}
|
|
|
|
static struct mv88e6xxx_hw_stat mv88e6123_61_65_hw_stats[] = {
|
|
{ "in_good_octets", 8, 0x00, },
|
|
{ "in_bad_octets", 4, 0x02, },
|
|
{ "in_unicast", 4, 0x04, },
|
|
{ "in_broadcasts", 4, 0x06, },
|
|
{ "in_multicasts", 4, 0x07, },
|
|
{ "in_pause", 4, 0x16, },
|
|
{ "in_undersize", 4, 0x18, },
|
|
{ "in_fragments", 4, 0x19, },
|
|
{ "in_oversize", 4, 0x1a, },
|
|
{ "in_jabber", 4, 0x1b, },
|
|
{ "in_rx_error", 4, 0x1c, },
|
|
{ "in_fcs_error", 4, 0x1d, },
|
|
{ "out_octets", 8, 0x0e, },
|
|
{ "out_unicast", 4, 0x10, },
|
|
{ "out_broadcasts", 4, 0x13, },
|
|
{ "out_multicasts", 4, 0x12, },
|
|
{ "out_pause", 4, 0x15, },
|
|
{ "excessive", 4, 0x11, },
|
|
{ "collisions", 4, 0x1e, },
|
|
{ "deferred", 4, 0x05, },
|
|
{ "single", 4, 0x14, },
|
|
{ "multiple", 4, 0x17, },
|
|
{ "out_fcs_error", 4, 0x03, },
|
|
{ "late", 4, 0x1f, },
|
|
{ "hist_64bytes", 4, 0x08, },
|
|
{ "hist_65_127bytes", 4, 0x09, },
|
|
{ "hist_128_255bytes", 4, 0x0a, },
|
|
{ "hist_256_511bytes", 4, 0x0b, },
|
|
{ "hist_512_1023bytes", 4, 0x0c, },
|
|
{ "hist_1024_max_bytes", 4, 0x0d, },
|
|
};
|
|
|
|
static void
|
|
mv88e6123_61_65_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
|
|
{
|
|
mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6123_61_65_hw_stats),
|
|
mv88e6123_61_65_hw_stats, port, data);
|
|
}
|
|
|
|
static void
|
|
mv88e6123_61_65_get_ethtool_stats(struct dsa_switch *ds,
|
|
int port, uint64_t *data)
|
|
{
|
|
mv88e6xxx_get_ethtool_stats(ds, ARRAY_SIZE(mv88e6123_61_65_hw_stats),
|
|
mv88e6123_61_65_hw_stats, port, data);
|
|
}
|
|
|
|
static int mv88e6123_61_65_get_sset_count(struct dsa_switch *ds)
|
|
{
|
|
return ARRAY_SIZE(mv88e6123_61_65_hw_stats);
|
|
}
|
|
|
|
static struct dsa_switch_driver mv88e6123_61_65_switch_driver = {
|
|
.tag_protocol = cpu_to_be16(ETH_P_EDSA),
|
|
.priv_size = sizeof(struct mv88e6xxx_priv_state),
|
|
.probe = mv88e6123_61_65_probe,
|
|
.setup = mv88e6123_61_65_setup,
|
|
.set_addr = mv88e6xxx_set_addr_indirect,
|
|
.phy_read = mv88e6123_61_65_phy_read,
|
|
.phy_write = mv88e6123_61_65_phy_write,
|
|
.poll_link = mv88e6xxx_poll_link,
|
|
.get_strings = mv88e6123_61_65_get_strings,
|
|
.get_ethtool_stats = mv88e6123_61_65_get_ethtool_stats,
|
|
.get_sset_count = mv88e6123_61_65_get_sset_count,
|
|
};
|
|
|
|
static int __init mv88e6123_61_65_init(void)
|
|
{
|
|
register_switch_driver(&mv88e6123_61_65_switch_driver);
|
|
return 0;
|
|
}
|
|
module_init(mv88e6123_61_65_init);
|
|
|
|
static void __exit mv88e6123_61_65_cleanup(void)
|
|
{
|
|
unregister_switch_driver(&mv88e6123_61_65_switch_driver);
|
|
}
|
|
module_exit(mv88e6123_61_65_cleanup);
|