linux/tools/testing/selftests/bpf/test_sockmap.c
Liu Jian d69672147f selftests, bpf: Add one test for sockmap with strparser
Add the test to check sockmap with strparser is working well.

Signed-off-by: Liu Jian <liujian56@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20211029141216.211899-3-liujian56@huawei.com
2021-11-01 17:08:21 +01:00

2056 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2017-2018 Covalent IO, Inc. http://covalent.io
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/wait.h>
#include <time.h>
#include <sched.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/types.h>
#include <sys/sendfile.h>
#include <linux/netlink.h>
#include <linux/socket.h>
#include <linux/sock_diag.h>
#include <linux/bpf.h>
#include <linux/if_link.h>
#include <linux/tls.h>
#include <assert.h>
#include <libgen.h>
#include <getopt.h>
#include <bpf/bpf.h>
#include <bpf/libbpf.h>
#include "bpf_util.h"
#include "bpf_rlimit.h"
#include "cgroup_helpers.h"
int running;
static void running_handler(int a);
#ifndef TCP_ULP
# define TCP_ULP 31
#endif
#ifndef SOL_TLS
# define SOL_TLS 282
#endif
/* randomly selected ports for testing on lo */
#define S1_PORT 10000
#define S2_PORT 10001
#define BPF_SOCKMAP_FILENAME "test_sockmap_kern.o"
#define BPF_SOCKHASH_FILENAME "test_sockhash_kern.o"
#define CG_PATH "/sockmap"
/* global sockets */
int s1, s2, c1, c2, p1, p2;
int test_cnt;
int passed;
int failed;
int map_fd[9];
struct bpf_map *maps[9];
int prog_fd[11];
int txmsg_pass;
int txmsg_redir;
int txmsg_drop;
int txmsg_apply;
int txmsg_cork;
int txmsg_start;
int txmsg_end;
int txmsg_start_push;
int txmsg_end_push;
int txmsg_start_pop;
int txmsg_pop;
int txmsg_ingress;
int txmsg_redir_skb;
int txmsg_ktls_skb;
int txmsg_ktls_skb_drop;
int txmsg_ktls_skb_redir;
int ktls;
int peek_flag;
int skb_use_parser;
int txmsg_omit_skb_parser;
static const struct option long_options[] = {
{"help", no_argument, NULL, 'h' },
{"cgroup", required_argument, NULL, 'c' },
{"rate", required_argument, NULL, 'r' },
{"verbose", optional_argument, NULL, 'v' },
{"iov_count", required_argument, NULL, 'i' },
{"length", required_argument, NULL, 'l' },
{"test", required_argument, NULL, 't' },
{"data_test", no_argument, NULL, 'd' },
{"txmsg", no_argument, &txmsg_pass, 1 },
{"txmsg_redir", no_argument, &txmsg_redir, 1 },
{"txmsg_drop", no_argument, &txmsg_drop, 1 },
{"txmsg_apply", required_argument, NULL, 'a'},
{"txmsg_cork", required_argument, NULL, 'k'},
{"txmsg_start", required_argument, NULL, 's'},
{"txmsg_end", required_argument, NULL, 'e'},
{"txmsg_start_push", required_argument, NULL, 'p'},
{"txmsg_end_push", required_argument, NULL, 'q'},
{"txmsg_start_pop", required_argument, NULL, 'w'},
{"txmsg_pop", required_argument, NULL, 'x'},
{"txmsg_ingress", no_argument, &txmsg_ingress, 1 },
{"txmsg_redir_skb", no_argument, &txmsg_redir_skb, 1 },
{"ktls", no_argument, &ktls, 1 },
{"peek", no_argument, &peek_flag, 1 },
{"txmsg_omit_skb_parser", no_argument, &txmsg_omit_skb_parser, 1},
{"whitelist", required_argument, NULL, 'n' },
{"blacklist", required_argument, NULL, 'b' },
{0, 0, NULL, 0 }
};
struct test_env {
const char *type;
const char *subtest;
const char *prepend;
int test_num;
int subtest_num;
int succ_cnt;
int fail_cnt;
int fail_last;
};
struct test_env env;
struct sockmap_options {
int verbose;
bool base;
bool sendpage;
bool data_test;
bool drop_expected;
bool check_recved_len;
int iov_count;
int iov_length;
int rate;
char *map;
char *whitelist;
char *blacklist;
char *prepend;
};
struct _test {
char *title;
void (*tester)(int cg_fd, struct sockmap_options *opt);
};
static void test_start(void)
{
env.subtest_num++;
}
static void test_fail(void)
{
env.fail_cnt++;
}
static void test_pass(void)
{
env.succ_cnt++;
}
static void test_reset(void)
{
txmsg_start = txmsg_end = 0;
txmsg_start_pop = txmsg_pop = 0;
txmsg_start_push = txmsg_end_push = 0;
txmsg_pass = txmsg_drop = txmsg_redir = 0;
txmsg_apply = txmsg_cork = 0;
txmsg_ingress = txmsg_redir_skb = 0;
txmsg_ktls_skb = txmsg_ktls_skb_drop = txmsg_ktls_skb_redir = 0;
txmsg_omit_skb_parser = 0;
skb_use_parser = 0;
}
static int test_start_subtest(const struct _test *t, struct sockmap_options *o)
{
env.type = o->map;
env.subtest = t->title;
env.prepend = o->prepend;
env.test_num++;
env.subtest_num = 0;
env.fail_last = env.fail_cnt;
test_reset();
return 0;
}
static void test_end_subtest(void)
{
int error = env.fail_cnt - env.fail_last;
int type = strcmp(env.type, BPF_SOCKMAP_FILENAME);
if (!error)
test_pass();
fprintf(stdout, "#%2d/%2d %8s:%s:%s:%s\n",
env.test_num, env.subtest_num,
!type ? "sockmap" : "sockhash",
env.prepend ? : "",
env.subtest, error ? "FAIL" : "OK");
}
static void test_print_results(void)
{
fprintf(stdout, "Pass: %d Fail: %d\n",
env.succ_cnt, env.fail_cnt);
}
static void usage(char *argv[])
{
int i;
printf(" Usage: %s --cgroup <cgroup_path>\n", argv[0]);
printf(" options:\n");
for (i = 0; long_options[i].name != 0; i++) {
printf(" --%-12s", long_options[i].name);
if (long_options[i].flag != NULL)
printf(" flag (internal value:%d)\n",
*long_options[i].flag);
else
printf(" -%c\n", long_options[i].val);
}
printf("\n");
}
char *sock_to_string(int s)
{
if (s == c1)
return "client1";
else if (s == c2)
return "client2";
else if (s == s1)
return "server1";
else if (s == s2)
return "server2";
else if (s == p1)
return "peer1";
else if (s == p2)
return "peer2";
else
return "unknown";
}
static int sockmap_init_ktls(int verbose, int s)
{
struct tls12_crypto_info_aes_gcm_128 tls_tx = {
.info = {
.version = TLS_1_2_VERSION,
.cipher_type = TLS_CIPHER_AES_GCM_128,
},
};
struct tls12_crypto_info_aes_gcm_128 tls_rx = {
.info = {
.version = TLS_1_2_VERSION,
.cipher_type = TLS_CIPHER_AES_GCM_128,
},
};
int so_buf = 6553500;
int err;
err = setsockopt(s, 6, TCP_ULP, "tls", sizeof("tls"));
if (err) {
fprintf(stderr, "setsockopt: TCP_ULP(%s) failed with error %i\n", sock_to_string(s), err);
return -EINVAL;
}
err = setsockopt(s, SOL_TLS, TLS_TX, (void *)&tls_tx, sizeof(tls_tx));
if (err) {
fprintf(stderr, "setsockopt: TLS_TX(%s) failed with error %i\n", sock_to_string(s), err);
return -EINVAL;
}
err = setsockopt(s, SOL_TLS, TLS_RX, (void *)&tls_rx, sizeof(tls_rx));
if (err) {
fprintf(stderr, "setsockopt: TLS_RX(%s) failed with error %i\n", sock_to_string(s), err);
return -EINVAL;
}
err = setsockopt(s, SOL_SOCKET, SO_SNDBUF, &so_buf, sizeof(so_buf));
if (err) {
fprintf(stderr, "setsockopt: (%s) failed sndbuf with error %i\n", sock_to_string(s), err);
return -EINVAL;
}
err = setsockopt(s, SOL_SOCKET, SO_RCVBUF, &so_buf, sizeof(so_buf));
if (err) {
fprintf(stderr, "setsockopt: (%s) failed rcvbuf with error %i\n", sock_to_string(s), err);
return -EINVAL;
}
if (verbose)
fprintf(stdout, "socket(%s) kTLS enabled\n", sock_to_string(s));
return 0;
}
static int sockmap_init_sockets(int verbose)
{
int i, err, one = 1;
struct sockaddr_in addr;
int *fds[4] = {&s1, &s2, &c1, &c2};
s1 = s2 = p1 = p2 = c1 = c2 = 0;
/* Init sockets */
for (i = 0; i < 4; i++) {
*fds[i] = socket(AF_INET, SOCK_STREAM, 0);
if (*fds[i] < 0) {
perror("socket s1 failed()");
return errno;
}
}
/* Allow reuse */
for (i = 0; i < 2; i++) {
err = setsockopt(*fds[i], SOL_SOCKET, SO_REUSEADDR,
(char *)&one, sizeof(one));
if (err) {
perror("setsockopt failed()");
return errno;
}
}
/* Non-blocking sockets */
for (i = 0; i < 2; i++) {
err = ioctl(*fds[i], FIONBIO, (char *)&one);
if (err < 0) {
perror("ioctl s1 failed()");
return errno;
}
}
/* Bind server sockets */
memset(&addr, 0, sizeof(struct sockaddr_in));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = inet_addr("127.0.0.1");
addr.sin_port = htons(S1_PORT);
err = bind(s1, (struct sockaddr *)&addr, sizeof(addr));
if (err < 0) {
perror("bind s1 failed()");
return errno;
}
addr.sin_port = htons(S2_PORT);
err = bind(s2, (struct sockaddr *)&addr, sizeof(addr));
if (err < 0) {
perror("bind s2 failed()");
return errno;
}
/* Listen server sockets */
addr.sin_port = htons(S1_PORT);
err = listen(s1, 32);
if (err < 0) {
perror("listen s1 failed()");
return errno;
}
addr.sin_port = htons(S2_PORT);
err = listen(s2, 32);
if (err < 0) {
perror("listen s1 failed()");
return errno;
}
/* Initiate Connect */
addr.sin_port = htons(S1_PORT);
err = connect(c1, (struct sockaddr *)&addr, sizeof(addr));
if (err < 0 && errno != EINPROGRESS) {
perror("connect c1 failed()");
return errno;
}
addr.sin_port = htons(S2_PORT);
err = connect(c2, (struct sockaddr *)&addr, sizeof(addr));
if (err < 0 && errno != EINPROGRESS) {
perror("connect c2 failed()");
return errno;
} else if (err < 0) {
err = 0;
}
/* Accept Connecrtions */
p1 = accept(s1, NULL, NULL);
if (p1 < 0) {
perror("accept s1 failed()");
return errno;
}
p2 = accept(s2, NULL, NULL);
if (p2 < 0) {
perror("accept s1 failed()");
return errno;
}
if (verbose > 1) {
printf("connected sockets: c1 <-> p1, c2 <-> p2\n");
printf("cgroups binding: c1(%i) <-> s1(%i) - - - c2(%i) <-> s2(%i)\n",
c1, s1, c2, s2);
}
return 0;
}
struct msg_stats {
size_t bytes_sent;
size_t bytes_recvd;
struct timespec start;
struct timespec end;
};
static int msg_loop_sendpage(int fd, int iov_length, int cnt,
struct msg_stats *s,
struct sockmap_options *opt)
{
bool drop = opt->drop_expected;
unsigned char k = 0;
FILE *file;
int i, fp;
file = tmpfile();
if (!file) {
perror("create file for sendpage");
return 1;
}
for (i = 0; i < iov_length * cnt; i++, k++)
fwrite(&k, sizeof(char), 1, file);
fflush(file);
fseek(file, 0, SEEK_SET);
fp = fileno(file);
clock_gettime(CLOCK_MONOTONIC, &s->start);
for (i = 0; i < cnt; i++) {
int sent;
errno = 0;
sent = sendfile(fd, fp, NULL, iov_length);
if (!drop && sent < 0) {
perror("sendpage loop error");
fclose(file);
return sent;
} else if (drop && sent >= 0) {
printf("sendpage loop error expected: %i errno %i\n",
sent, errno);
fclose(file);
return -EIO;
}
if (sent > 0)
s->bytes_sent += sent;
}
clock_gettime(CLOCK_MONOTONIC, &s->end);
fclose(file);
return 0;
}
static void msg_free_iov(struct msghdr *msg)
{
int i;
for (i = 0; i < msg->msg_iovlen; i++)
free(msg->msg_iov[i].iov_base);
free(msg->msg_iov);
msg->msg_iov = NULL;
msg->msg_iovlen = 0;
}
static int msg_alloc_iov(struct msghdr *msg,
int iov_count, int iov_length,
bool data, bool xmit)
{
unsigned char k = 0;
struct iovec *iov;
int i;
iov = calloc(iov_count, sizeof(struct iovec));
if (!iov)
return errno;
for (i = 0; i < iov_count; i++) {
unsigned char *d = calloc(iov_length, sizeof(char));
if (!d) {
fprintf(stderr, "iov_count %i/%i OOM\n", i, iov_count);
goto unwind_iov;
}
iov[i].iov_base = d;
iov[i].iov_len = iov_length;
if (data && xmit) {
int j;
for (j = 0; j < iov_length; j++)
d[j] = k++;
}
}
msg->msg_iov = iov;
msg->msg_iovlen = iov_count;
return 0;
unwind_iov:
for (i--; i >= 0 ; i--)
free(msg->msg_iov[i].iov_base);
return -ENOMEM;
}
static int msg_verify_data(struct msghdr *msg, int size, int chunk_sz)
{
int i, j = 0, bytes_cnt = 0;
unsigned char k = 0;
for (i = 0; i < msg->msg_iovlen; i++) {
unsigned char *d = msg->msg_iov[i].iov_base;
/* Special case test for skb ingress + ktls */
if (i == 0 && txmsg_ktls_skb) {
if (msg->msg_iov[i].iov_len < 4)
return -EIO;
if (memcmp(d, "PASS", 4) != 0) {
fprintf(stderr,
"detected skb data error with skb ingress update @iov[%i]:%i \"%02x %02x %02x %02x\" != \"PASS\"\n",
i, 0, d[0], d[1], d[2], d[3]);
return -EIO;
}
j = 4; /* advance index past PASS header */
}
for (; j < msg->msg_iov[i].iov_len && size; j++) {
if (d[j] != k++) {
fprintf(stderr,
"detected data corruption @iov[%i]:%i %02x != %02x, %02x ?= %02x\n",
i, j, d[j], k - 1, d[j+1], k);
return -EIO;
}
bytes_cnt++;
if (bytes_cnt == chunk_sz) {
k = 0;
bytes_cnt = 0;
}
size--;
}
}
return 0;
}
static int msg_loop(int fd, int iov_count, int iov_length, int cnt,
struct msg_stats *s, bool tx,
struct sockmap_options *opt)
{
struct msghdr msg = {0}, msg_peek = {0};
int err, i, flags = MSG_NOSIGNAL;
bool drop = opt->drop_expected;
bool data = opt->data_test;
int iov_alloc_length = iov_length;
if (!tx && opt->check_recved_len)
iov_alloc_length *= 2;
err = msg_alloc_iov(&msg, iov_count, iov_alloc_length, data, tx);
if (err)
goto out_errno;
if (peek_flag) {
err = msg_alloc_iov(&msg_peek, iov_count, iov_length, data, tx);
if (err)
goto out_errno;
}
if (tx) {
clock_gettime(CLOCK_MONOTONIC, &s->start);
for (i = 0; i < cnt; i++) {
int sent;
errno = 0;
sent = sendmsg(fd, &msg, flags);
if (!drop && sent < 0) {
perror("sendmsg loop error");
goto out_errno;
} else if (drop && sent >= 0) {
fprintf(stderr,
"sendmsg loop error expected: %i errno %i\n",
sent, errno);
errno = -EIO;
goto out_errno;
}
if (sent > 0)
s->bytes_sent += sent;
}
clock_gettime(CLOCK_MONOTONIC, &s->end);
} else {
int slct, recvp = 0, recv, max_fd = fd;
float total_bytes, txmsg_pop_total;
int fd_flags = O_NONBLOCK;
struct timeval timeout;
fd_set w;
fcntl(fd, fd_flags);
/* Account for pop bytes noting each iteration of apply will
* call msg_pop_data helper so we need to account for this
* by calculating the number of apply iterations. Note user
* of the tool can create cases where no data is sent by
* manipulating pop/push/pull/etc. For example txmsg_apply 1
* with txmsg_pop 1 will try to apply 1B at a time but each
* iteration will then pop 1B so no data will ever be sent.
* This is really only useful for testing edge cases in code
* paths.
*/
total_bytes = (float)iov_count * (float)iov_length * (float)cnt;
if (txmsg_apply)
txmsg_pop_total = txmsg_pop * (total_bytes / txmsg_apply);
else
txmsg_pop_total = txmsg_pop * cnt;
total_bytes -= txmsg_pop_total;
err = clock_gettime(CLOCK_MONOTONIC, &s->start);
if (err < 0)
perror("recv start time");
while (s->bytes_recvd < total_bytes) {
if (txmsg_cork) {
timeout.tv_sec = 0;
timeout.tv_usec = 300000;
} else {
timeout.tv_sec = 3;
timeout.tv_usec = 0;
}
/* FD sets */
FD_ZERO(&w);
FD_SET(fd, &w);
slct = select(max_fd + 1, &w, NULL, NULL, &timeout);
if (slct == -1) {
perror("select()");
clock_gettime(CLOCK_MONOTONIC, &s->end);
goto out_errno;
} else if (!slct) {
if (opt->verbose)
fprintf(stderr, "unexpected timeout: recved %zu/%f pop_total %f\n", s->bytes_recvd, total_bytes, txmsg_pop_total);
errno = -EIO;
clock_gettime(CLOCK_MONOTONIC, &s->end);
goto out_errno;
}
errno = 0;
if (peek_flag) {
flags |= MSG_PEEK;
recvp = recvmsg(fd, &msg_peek, flags);
if (recvp < 0) {
if (errno != EWOULDBLOCK) {
clock_gettime(CLOCK_MONOTONIC, &s->end);
goto out_errno;
}
}
flags = 0;
}
recv = recvmsg(fd, &msg, flags);
if (recv < 0) {
if (errno != EWOULDBLOCK) {
clock_gettime(CLOCK_MONOTONIC, &s->end);
perror("recv failed()");
goto out_errno;
}
}
s->bytes_recvd += recv;
if (opt->check_recved_len && s->bytes_recvd > total_bytes) {
errno = EMSGSIZE;
fprintf(stderr, "recv failed(), bytes_recvd:%zd, total_bytes:%f\n",
s->bytes_recvd, total_bytes);
goto out_errno;
}
if (data) {
int chunk_sz = opt->sendpage ?
iov_length * cnt :
iov_length * iov_count;
errno = msg_verify_data(&msg, recv, chunk_sz);
if (errno) {
perror("data verify msg failed");
goto out_errno;
}
if (recvp) {
errno = msg_verify_data(&msg_peek,
recvp,
chunk_sz);
if (errno) {
perror("data verify msg_peek failed");
goto out_errno;
}
}
}
}
clock_gettime(CLOCK_MONOTONIC, &s->end);
}
msg_free_iov(&msg);
msg_free_iov(&msg_peek);
return err;
out_errno:
msg_free_iov(&msg);
msg_free_iov(&msg_peek);
return errno;
}
static float giga = 1000000000;
static inline float sentBps(struct msg_stats s)
{
return s.bytes_sent / (s.end.tv_sec - s.start.tv_sec);
}
static inline float recvdBps(struct msg_stats s)
{
return s.bytes_recvd / (s.end.tv_sec - s.start.tv_sec);
}
static int sendmsg_test(struct sockmap_options *opt)
{
float sent_Bps = 0, recvd_Bps = 0;
int rx_fd, txpid, rxpid, err = 0;
struct msg_stats s = {0};
int iov_count = opt->iov_count;
int iov_buf = opt->iov_length;
int rx_status, tx_status;
int cnt = opt->rate;
errno = 0;
if (opt->base)
rx_fd = p1;
else
rx_fd = p2;
if (ktls) {
/* Redirecting into non-TLS socket which sends into a TLS
* socket is not a valid test. So in this case lets not
* enable kTLS but still run the test.
*/
if (!txmsg_redir || txmsg_ingress) {
err = sockmap_init_ktls(opt->verbose, rx_fd);
if (err)
return err;
}
err = sockmap_init_ktls(opt->verbose, c1);
if (err)
return err;
}
rxpid = fork();
if (rxpid == 0) {
if (txmsg_pop || txmsg_start_pop)
iov_buf -= (txmsg_pop - txmsg_start_pop + 1);
if (opt->drop_expected || txmsg_ktls_skb_drop)
_exit(0);
if (!iov_buf) /* zero bytes sent case */
_exit(0);
if (opt->sendpage)
iov_count = 1;
err = msg_loop(rx_fd, iov_count, iov_buf,
cnt, &s, false, opt);
if (opt->verbose > 1)
fprintf(stderr,
"msg_loop_rx: iov_count %i iov_buf %i cnt %i err %i\n",
iov_count, iov_buf, cnt, err);
if (s.end.tv_sec - s.start.tv_sec) {
sent_Bps = sentBps(s);
recvd_Bps = recvdBps(s);
}
if (opt->verbose > 1)
fprintf(stdout,
"rx_sendmsg: TX: %zuB %fB/s %fGB/s RX: %zuB %fB/s %fGB/s %s\n",
s.bytes_sent, sent_Bps, sent_Bps/giga,
s.bytes_recvd, recvd_Bps, recvd_Bps/giga,
peek_flag ? "(peek_msg)" : "");
if (err && txmsg_cork)
err = 0;
exit(err ? 1 : 0);
} else if (rxpid == -1) {
perror("msg_loop_rx");
return errno;
}
txpid = fork();
if (txpid == 0) {
if (opt->sendpage)
err = msg_loop_sendpage(c1, iov_buf, cnt, &s, opt);
else
err = msg_loop(c1, iov_count, iov_buf,
cnt, &s, true, opt);
if (err)
fprintf(stderr,
"msg_loop_tx: iov_count %i iov_buf %i cnt %i err %i\n",
iov_count, iov_buf, cnt, err);
if (s.end.tv_sec - s.start.tv_sec) {
sent_Bps = sentBps(s);
recvd_Bps = recvdBps(s);
}
if (opt->verbose > 1)
fprintf(stdout,
"tx_sendmsg: TX: %zuB %fB/s %f GB/s RX: %zuB %fB/s %fGB/s\n",
s.bytes_sent, sent_Bps, sent_Bps/giga,
s.bytes_recvd, recvd_Bps, recvd_Bps/giga);
exit(err ? 1 : 0);
} else if (txpid == -1) {
perror("msg_loop_tx");
return errno;
}
assert(waitpid(rxpid, &rx_status, 0) == rxpid);
assert(waitpid(txpid, &tx_status, 0) == txpid);
if (WIFEXITED(rx_status)) {
err = WEXITSTATUS(rx_status);
if (err) {
fprintf(stderr, "rx thread exited with err %d.\n", err);
goto out;
}
}
if (WIFEXITED(tx_status)) {
err = WEXITSTATUS(tx_status);
if (err)
fprintf(stderr, "tx thread exited with err %d.\n", err);
}
out:
return err;
}
static int forever_ping_pong(int rate, struct sockmap_options *opt)
{
struct timeval timeout;
char buf[1024] = {0};
int sc;
timeout.tv_sec = 10;
timeout.tv_usec = 0;
/* Ping/Pong data from client to server */
sc = send(c1, buf, sizeof(buf), 0);
if (sc < 0) {
perror("send failed()");
return sc;
}
do {
int s, rc, i, max_fd = p2;
fd_set w;
/* FD sets */
FD_ZERO(&w);
FD_SET(c1, &w);
FD_SET(c2, &w);
FD_SET(p1, &w);
FD_SET(p2, &w);
s = select(max_fd + 1, &w, NULL, NULL, &timeout);
if (s == -1) {
perror("select()");
break;
} else if (!s) {
fprintf(stderr, "unexpected timeout\n");
break;
}
for (i = 0; i <= max_fd && s > 0; ++i) {
if (!FD_ISSET(i, &w))
continue;
s--;
rc = recv(i, buf, sizeof(buf), 0);
if (rc < 0) {
if (errno != EWOULDBLOCK) {
perror("recv failed()");
return rc;
}
}
if (rc == 0) {
close(i);
break;
}
sc = send(i, buf, rc, 0);
if (sc < 0) {
perror("send failed()");
return sc;
}
}
if (rate)
sleep(rate);
if (opt->verbose) {
printf(".");
fflush(stdout);
}
} while (running);
return 0;
}
enum {
SELFTESTS,
PING_PONG,
SENDMSG,
BASE,
BASE_SENDPAGE,
SENDPAGE,
};
static int run_options(struct sockmap_options *options, int cg_fd, int test)
{
int i, key, next_key, err, tx_prog_fd = -1, zero = 0;
/* If base test skip BPF setup */
if (test == BASE || test == BASE_SENDPAGE)
goto run;
/* Attach programs to sockmap */
if (!txmsg_omit_skb_parser) {
err = bpf_prog_attach(prog_fd[0], map_fd[0],
BPF_SK_SKB_STREAM_PARSER, 0);
if (err) {
fprintf(stderr,
"ERROR: bpf_prog_attach (sockmap %i->%i): %d (%s)\n",
prog_fd[0], map_fd[0], err, strerror(errno));
return err;
}
}
err = bpf_prog_attach(prog_fd[1], map_fd[0],
BPF_SK_SKB_STREAM_VERDICT, 0);
if (err) {
fprintf(stderr, "ERROR: bpf_prog_attach (sockmap): %d (%s)\n",
err, strerror(errno));
return err;
}
/* Attach programs to TLS sockmap */
if (txmsg_ktls_skb) {
if (!txmsg_omit_skb_parser) {
err = bpf_prog_attach(prog_fd[0], map_fd[8],
BPF_SK_SKB_STREAM_PARSER, 0);
if (err) {
fprintf(stderr,
"ERROR: bpf_prog_attach (TLS sockmap %i->%i): %d (%s)\n",
prog_fd[0], map_fd[8], err, strerror(errno));
return err;
}
}
err = bpf_prog_attach(prog_fd[2], map_fd[8],
BPF_SK_SKB_STREAM_VERDICT, 0);
if (err) {
fprintf(stderr, "ERROR: bpf_prog_attach (TLS sockmap): %d (%s)\n",
err, strerror(errno));
return err;
}
}
/* Attach to cgroups */
err = bpf_prog_attach(prog_fd[3], cg_fd, BPF_CGROUP_SOCK_OPS, 0);
if (err) {
fprintf(stderr, "ERROR: bpf_prog_attach (groups): %d (%s)\n",
err, strerror(errno));
return err;
}
run:
err = sockmap_init_sockets(options->verbose);
if (err) {
fprintf(stderr, "ERROR: test socket failed: %d\n", err);
goto out;
}
/* Attach txmsg program to sockmap */
if (txmsg_pass)
tx_prog_fd = prog_fd[4];
else if (txmsg_redir)
tx_prog_fd = prog_fd[5];
else if (txmsg_apply)
tx_prog_fd = prog_fd[6];
else if (txmsg_cork)
tx_prog_fd = prog_fd[7];
else if (txmsg_drop)
tx_prog_fd = prog_fd[8];
else
tx_prog_fd = 0;
if (tx_prog_fd) {
int redir_fd, i = 0;
err = bpf_prog_attach(tx_prog_fd,
map_fd[1], BPF_SK_MSG_VERDICT, 0);
if (err) {
fprintf(stderr,
"ERROR: bpf_prog_attach (txmsg): %d (%s)\n",
err, strerror(errno));
goto out;
}
err = bpf_map_update_elem(map_fd[1], &i, &c1, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (txmsg): %d (%s\n",
err, strerror(errno));
goto out;
}
if (txmsg_redir)
redir_fd = c2;
else
redir_fd = c1;
err = bpf_map_update_elem(map_fd[2], &i, &redir_fd, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (txmsg): %d (%s\n",
err, strerror(errno));
goto out;
}
if (txmsg_apply) {
err = bpf_map_update_elem(map_fd[3],
&i, &txmsg_apply, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (apply_bytes): %d (%s\n",
err, strerror(errno));
goto out;
}
}
if (txmsg_cork) {
err = bpf_map_update_elem(map_fd[4],
&i, &txmsg_cork, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (cork_bytes): %d (%s\n",
err, strerror(errno));
goto out;
}
}
if (txmsg_start) {
err = bpf_map_update_elem(map_fd[5],
&i, &txmsg_start, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (txmsg_start): %d (%s)\n",
err, strerror(errno));
goto out;
}
}
if (txmsg_end) {
i = 1;
err = bpf_map_update_elem(map_fd[5],
&i, &txmsg_end, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (txmsg_end): %d (%s)\n",
err, strerror(errno));
goto out;
}
}
if (txmsg_start_push) {
i = 2;
err = bpf_map_update_elem(map_fd[5],
&i, &txmsg_start_push, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (txmsg_start_push): %d (%s)\n",
err, strerror(errno));
goto out;
}
}
if (txmsg_end_push) {
i = 3;
err = bpf_map_update_elem(map_fd[5],
&i, &txmsg_end_push, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem %i@%i (txmsg_end_push): %d (%s)\n",
txmsg_end_push, i, err, strerror(errno));
goto out;
}
}
if (txmsg_start_pop) {
i = 4;
err = bpf_map_update_elem(map_fd[5],
&i, &txmsg_start_pop, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem %i@%i (txmsg_start_pop): %d (%s)\n",
txmsg_start_pop, i, err, strerror(errno));
goto out;
}
} else {
i = 4;
bpf_map_update_elem(map_fd[5],
&i, &txmsg_start_pop, BPF_ANY);
}
if (txmsg_pop) {
i = 5;
err = bpf_map_update_elem(map_fd[5],
&i, &txmsg_pop, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem %i@%i (txmsg_pop): %d (%s)\n",
txmsg_pop, i, err, strerror(errno));
goto out;
}
} else {
i = 5;
bpf_map_update_elem(map_fd[5],
&i, &txmsg_pop, BPF_ANY);
}
if (txmsg_ingress) {
int in = BPF_F_INGRESS;
i = 0;
err = bpf_map_update_elem(map_fd[6], &i, &in, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (txmsg_ingress): %d (%s)\n",
err, strerror(errno));
}
i = 1;
err = bpf_map_update_elem(map_fd[1], &i, &p1, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (p1 txmsg): %d (%s)\n",
err, strerror(errno));
}
err = bpf_map_update_elem(map_fd[2], &i, &p1, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (p1 redir): %d (%s)\n",
err, strerror(errno));
}
i = 2;
err = bpf_map_update_elem(map_fd[2], &i, &p2, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (p2 txmsg): %d (%s)\n",
err, strerror(errno));
}
}
if (txmsg_ktls_skb) {
int ingress = BPF_F_INGRESS;
i = 0;
err = bpf_map_update_elem(map_fd[8], &i, &p2, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (c1 sockmap): %d (%s)\n",
err, strerror(errno));
}
if (txmsg_ktls_skb_redir) {
i = 1;
err = bpf_map_update_elem(map_fd[7],
&i, &ingress, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (txmsg_ingress): %d (%s)\n",
err, strerror(errno));
}
}
if (txmsg_ktls_skb_drop) {
i = 1;
err = bpf_map_update_elem(map_fd[7], &i, &i, BPF_ANY);
}
}
if (txmsg_redir_skb) {
int skb_fd = (test == SENDMSG || test == SENDPAGE) ?
p2 : p1;
int ingress = BPF_F_INGRESS;
i = 0;
err = bpf_map_update_elem(map_fd[7],
&i, &ingress, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (txmsg_ingress): %d (%s)\n",
err, strerror(errno));
}
i = 3;
err = bpf_map_update_elem(map_fd[0], &i, &skb_fd, BPF_ANY);
if (err) {
fprintf(stderr,
"ERROR: bpf_map_update_elem (c1 sockmap): %d (%s)\n",
err, strerror(errno));
}
}
}
if (skb_use_parser) {
i = 2;
err = bpf_map_update_elem(map_fd[7], &i, &skb_use_parser, BPF_ANY);
}
if (txmsg_drop)
options->drop_expected = true;
if (test == PING_PONG)
err = forever_ping_pong(options->rate, options);
else if (test == SENDMSG) {
options->base = false;
options->sendpage = false;
err = sendmsg_test(options);
} else if (test == SENDPAGE) {
options->base = false;
options->sendpage = true;
err = sendmsg_test(options);
} else if (test == BASE) {
options->base = true;
options->sendpage = false;
err = sendmsg_test(options);
} else if (test == BASE_SENDPAGE) {
options->base = true;
options->sendpage = true;
err = sendmsg_test(options);
} else
fprintf(stderr, "unknown test\n");
out:
/* Detatch and zero all the maps */
bpf_prog_detach2(prog_fd[3], cg_fd, BPF_CGROUP_SOCK_OPS);
bpf_prog_detach2(prog_fd[0], map_fd[0], BPF_SK_SKB_STREAM_PARSER);
bpf_prog_detach2(prog_fd[1], map_fd[0], BPF_SK_SKB_STREAM_VERDICT);
bpf_prog_detach2(prog_fd[0], map_fd[8], BPF_SK_SKB_STREAM_PARSER);
bpf_prog_detach2(prog_fd[2], map_fd[8], BPF_SK_SKB_STREAM_VERDICT);
if (tx_prog_fd >= 0)
bpf_prog_detach2(tx_prog_fd, map_fd[1], BPF_SK_MSG_VERDICT);
for (i = 0; i < 8; i++) {
key = next_key = 0;
bpf_map_update_elem(map_fd[i], &key, &zero, BPF_ANY);
while (bpf_map_get_next_key(map_fd[i], &key, &next_key) == 0) {
bpf_map_update_elem(map_fd[i], &key, &zero, BPF_ANY);
key = next_key;
}
}
close(s1);
close(s2);
close(p1);
close(p2);
close(c1);
close(c2);
return err;
}
static char *test_to_str(int test)
{
switch (test) {
case SENDMSG:
return "sendmsg";
case SENDPAGE:
return "sendpage";
}
return "unknown";
}
static void append_str(char *dst, const char *src, size_t dst_cap)
{
size_t avail = dst_cap - strlen(dst);
if (avail <= 1) /* just zero byte could be written */
return;
strncat(dst, src, avail - 1); /* strncat() adds + 1 for zero byte */
}
#define OPTSTRING 60
static void test_options(char *options)
{
char tstr[OPTSTRING];
memset(options, 0, OPTSTRING);
if (txmsg_pass)
append_str(options, "pass,", OPTSTRING);
if (txmsg_redir)
append_str(options, "redir,", OPTSTRING);
if (txmsg_drop)
append_str(options, "drop,", OPTSTRING);
if (txmsg_apply) {
snprintf(tstr, OPTSTRING, "apply %d,", txmsg_apply);
append_str(options, tstr, OPTSTRING);
}
if (txmsg_cork) {
snprintf(tstr, OPTSTRING, "cork %d,", txmsg_cork);
append_str(options, tstr, OPTSTRING);
}
if (txmsg_start) {
snprintf(tstr, OPTSTRING, "start %d,", txmsg_start);
append_str(options, tstr, OPTSTRING);
}
if (txmsg_end) {
snprintf(tstr, OPTSTRING, "end %d,", txmsg_end);
append_str(options, tstr, OPTSTRING);
}
if (txmsg_start_pop) {
snprintf(tstr, OPTSTRING, "pop (%d,%d),",
txmsg_start_pop, txmsg_start_pop + txmsg_pop);
append_str(options, tstr, OPTSTRING);
}
if (txmsg_ingress)
append_str(options, "ingress,", OPTSTRING);
if (txmsg_redir_skb)
append_str(options, "redir_skb,", OPTSTRING);
if (txmsg_ktls_skb)
append_str(options, "ktls_skb,", OPTSTRING);
if (ktls)
append_str(options, "ktls,", OPTSTRING);
if (peek_flag)
append_str(options, "peek,", OPTSTRING);
}
static int __test_exec(int cgrp, int test, struct sockmap_options *opt)
{
char *options = calloc(OPTSTRING, sizeof(char));
int err;
if (test == SENDPAGE)
opt->sendpage = true;
else
opt->sendpage = false;
if (txmsg_drop)
opt->drop_expected = true;
else
opt->drop_expected = false;
test_options(options);
if (opt->verbose) {
fprintf(stdout,
" [TEST %i]: (%i, %i, %i, %s, %s): ",
test_cnt, opt->rate, opt->iov_count, opt->iov_length,
test_to_str(test), options);
fflush(stdout);
}
err = run_options(opt, cgrp, test);
if (opt->verbose)
fprintf(stdout, " %s\n", !err ? "PASS" : "FAILED");
test_cnt++;
!err ? passed++ : failed++;
free(options);
return err;
}
static void test_exec(int cgrp, struct sockmap_options *opt)
{
int type = strcmp(opt->map, BPF_SOCKMAP_FILENAME);
int err;
if (type == 0) {
test_start();
err = __test_exec(cgrp, SENDMSG, opt);
if (err)
test_fail();
} else {
test_start();
err = __test_exec(cgrp, SENDPAGE, opt);
if (err)
test_fail();
}
}
static void test_send_one(struct sockmap_options *opt, int cgrp)
{
opt->iov_length = 1;
opt->iov_count = 1;
opt->rate = 1;
test_exec(cgrp, opt);
opt->iov_length = 1;
opt->iov_count = 1024;
opt->rate = 1;
test_exec(cgrp, opt);
opt->iov_length = 1024;
opt->iov_count = 1;
opt->rate = 1;
test_exec(cgrp, opt);
}
static void test_send_many(struct sockmap_options *opt, int cgrp)
{
opt->iov_length = 3;
opt->iov_count = 1;
opt->rate = 512;
test_exec(cgrp, opt);
opt->rate = 100;
opt->iov_count = 1;
opt->iov_length = 5;
test_exec(cgrp, opt);
}
static void test_send_large(struct sockmap_options *opt, int cgrp)
{
opt->iov_length = 256;
opt->iov_count = 1024;
opt->rate = 2;
test_exec(cgrp, opt);
}
static void test_send(struct sockmap_options *opt, int cgrp)
{
test_send_one(opt, cgrp);
test_send_many(opt, cgrp);
test_send_large(opt, cgrp);
sched_yield();
}
static void test_txmsg_pass(int cgrp, struct sockmap_options *opt)
{
/* Test small and large iov_count values with pass/redir/apply/cork */
txmsg_pass = 1;
test_send(opt, cgrp);
}
static void test_txmsg_redir(int cgrp, struct sockmap_options *opt)
{
txmsg_redir = 1;
test_send(opt, cgrp);
}
static void test_txmsg_drop(int cgrp, struct sockmap_options *opt)
{
txmsg_drop = 1;
test_send(opt, cgrp);
}
static void test_txmsg_ingress_redir(int cgrp, struct sockmap_options *opt)
{
txmsg_pass = txmsg_drop = 0;
txmsg_ingress = txmsg_redir = 1;
test_send(opt, cgrp);
}
static void test_txmsg_skb(int cgrp, struct sockmap_options *opt)
{
bool data = opt->data_test;
int k = ktls;
opt->data_test = true;
ktls = 1;
txmsg_pass = txmsg_drop = 0;
txmsg_ingress = txmsg_redir = 0;
txmsg_ktls_skb = 1;
txmsg_pass = 1;
/* Using data verification so ensure iov layout is
* expected from test receiver side. e.g. has enough
* bytes to write test code.
*/
opt->iov_length = 100;
opt->iov_count = 1;
opt->rate = 1;
test_exec(cgrp, opt);
txmsg_ktls_skb_drop = 1;
test_exec(cgrp, opt);
txmsg_ktls_skb_drop = 0;
txmsg_ktls_skb_redir = 1;
test_exec(cgrp, opt);
txmsg_ktls_skb_redir = 0;
/* Tests that omit skb_parser */
txmsg_omit_skb_parser = 1;
ktls = 0;
txmsg_ktls_skb = 0;
test_exec(cgrp, opt);
txmsg_ktls_skb_drop = 1;
test_exec(cgrp, opt);
txmsg_ktls_skb_drop = 0;
txmsg_ktls_skb_redir = 1;
test_exec(cgrp, opt);
ktls = 1;
test_exec(cgrp, opt);
txmsg_omit_skb_parser = 0;
opt->data_test = data;
ktls = k;
}
/* Test cork with hung data. This tests poor usage patterns where
* cork can leave data on the ring if user program is buggy and
* doesn't flush them somehow. They do take some time however
* because they wait for a timeout. Test pass, redir and cork with
* apply logic. Use cork size of 4097 with send_large to avoid
* aligning cork size with send size.
*/
static void test_txmsg_cork_hangs(int cgrp, struct sockmap_options *opt)
{
txmsg_pass = 1;
txmsg_redir = 0;
txmsg_cork = 4097;
txmsg_apply = 4097;
test_send_large(opt, cgrp);
txmsg_pass = 0;
txmsg_redir = 1;
txmsg_apply = 0;
txmsg_cork = 4097;
test_send_large(opt, cgrp);
txmsg_pass = 0;
txmsg_redir = 1;
txmsg_apply = 4097;
txmsg_cork = 4097;
test_send_large(opt, cgrp);
}
static void test_txmsg_pull(int cgrp, struct sockmap_options *opt)
{
/* Test basic start/end */
txmsg_start = 1;
txmsg_end = 2;
test_send(opt, cgrp);
/* Test >4k pull */
txmsg_start = 4096;
txmsg_end = 9182;
test_send_large(opt, cgrp);
/* Test pull + redirect */
txmsg_redir = 0;
txmsg_start = 1;
txmsg_end = 2;
test_send(opt, cgrp);
/* Test pull + cork */
txmsg_redir = 0;
txmsg_cork = 512;
txmsg_start = 1;
txmsg_end = 2;
test_send_many(opt, cgrp);
/* Test pull + cork + redirect */
txmsg_redir = 1;
txmsg_cork = 512;
txmsg_start = 1;
txmsg_end = 2;
test_send_many(opt, cgrp);
}
static void test_txmsg_pop(int cgrp, struct sockmap_options *opt)
{
/* Test basic pop */
txmsg_start_pop = 1;
txmsg_pop = 2;
test_send_many(opt, cgrp);
/* Test pop with >4k */
txmsg_start_pop = 4096;
txmsg_pop = 4096;
test_send_large(opt, cgrp);
/* Test pop + redirect */
txmsg_redir = 1;
txmsg_start_pop = 1;
txmsg_pop = 2;
test_send_many(opt, cgrp);
/* Test pop + cork */
txmsg_redir = 0;
txmsg_cork = 512;
txmsg_start_pop = 1;
txmsg_pop = 2;
test_send_many(opt, cgrp);
/* Test pop + redirect + cork */
txmsg_redir = 1;
txmsg_cork = 4;
txmsg_start_pop = 1;
txmsg_pop = 2;
test_send_many(opt, cgrp);
}
static void test_txmsg_push(int cgrp, struct sockmap_options *opt)
{
/* Test basic push */
txmsg_start_push = 1;
txmsg_end_push = 1;
test_send(opt, cgrp);
/* Test push 4kB >4k */
txmsg_start_push = 4096;
txmsg_end_push = 4096;
test_send_large(opt, cgrp);
/* Test push + redirect */
txmsg_redir = 1;
txmsg_start_push = 1;
txmsg_end_push = 2;
test_send_many(opt, cgrp);
/* Test push + cork */
txmsg_redir = 0;
txmsg_cork = 512;
txmsg_start_push = 1;
txmsg_end_push = 2;
test_send_many(opt, cgrp);
}
static void test_txmsg_push_pop(int cgrp, struct sockmap_options *opt)
{
txmsg_start_push = 1;
txmsg_end_push = 10;
txmsg_start_pop = 5;
txmsg_pop = 4;
test_send_large(opt, cgrp);
}
static void test_txmsg_apply(int cgrp, struct sockmap_options *opt)
{
txmsg_pass = 1;
txmsg_redir = 0;
txmsg_apply = 1;
txmsg_cork = 0;
test_send_one(opt, cgrp);
txmsg_pass = 0;
txmsg_redir = 1;
txmsg_apply = 1;
txmsg_cork = 0;
test_send_one(opt, cgrp);
txmsg_pass = 1;
txmsg_redir = 0;
txmsg_apply = 1024;
txmsg_cork = 0;
test_send_large(opt, cgrp);
txmsg_pass = 0;
txmsg_redir = 1;
txmsg_apply = 1024;
txmsg_cork = 0;
test_send_large(opt, cgrp);
}
static void test_txmsg_cork(int cgrp, struct sockmap_options *opt)
{
txmsg_pass = 1;
txmsg_redir = 0;
txmsg_apply = 0;
txmsg_cork = 1;
test_send(opt, cgrp);
txmsg_pass = 1;
txmsg_redir = 0;
txmsg_apply = 1;
txmsg_cork = 1;
test_send(opt, cgrp);
}
static void test_txmsg_ingress_parser(int cgrp, struct sockmap_options *opt)
{
txmsg_pass = 1;
skb_use_parser = 512;
if (ktls == 1)
skb_use_parser = 570;
opt->iov_length = 256;
opt->iov_count = 1;
opt->rate = 2;
test_exec(cgrp, opt);
}
static void test_txmsg_ingress_parser2(int cgrp, struct sockmap_options *opt)
{
if (ktls == 1)
return;
skb_use_parser = 10;
opt->iov_length = 20;
opt->iov_count = 1;
opt->rate = 1;
opt->check_recved_len = true;
test_exec(cgrp, opt);
opt->check_recved_len = false;
}
char *map_names[] = {
"sock_map",
"sock_map_txmsg",
"sock_map_redir",
"sock_apply_bytes",
"sock_cork_bytes",
"sock_bytes",
"sock_redir_flags",
"sock_skb_opts",
"tls_sock_map",
};
int prog_attach_type[] = {
BPF_SK_SKB_STREAM_PARSER,
BPF_SK_SKB_STREAM_VERDICT,
BPF_SK_SKB_STREAM_VERDICT,
BPF_CGROUP_SOCK_OPS,
BPF_SK_MSG_VERDICT,
BPF_SK_MSG_VERDICT,
BPF_SK_MSG_VERDICT,
BPF_SK_MSG_VERDICT,
BPF_SK_MSG_VERDICT,
BPF_SK_MSG_VERDICT,
BPF_SK_MSG_VERDICT,
};
int prog_type[] = {
BPF_PROG_TYPE_SK_SKB,
BPF_PROG_TYPE_SK_SKB,
BPF_PROG_TYPE_SK_SKB,
BPF_PROG_TYPE_SOCK_OPS,
BPF_PROG_TYPE_SK_MSG,
BPF_PROG_TYPE_SK_MSG,
BPF_PROG_TYPE_SK_MSG,
BPF_PROG_TYPE_SK_MSG,
BPF_PROG_TYPE_SK_MSG,
BPF_PROG_TYPE_SK_MSG,
BPF_PROG_TYPE_SK_MSG,
};
static int populate_progs(char *bpf_file)
{
struct bpf_program *prog;
struct bpf_object *obj;
int i = 0;
long err;
obj = bpf_object__open(bpf_file);
err = libbpf_get_error(obj);
if (err) {
char err_buf[256];
libbpf_strerror(err, err_buf, sizeof(err_buf));
printf("Unable to load eBPF objects in file '%s' : %s\n",
bpf_file, err_buf);
return -1;
}
bpf_object__for_each_program(prog, obj) {
bpf_program__set_type(prog, prog_type[i]);
bpf_program__set_expected_attach_type(prog,
prog_attach_type[i]);
i++;
}
i = bpf_object__load(obj);
i = 0;
bpf_object__for_each_program(prog, obj) {
prog_fd[i] = bpf_program__fd(prog);
i++;
}
for (i = 0; i < sizeof(map_fd)/sizeof(int); i++) {
maps[i] = bpf_object__find_map_by_name(obj, map_names[i]);
map_fd[i] = bpf_map__fd(maps[i]);
if (map_fd[i] < 0) {
fprintf(stderr, "load_bpf_file: (%i) %s\n",
map_fd[i], strerror(errno));
return -1;
}
}
return 0;
}
struct _test test[] = {
{"txmsg test passthrough", test_txmsg_pass},
{"txmsg test redirect", test_txmsg_redir},
{"txmsg test drop", test_txmsg_drop},
{"txmsg test ingress redirect", test_txmsg_ingress_redir},
{"txmsg test skb", test_txmsg_skb},
{"txmsg test apply", test_txmsg_apply},
{"txmsg test cork", test_txmsg_cork},
{"txmsg test hanging corks", test_txmsg_cork_hangs},
{"txmsg test push_data", test_txmsg_push},
{"txmsg test pull-data", test_txmsg_pull},
{"txmsg test pop-data", test_txmsg_pop},
{"txmsg test push/pop data", test_txmsg_push_pop},
{"txmsg test ingress parser", test_txmsg_ingress_parser},
{"txmsg test ingress parser2", test_txmsg_ingress_parser2},
};
static int check_whitelist(struct _test *t, struct sockmap_options *opt)
{
char *entry, *ptr;
if (!opt->whitelist)
return 0;
ptr = strdup(opt->whitelist);
if (!ptr)
return -ENOMEM;
entry = strtok(ptr, ",");
while (entry) {
if ((opt->prepend && strstr(opt->prepend, entry) != 0) ||
strstr(opt->map, entry) != 0 ||
strstr(t->title, entry) != 0)
return 0;
entry = strtok(NULL, ",");
}
return -EINVAL;
}
static int check_blacklist(struct _test *t, struct sockmap_options *opt)
{
char *entry, *ptr;
if (!opt->blacklist)
return -EINVAL;
ptr = strdup(opt->blacklist);
if (!ptr)
return -ENOMEM;
entry = strtok(ptr, ",");
while (entry) {
if ((opt->prepend && strstr(opt->prepend, entry) != 0) ||
strstr(opt->map, entry) != 0 ||
strstr(t->title, entry) != 0)
return 0;
entry = strtok(NULL, ",");
}
return -EINVAL;
}
static int __test_selftests(int cg_fd, struct sockmap_options *opt)
{
int i, err;
err = populate_progs(opt->map);
if (err < 0) {
fprintf(stderr, "ERROR: (%i) load bpf failed\n", err);
return err;
}
/* Tests basic commands and APIs */
for (i = 0; i < sizeof(test)/sizeof(struct _test); i++) {
struct _test t = test[i];
if (check_whitelist(&t, opt) != 0)
continue;
if (check_blacklist(&t, opt) == 0)
continue;
test_start_subtest(&t, opt);
t.tester(cg_fd, opt);
test_end_subtest();
}
return err;
}
static void test_selftests_sockmap(int cg_fd, struct sockmap_options *opt)
{
opt->map = BPF_SOCKMAP_FILENAME;
__test_selftests(cg_fd, opt);
}
static void test_selftests_sockhash(int cg_fd, struct sockmap_options *opt)
{
opt->map = BPF_SOCKHASH_FILENAME;
__test_selftests(cg_fd, opt);
}
static void test_selftests_ktls(int cg_fd, struct sockmap_options *opt)
{
opt->map = BPF_SOCKHASH_FILENAME;
opt->prepend = "ktls";
ktls = 1;
__test_selftests(cg_fd, opt);
ktls = 0;
}
static int test_selftest(int cg_fd, struct sockmap_options *opt)
{
test_selftests_sockmap(cg_fd, opt);
test_selftests_sockhash(cg_fd, opt);
test_selftests_ktls(cg_fd, opt);
test_print_results();
return 0;
}
int main(int argc, char **argv)
{
int iov_count = 1, length = 1024, rate = 1;
struct sockmap_options options = {0};
int opt, longindex, err, cg_fd = 0;
char *bpf_file = BPF_SOCKMAP_FILENAME;
int test = SELFTESTS;
bool cg_created = 0;
while ((opt = getopt_long(argc, argv, ":dhv:c:r:i:l:t:p:q:n:b:",
long_options, &longindex)) != -1) {
switch (opt) {
case 's':
txmsg_start = atoi(optarg);
break;
case 'e':
txmsg_end = atoi(optarg);
break;
case 'p':
txmsg_start_push = atoi(optarg);
break;
case 'q':
txmsg_end_push = atoi(optarg);
break;
case 'w':
txmsg_start_pop = atoi(optarg);
break;
case 'x':
txmsg_pop = atoi(optarg);
break;
case 'a':
txmsg_apply = atoi(optarg);
break;
case 'k':
txmsg_cork = atoi(optarg);
break;
case 'c':
cg_fd = open(optarg, O_DIRECTORY, O_RDONLY);
if (cg_fd < 0) {
fprintf(stderr,
"ERROR: (%i) open cg path failed: %s\n",
cg_fd, optarg);
return cg_fd;
}
break;
case 'r':
rate = atoi(optarg);
break;
case 'v':
options.verbose = 1;
if (optarg)
options.verbose = atoi(optarg);
break;
case 'i':
iov_count = atoi(optarg);
break;
case 'l':
length = atoi(optarg);
break;
case 'd':
options.data_test = true;
break;
case 't':
if (strcmp(optarg, "ping") == 0) {
test = PING_PONG;
} else if (strcmp(optarg, "sendmsg") == 0) {
test = SENDMSG;
} else if (strcmp(optarg, "base") == 0) {
test = BASE;
} else if (strcmp(optarg, "base_sendpage") == 0) {
test = BASE_SENDPAGE;
} else if (strcmp(optarg, "sendpage") == 0) {
test = SENDPAGE;
} else {
usage(argv);
return -1;
}
break;
case 'n':
options.whitelist = strdup(optarg);
if (!options.whitelist)
return -ENOMEM;
break;
case 'b':
options.blacklist = strdup(optarg);
if (!options.blacklist)
return -ENOMEM;
case 0:
break;
case 'h':
default:
usage(argv);
return -1;
}
}
if (!cg_fd) {
cg_fd = cgroup_setup_and_join(CG_PATH);
if (cg_fd < 0)
return cg_fd;
cg_created = 1;
}
if (test == SELFTESTS) {
err = test_selftest(cg_fd, &options);
goto out;
}
err = populate_progs(bpf_file);
if (err) {
fprintf(stderr, "populate program: (%s) %s\n",
bpf_file, strerror(errno));
return 1;
}
running = 1;
/* catch SIGINT */
signal(SIGINT, running_handler);
options.iov_count = iov_count;
options.iov_length = length;
options.rate = rate;
err = run_options(&options, cg_fd, test);
out:
if (options.whitelist)
free(options.whitelist);
if (options.blacklist)
free(options.blacklist);
if (cg_created)
cleanup_cgroup_environment();
close(cg_fd);
return err;
}
void running_handler(int a)
{
running = 0;
}