mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-12 16:54:42 +08:00
32cdba1e05
This was always racy, but 268720903f
"uprobes: Rework register_for_each_vma() to make it O(n)" should be
blamed anyway, it made everything worse and I didn't notice.
register/unregister call build_map_info() and then do install/remove
breakpoint for every mm which mmaps inode/offset. This can obviously
race with fork()->dup_mmap() in between and we can miss the child.
uprobe_register() could be easily fixed but unregister is much worse,
the new mm inherits "int3" from parent and there is no way to detect
this if uprobe goes away.
So this patch simply adds percpu_down_read/up_read around dup_mmap(),
and percpu_down_write/up_write into register_for_each_vma().
This adds 2 new hooks into dup_mmap() but we can kill uprobe_dup_mmap()
and fold it into uprobe_end_dup_mmap().
Reported-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
1628 lines
39 KiB
C
1628 lines
39 KiB
C
/*
|
|
* User-space Probes (UProbes)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* Copyright (C) IBM Corporation, 2008-2012
|
|
* Authors:
|
|
* Srikar Dronamraju
|
|
* Jim Keniston
|
|
* Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagemap.h> /* read_mapping_page */
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/rmap.h> /* anon_vma_prepare */
|
|
#include <linux/mmu_notifier.h> /* set_pte_at_notify */
|
|
#include <linux/swap.h> /* try_to_free_swap */
|
|
#include <linux/ptrace.h> /* user_enable_single_step */
|
|
#include <linux/kdebug.h> /* notifier mechanism */
|
|
#include "../../mm/internal.h" /* munlock_vma_page */
|
|
#include <linux/percpu-rwsem.h>
|
|
|
|
#include <linux/uprobes.h>
|
|
|
|
#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
|
|
#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
|
|
|
|
static struct rb_root uprobes_tree = RB_ROOT;
|
|
|
|
static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
|
|
|
|
#define UPROBES_HASH_SZ 13
|
|
|
|
/*
|
|
* We need separate register/unregister and mmap/munmap lock hashes because
|
|
* of mmap_sem nesting.
|
|
*
|
|
* uprobe_register() needs to install probes on (potentially) all processes
|
|
* and thus needs to acquire multiple mmap_sems (consequtively, not
|
|
* concurrently), whereas uprobe_mmap() is called while holding mmap_sem
|
|
* for the particular process doing the mmap.
|
|
*
|
|
* uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
|
|
* because of lock order against i_mmap_mutex. This means there's a hole in
|
|
* the register vma iteration where a mmap() can happen.
|
|
*
|
|
* Thus uprobe_register() can race with uprobe_mmap() and we can try and
|
|
* install a probe where one is already installed.
|
|
*/
|
|
|
|
/* serialize (un)register */
|
|
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
|
|
|
|
#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
|
|
|
|
/* serialize uprobe->pending_list */
|
|
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
|
|
#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
|
|
|
|
static struct percpu_rw_semaphore dup_mmap_sem;
|
|
|
|
/*
|
|
* uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
|
|
* events active at this time. Probably a fine grained per inode count is
|
|
* better?
|
|
*/
|
|
static atomic_t uprobe_events = ATOMIC_INIT(0);
|
|
|
|
/* Have a copy of original instruction */
|
|
#define UPROBE_COPY_INSN 0
|
|
/* Dont run handlers when first register/ last unregister in progress*/
|
|
#define UPROBE_RUN_HANDLER 1
|
|
/* Can skip singlestep */
|
|
#define UPROBE_SKIP_SSTEP 2
|
|
|
|
struct uprobe {
|
|
struct rb_node rb_node; /* node in the rb tree */
|
|
atomic_t ref;
|
|
struct rw_semaphore consumer_rwsem;
|
|
struct mutex copy_mutex; /* TODO: kill me and UPROBE_COPY_INSN */
|
|
struct list_head pending_list;
|
|
struct uprobe_consumer *consumers;
|
|
struct inode *inode; /* Also hold a ref to inode */
|
|
loff_t offset;
|
|
unsigned long flags;
|
|
struct arch_uprobe arch;
|
|
};
|
|
|
|
/*
|
|
* valid_vma: Verify if the specified vma is an executable vma
|
|
* Relax restrictions while unregistering: vm_flags might have
|
|
* changed after breakpoint was inserted.
|
|
* - is_register: indicates if we are in register context.
|
|
* - Return 1 if the specified virtual address is in an
|
|
* executable vma.
|
|
*/
|
|
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
|
|
{
|
|
vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
|
|
|
|
if (is_register)
|
|
flags |= VM_WRITE;
|
|
|
|
return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
|
|
}
|
|
|
|
static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
|
|
{
|
|
return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
|
|
}
|
|
|
|
static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
|
|
{
|
|
return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
|
|
}
|
|
|
|
/**
|
|
* __replace_page - replace page in vma by new page.
|
|
* based on replace_page in mm/ksm.c
|
|
*
|
|
* @vma: vma that holds the pte pointing to page
|
|
* @addr: address the old @page is mapped at
|
|
* @page: the cowed page we are replacing by kpage
|
|
* @kpage: the modified page we replace page by
|
|
*
|
|
* Returns 0 on success, -EFAULT on failure.
|
|
*/
|
|
static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
|
|
struct page *page, struct page *kpage)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
spinlock_t *ptl;
|
|
pte_t *ptep;
|
|
int err;
|
|
/* For mmu_notifiers */
|
|
const unsigned long mmun_start = addr;
|
|
const unsigned long mmun_end = addr + PAGE_SIZE;
|
|
|
|
/* For try_to_free_swap() and munlock_vma_page() below */
|
|
lock_page(page);
|
|
|
|
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
|
|
err = -EAGAIN;
|
|
ptep = page_check_address(page, mm, addr, &ptl, 0);
|
|
if (!ptep)
|
|
goto unlock;
|
|
|
|
get_page(kpage);
|
|
page_add_new_anon_rmap(kpage, vma, addr);
|
|
|
|
if (!PageAnon(page)) {
|
|
dec_mm_counter(mm, MM_FILEPAGES);
|
|
inc_mm_counter(mm, MM_ANONPAGES);
|
|
}
|
|
|
|
flush_cache_page(vma, addr, pte_pfn(*ptep));
|
|
ptep_clear_flush(vma, addr, ptep);
|
|
set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
|
|
|
|
page_remove_rmap(page);
|
|
if (!page_mapped(page))
|
|
try_to_free_swap(page);
|
|
pte_unmap_unlock(ptep, ptl);
|
|
|
|
if (vma->vm_flags & VM_LOCKED)
|
|
munlock_vma_page(page);
|
|
put_page(page);
|
|
|
|
err = 0;
|
|
unlock:
|
|
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
|
unlock_page(page);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* is_swbp_insn - check if instruction is breakpoint instruction.
|
|
* @insn: instruction to be checked.
|
|
* Default implementation of is_swbp_insn
|
|
* Returns true if @insn is a breakpoint instruction.
|
|
*/
|
|
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
|
|
{
|
|
return *insn == UPROBE_SWBP_INSN;
|
|
}
|
|
|
|
static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
|
|
{
|
|
void *kaddr = kmap_atomic(page);
|
|
memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
|
|
kunmap_atomic(kaddr);
|
|
}
|
|
|
|
static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
|
|
{
|
|
uprobe_opcode_t old_opcode;
|
|
bool is_swbp;
|
|
|
|
copy_opcode(page, vaddr, &old_opcode);
|
|
is_swbp = is_swbp_insn(&old_opcode);
|
|
|
|
if (is_swbp_insn(new_opcode)) {
|
|
if (is_swbp) /* register: already installed? */
|
|
return 0;
|
|
} else {
|
|
if (!is_swbp) /* unregister: was it changed by us? */
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* NOTE:
|
|
* Expect the breakpoint instruction to be the smallest size instruction for
|
|
* the architecture. If an arch has variable length instruction and the
|
|
* breakpoint instruction is not of the smallest length instruction
|
|
* supported by that architecture then we need to modify is_swbp_at_addr and
|
|
* write_opcode accordingly. This would never be a problem for archs that
|
|
* have fixed length instructions.
|
|
*/
|
|
|
|
/*
|
|
* write_opcode - write the opcode at a given virtual address.
|
|
* @mm: the probed process address space.
|
|
* @vaddr: the virtual address to store the opcode.
|
|
* @opcode: opcode to be written at @vaddr.
|
|
*
|
|
* Called with mm->mmap_sem held (for read and with a reference to
|
|
* mm).
|
|
*
|
|
* For mm @mm, write the opcode at @vaddr.
|
|
* Return 0 (success) or a negative errno.
|
|
*/
|
|
static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
|
|
uprobe_opcode_t opcode)
|
|
{
|
|
struct page *old_page, *new_page;
|
|
void *vaddr_old, *vaddr_new;
|
|
struct vm_area_struct *vma;
|
|
int ret;
|
|
|
|
retry:
|
|
/* Read the page with vaddr into memory */
|
|
ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
|
|
if (ret <= 0)
|
|
return ret;
|
|
|
|
ret = verify_opcode(old_page, vaddr, &opcode);
|
|
if (ret <= 0)
|
|
goto put_old;
|
|
|
|
ret = -ENOMEM;
|
|
new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
|
|
if (!new_page)
|
|
goto put_old;
|
|
|
|
__SetPageUptodate(new_page);
|
|
|
|
/* copy the page now that we've got it stable */
|
|
vaddr_old = kmap_atomic(old_page);
|
|
vaddr_new = kmap_atomic(new_page);
|
|
|
|
memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
|
|
memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
|
|
|
|
kunmap_atomic(vaddr_new);
|
|
kunmap_atomic(vaddr_old);
|
|
|
|
ret = anon_vma_prepare(vma);
|
|
if (ret)
|
|
goto put_new;
|
|
|
|
ret = __replace_page(vma, vaddr, old_page, new_page);
|
|
|
|
put_new:
|
|
page_cache_release(new_page);
|
|
put_old:
|
|
put_page(old_page);
|
|
|
|
if (unlikely(ret == -EAGAIN))
|
|
goto retry;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* set_swbp - store breakpoint at a given address.
|
|
* @auprobe: arch specific probepoint information.
|
|
* @mm: the probed process address space.
|
|
* @vaddr: the virtual address to insert the opcode.
|
|
*
|
|
* For mm @mm, store the breakpoint instruction at @vaddr.
|
|
* Return 0 (success) or a negative errno.
|
|
*/
|
|
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
|
|
{
|
|
return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
|
|
}
|
|
|
|
/**
|
|
* set_orig_insn - Restore the original instruction.
|
|
* @mm: the probed process address space.
|
|
* @auprobe: arch specific probepoint information.
|
|
* @vaddr: the virtual address to insert the opcode.
|
|
*
|
|
* For mm @mm, restore the original opcode (opcode) at @vaddr.
|
|
* Return 0 (success) or a negative errno.
|
|
*/
|
|
int __weak
|
|
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
|
|
{
|
|
return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
|
|
}
|
|
|
|
static int match_uprobe(struct uprobe *l, struct uprobe *r)
|
|
{
|
|
if (l->inode < r->inode)
|
|
return -1;
|
|
|
|
if (l->inode > r->inode)
|
|
return 1;
|
|
|
|
if (l->offset < r->offset)
|
|
return -1;
|
|
|
|
if (l->offset > r->offset)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
|
|
{
|
|
struct uprobe u = { .inode = inode, .offset = offset };
|
|
struct rb_node *n = uprobes_tree.rb_node;
|
|
struct uprobe *uprobe;
|
|
int match;
|
|
|
|
while (n) {
|
|
uprobe = rb_entry(n, struct uprobe, rb_node);
|
|
match = match_uprobe(&u, uprobe);
|
|
if (!match) {
|
|
atomic_inc(&uprobe->ref);
|
|
return uprobe;
|
|
}
|
|
|
|
if (match < 0)
|
|
n = n->rb_left;
|
|
else
|
|
n = n->rb_right;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Find a uprobe corresponding to a given inode:offset
|
|
* Acquires uprobes_treelock
|
|
*/
|
|
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
|
|
{
|
|
struct uprobe *uprobe;
|
|
|
|
spin_lock(&uprobes_treelock);
|
|
uprobe = __find_uprobe(inode, offset);
|
|
spin_unlock(&uprobes_treelock);
|
|
|
|
return uprobe;
|
|
}
|
|
|
|
static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
|
|
{
|
|
struct rb_node **p = &uprobes_tree.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct uprobe *u;
|
|
int match;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
u = rb_entry(parent, struct uprobe, rb_node);
|
|
match = match_uprobe(uprobe, u);
|
|
if (!match) {
|
|
atomic_inc(&u->ref);
|
|
return u;
|
|
}
|
|
|
|
if (match < 0)
|
|
p = &parent->rb_left;
|
|
else
|
|
p = &parent->rb_right;
|
|
|
|
}
|
|
|
|
u = NULL;
|
|
rb_link_node(&uprobe->rb_node, parent, p);
|
|
rb_insert_color(&uprobe->rb_node, &uprobes_tree);
|
|
/* get access + creation ref */
|
|
atomic_set(&uprobe->ref, 2);
|
|
|
|
return u;
|
|
}
|
|
|
|
/*
|
|
* Acquire uprobes_treelock.
|
|
* Matching uprobe already exists in rbtree;
|
|
* increment (access refcount) and return the matching uprobe.
|
|
*
|
|
* No matching uprobe; insert the uprobe in rb_tree;
|
|
* get a double refcount (access + creation) and return NULL.
|
|
*/
|
|
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
|
|
{
|
|
struct uprobe *u;
|
|
|
|
spin_lock(&uprobes_treelock);
|
|
u = __insert_uprobe(uprobe);
|
|
spin_unlock(&uprobes_treelock);
|
|
|
|
/* For now assume that the instruction need not be single-stepped */
|
|
__set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
|
|
|
|
return u;
|
|
}
|
|
|
|
static void put_uprobe(struct uprobe *uprobe)
|
|
{
|
|
if (atomic_dec_and_test(&uprobe->ref))
|
|
kfree(uprobe);
|
|
}
|
|
|
|
static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
|
|
{
|
|
struct uprobe *uprobe, *cur_uprobe;
|
|
|
|
uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
|
|
if (!uprobe)
|
|
return NULL;
|
|
|
|
uprobe->inode = igrab(inode);
|
|
uprobe->offset = offset;
|
|
init_rwsem(&uprobe->consumer_rwsem);
|
|
mutex_init(&uprobe->copy_mutex);
|
|
|
|
/* add to uprobes_tree, sorted on inode:offset */
|
|
cur_uprobe = insert_uprobe(uprobe);
|
|
|
|
/* a uprobe exists for this inode:offset combination */
|
|
if (cur_uprobe) {
|
|
kfree(uprobe);
|
|
uprobe = cur_uprobe;
|
|
iput(inode);
|
|
} else {
|
|
atomic_inc(&uprobe_events);
|
|
}
|
|
|
|
return uprobe;
|
|
}
|
|
|
|
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
|
|
{
|
|
struct uprobe_consumer *uc;
|
|
|
|
if (!test_bit(UPROBE_RUN_HANDLER, &uprobe->flags))
|
|
return;
|
|
|
|
down_read(&uprobe->consumer_rwsem);
|
|
for (uc = uprobe->consumers; uc; uc = uc->next) {
|
|
if (!uc->filter || uc->filter(uc, current))
|
|
uc->handler(uc, regs);
|
|
}
|
|
up_read(&uprobe->consumer_rwsem);
|
|
}
|
|
|
|
/* Returns the previous consumer */
|
|
static struct uprobe_consumer *
|
|
consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
|
|
{
|
|
down_write(&uprobe->consumer_rwsem);
|
|
uc->next = uprobe->consumers;
|
|
uprobe->consumers = uc;
|
|
up_write(&uprobe->consumer_rwsem);
|
|
|
|
return uc->next;
|
|
}
|
|
|
|
/*
|
|
* For uprobe @uprobe, delete the consumer @uc.
|
|
* Return true if the @uc is deleted successfully
|
|
* or return false.
|
|
*/
|
|
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
|
|
{
|
|
struct uprobe_consumer **con;
|
|
bool ret = false;
|
|
|
|
down_write(&uprobe->consumer_rwsem);
|
|
for (con = &uprobe->consumers; *con; con = &(*con)->next) {
|
|
if (*con == uc) {
|
|
*con = uc->next;
|
|
ret = true;
|
|
break;
|
|
}
|
|
}
|
|
up_write(&uprobe->consumer_rwsem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
|
|
unsigned long nbytes, loff_t offset)
|
|
{
|
|
struct page *page;
|
|
void *vaddr;
|
|
unsigned long off;
|
|
pgoff_t idx;
|
|
|
|
if (!filp)
|
|
return -EINVAL;
|
|
|
|
if (!mapping->a_ops->readpage)
|
|
return -EIO;
|
|
|
|
idx = offset >> PAGE_CACHE_SHIFT;
|
|
off = offset & ~PAGE_MASK;
|
|
|
|
/*
|
|
* Ensure that the page that has the original instruction is
|
|
* populated and in page-cache.
|
|
*/
|
|
page = read_mapping_page(mapping, idx, filp);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
vaddr = kmap_atomic(page);
|
|
memcpy(insn, vaddr + off, nbytes);
|
|
kunmap_atomic(vaddr);
|
|
page_cache_release(page);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_insn(struct uprobe *uprobe, struct file *filp)
|
|
{
|
|
struct address_space *mapping;
|
|
unsigned long nbytes;
|
|
int bytes;
|
|
|
|
nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
|
|
mapping = uprobe->inode->i_mapping;
|
|
|
|
/* Instruction at end of binary; copy only available bytes */
|
|
if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
|
|
bytes = uprobe->inode->i_size - uprobe->offset;
|
|
else
|
|
bytes = MAX_UINSN_BYTES;
|
|
|
|
/* Instruction at the page-boundary; copy bytes in second page */
|
|
if (nbytes < bytes) {
|
|
int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
|
|
bytes - nbytes, uprobe->offset + nbytes);
|
|
if (err)
|
|
return err;
|
|
bytes = nbytes;
|
|
}
|
|
return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
|
|
}
|
|
|
|
static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
|
|
struct mm_struct *mm, unsigned long vaddr)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
|
|
return ret;
|
|
|
|
mutex_lock(&uprobe->copy_mutex);
|
|
if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
|
|
goto out;
|
|
|
|
ret = copy_insn(uprobe, file);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = -ENOTSUPP;
|
|
if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
|
|
goto out;
|
|
|
|
ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* write_opcode() assumes we don't cross page boundary */
|
|
BUG_ON((uprobe->offset & ~PAGE_MASK) +
|
|
UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
|
|
|
|
smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
|
|
set_bit(UPROBE_COPY_INSN, &uprobe->flags);
|
|
|
|
out:
|
|
mutex_unlock(&uprobe->copy_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long vaddr)
|
|
{
|
|
bool first_uprobe;
|
|
int ret;
|
|
|
|
/*
|
|
* If probe is being deleted, unregister thread could be done with
|
|
* the vma-rmap-walk through. Adding a probe now can be fatal since
|
|
* nobody will be able to cleanup. Also we could be from fork or
|
|
* mremap path, where the probe might have already been inserted.
|
|
* Hence behave as if probe already existed.
|
|
*/
|
|
if (!uprobe->consumers)
|
|
return 0;
|
|
|
|
ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
|
|
* the task can hit this breakpoint right after __replace_page().
|
|
*/
|
|
first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
|
|
if (first_uprobe)
|
|
set_bit(MMF_HAS_UPROBES, &mm->flags);
|
|
|
|
ret = set_swbp(&uprobe->arch, mm, vaddr);
|
|
if (!ret)
|
|
clear_bit(MMF_RECALC_UPROBES, &mm->flags);
|
|
else if (first_uprobe)
|
|
clear_bit(MMF_HAS_UPROBES, &mm->flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
|
|
{
|
|
/* can happen if uprobe_register() fails */
|
|
if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
|
|
return 0;
|
|
|
|
set_bit(MMF_RECALC_UPROBES, &mm->flags);
|
|
return set_orig_insn(&uprobe->arch, mm, vaddr);
|
|
}
|
|
|
|
/*
|
|
* There could be threads that have already hit the breakpoint. They
|
|
* will recheck the current insn and restart if find_uprobe() fails.
|
|
* See find_active_uprobe().
|
|
*/
|
|
static void delete_uprobe(struct uprobe *uprobe)
|
|
{
|
|
spin_lock(&uprobes_treelock);
|
|
rb_erase(&uprobe->rb_node, &uprobes_tree);
|
|
spin_unlock(&uprobes_treelock);
|
|
iput(uprobe->inode);
|
|
put_uprobe(uprobe);
|
|
atomic_dec(&uprobe_events);
|
|
}
|
|
|
|
struct map_info {
|
|
struct map_info *next;
|
|
struct mm_struct *mm;
|
|
unsigned long vaddr;
|
|
};
|
|
|
|
static inline struct map_info *free_map_info(struct map_info *info)
|
|
{
|
|
struct map_info *next = info->next;
|
|
kfree(info);
|
|
return next;
|
|
}
|
|
|
|
static struct map_info *
|
|
build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
|
|
{
|
|
unsigned long pgoff = offset >> PAGE_SHIFT;
|
|
struct vm_area_struct *vma;
|
|
struct map_info *curr = NULL;
|
|
struct map_info *prev = NULL;
|
|
struct map_info *info;
|
|
int more = 0;
|
|
|
|
again:
|
|
mutex_lock(&mapping->i_mmap_mutex);
|
|
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
|
|
if (!valid_vma(vma, is_register))
|
|
continue;
|
|
|
|
if (!prev && !more) {
|
|
/*
|
|
* Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
|
|
* reclaim. This is optimistic, no harm done if it fails.
|
|
*/
|
|
prev = kmalloc(sizeof(struct map_info),
|
|
GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
|
|
if (prev)
|
|
prev->next = NULL;
|
|
}
|
|
if (!prev) {
|
|
more++;
|
|
continue;
|
|
}
|
|
|
|
if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
|
|
continue;
|
|
|
|
info = prev;
|
|
prev = prev->next;
|
|
info->next = curr;
|
|
curr = info;
|
|
|
|
info->mm = vma->vm_mm;
|
|
info->vaddr = offset_to_vaddr(vma, offset);
|
|
}
|
|
mutex_unlock(&mapping->i_mmap_mutex);
|
|
|
|
if (!more)
|
|
goto out;
|
|
|
|
prev = curr;
|
|
while (curr) {
|
|
mmput(curr->mm);
|
|
curr = curr->next;
|
|
}
|
|
|
|
do {
|
|
info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
|
|
if (!info) {
|
|
curr = ERR_PTR(-ENOMEM);
|
|
goto out;
|
|
}
|
|
info->next = prev;
|
|
prev = info;
|
|
} while (--more);
|
|
|
|
goto again;
|
|
out:
|
|
while (prev)
|
|
prev = free_map_info(prev);
|
|
return curr;
|
|
}
|
|
|
|
static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
|
|
{
|
|
struct map_info *info;
|
|
int err = 0;
|
|
|
|
percpu_down_write(&dup_mmap_sem);
|
|
info = build_map_info(uprobe->inode->i_mapping,
|
|
uprobe->offset, is_register);
|
|
if (IS_ERR(info)) {
|
|
err = PTR_ERR(info);
|
|
goto out;
|
|
}
|
|
|
|
while (info) {
|
|
struct mm_struct *mm = info->mm;
|
|
struct vm_area_struct *vma;
|
|
|
|
if (err && is_register)
|
|
goto free;
|
|
|
|
down_write(&mm->mmap_sem);
|
|
vma = find_vma(mm, info->vaddr);
|
|
if (!vma || !valid_vma(vma, is_register) ||
|
|
vma->vm_file->f_mapping->host != uprobe->inode)
|
|
goto unlock;
|
|
|
|
if (vma->vm_start > info->vaddr ||
|
|
vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
|
|
goto unlock;
|
|
|
|
if (is_register)
|
|
err = install_breakpoint(uprobe, mm, vma, info->vaddr);
|
|
else
|
|
err |= remove_breakpoint(uprobe, mm, info->vaddr);
|
|
|
|
unlock:
|
|
up_write(&mm->mmap_sem);
|
|
free:
|
|
mmput(mm);
|
|
info = free_map_info(info);
|
|
}
|
|
out:
|
|
percpu_up_write(&dup_mmap_sem);
|
|
return err;
|
|
}
|
|
|
|
static int __uprobe_register(struct uprobe *uprobe)
|
|
{
|
|
return register_for_each_vma(uprobe, true);
|
|
}
|
|
|
|
static void __uprobe_unregister(struct uprobe *uprobe)
|
|
{
|
|
if (!register_for_each_vma(uprobe, false))
|
|
delete_uprobe(uprobe);
|
|
|
|
/* TODO : cant unregister? schedule a worker thread */
|
|
}
|
|
|
|
/*
|
|
* uprobe_register - register a probe
|
|
* @inode: the file in which the probe has to be placed.
|
|
* @offset: offset from the start of the file.
|
|
* @uc: information on howto handle the probe..
|
|
*
|
|
* Apart from the access refcount, uprobe_register() takes a creation
|
|
* refcount (thro alloc_uprobe) if and only if this @uprobe is getting
|
|
* inserted into the rbtree (i.e first consumer for a @inode:@offset
|
|
* tuple). Creation refcount stops uprobe_unregister from freeing the
|
|
* @uprobe even before the register operation is complete. Creation
|
|
* refcount is released when the last @uc for the @uprobe
|
|
* unregisters.
|
|
*
|
|
* Return errno if it cannot successully install probes
|
|
* else return 0 (success)
|
|
*/
|
|
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
|
|
{
|
|
struct uprobe *uprobe;
|
|
int ret;
|
|
|
|
if (!inode || !uc || uc->next)
|
|
return -EINVAL;
|
|
|
|
if (offset > i_size_read(inode))
|
|
return -EINVAL;
|
|
|
|
ret = 0;
|
|
mutex_lock(uprobes_hash(inode));
|
|
uprobe = alloc_uprobe(inode, offset);
|
|
|
|
if (!uprobe) {
|
|
ret = -ENOMEM;
|
|
} else if (!consumer_add(uprobe, uc)) {
|
|
ret = __uprobe_register(uprobe);
|
|
if (ret) {
|
|
uprobe->consumers = NULL;
|
|
__uprobe_unregister(uprobe);
|
|
} else {
|
|
set_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(uprobes_hash(inode));
|
|
if (uprobe)
|
|
put_uprobe(uprobe);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* uprobe_unregister - unregister a already registered probe.
|
|
* @inode: the file in which the probe has to be removed.
|
|
* @offset: offset from the start of the file.
|
|
* @uc: identify which probe if multiple probes are colocated.
|
|
*/
|
|
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
|
|
{
|
|
struct uprobe *uprobe;
|
|
|
|
if (!inode || !uc)
|
|
return;
|
|
|
|
uprobe = find_uprobe(inode, offset);
|
|
if (!uprobe)
|
|
return;
|
|
|
|
mutex_lock(uprobes_hash(inode));
|
|
|
|
if (consumer_del(uprobe, uc)) {
|
|
if (!uprobe->consumers) {
|
|
__uprobe_unregister(uprobe);
|
|
clear_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(uprobes_hash(inode));
|
|
if (uprobe)
|
|
put_uprobe(uprobe);
|
|
}
|
|
|
|
static struct rb_node *
|
|
find_node_in_range(struct inode *inode, loff_t min, loff_t max)
|
|
{
|
|
struct rb_node *n = uprobes_tree.rb_node;
|
|
|
|
while (n) {
|
|
struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
|
|
|
|
if (inode < u->inode) {
|
|
n = n->rb_left;
|
|
} else if (inode > u->inode) {
|
|
n = n->rb_right;
|
|
} else {
|
|
if (max < u->offset)
|
|
n = n->rb_left;
|
|
else if (min > u->offset)
|
|
n = n->rb_right;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* For a given range in vma, build a list of probes that need to be inserted.
|
|
*/
|
|
static void build_probe_list(struct inode *inode,
|
|
struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
struct list_head *head)
|
|
{
|
|
loff_t min, max;
|
|
struct rb_node *n, *t;
|
|
struct uprobe *u;
|
|
|
|
INIT_LIST_HEAD(head);
|
|
min = vaddr_to_offset(vma, start);
|
|
max = min + (end - start) - 1;
|
|
|
|
spin_lock(&uprobes_treelock);
|
|
n = find_node_in_range(inode, min, max);
|
|
if (n) {
|
|
for (t = n; t; t = rb_prev(t)) {
|
|
u = rb_entry(t, struct uprobe, rb_node);
|
|
if (u->inode != inode || u->offset < min)
|
|
break;
|
|
list_add(&u->pending_list, head);
|
|
atomic_inc(&u->ref);
|
|
}
|
|
for (t = n; (t = rb_next(t)); ) {
|
|
u = rb_entry(t, struct uprobe, rb_node);
|
|
if (u->inode != inode || u->offset > max)
|
|
break;
|
|
list_add(&u->pending_list, head);
|
|
atomic_inc(&u->ref);
|
|
}
|
|
}
|
|
spin_unlock(&uprobes_treelock);
|
|
}
|
|
|
|
/*
|
|
* Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
|
|
*
|
|
* Currently we ignore all errors and always return 0, the callers
|
|
* can't handle the failure anyway.
|
|
*/
|
|
int uprobe_mmap(struct vm_area_struct *vma)
|
|
{
|
|
struct list_head tmp_list;
|
|
struct uprobe *uprobe, *u;
|
|
struct inode *inode;
|
|
|
|
if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
|
|
return 0;
|
|
|
|
inode = vma->vm_file->f_mapping->host;
|
|
if (!inode)
|
|
return 0;
|
|
|
|
mutex_lock(uprobes_mmap_hash(inode));
|
|
build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
|
|
|
|
list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
|
|
if (!fatal_signal_pending(current)) {
|
|
unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
|
|
install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
|
|
}
|
|
put_uprobe(uprobe);
|
|
}
|
|
mutex_unlock(uprobes_mmap_hash(inode));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
loff_t min, max;
|
|
struct inode *inode;
|
|
struct rb_node *n;
|
|
|
|
inode = vma->vm_file->f_mapping->host;
|
|
|
|
min = vaddr_to_offset(vma, start);
|
|
max = min + (end - start) - 1;
|
|
|
|
spin_lock(&uprobes_treelock);
|
|
n = find_node_in_range(inode, min, max);
|
|
spin_unlock(&uprobes_treelock);
|
|
|
|
return !!n;
|
|
}
|
|
|
|
/*
|
|
* Called in context of a munmap of a vma.
|
|
*/
|
|
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
|
|
return;
|
|
|
|
if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
|
|
return;
|
|
|
|
if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
|
|
test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
|
|
return;
|
|
|
|
if (vma_has_uprobes(vma, start, end))
|
|
set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
|
|
}
|
|
|
|
/* Slot allocation for XOL */
|
|
static int xol_add_vma(struct xol_area *area)
|
|
{
|
|
struct mm_struct *mm;
|
|
int ret;
|
|
|
|
area->page = alloc_page(GFP_HIGHUSER);
|
|
if (!area->page)
|
|
return -ENOMEM;
|
|
|
|
ret = -EALREADY;
|
|
mm = current->mm;
|
|
|
|
down_write(&mm->mmap_sem);
|
|
if (mm->uprobes_state.xol_area)
|
|
goto fail;
|
|
|
|
ret = -ENOMEM;
|
|
|
|
/* Try to map as high as possible, this is only a hint. */
|
|
area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
|
|
if (area->vaddr & ~PAGE_MASK) {
|
|
ret = area->vaddr;
|
|
goto fail;
|
|
}
|
|
|
|
ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
|
|
VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
smp_wmb(); /* pairs with get_xol_area() */
|
|
mm->uprobes_state.xol_area = area;
|
|
ret = 0;
|
|
|
|
fail:
|
|
up_write(&mm->mmap_sem);
|
|
if (ret)
|
|
__free_page(area->page);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct xol_area *get_xol_area(struct mm_struct *mm)
|
|
{
|
|
struct xol_area *area;
|
|
|
|
area = mm->uprobes_state.xol_area;
|
|
smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
|
|
|
|
return area;
|
|
}
|
|
|
|
/*
|
|
* xol_alloc_area - Allocate process's xol_area.
|
|
* This area will be used for storing instructions for execution out of
|
|
* line.
|
|
*
|
|
* Returns the allocated area or NULL.
|
|
*/
|
|
static struct xol_area *xol_alloc_area(void)
|
|
{
|
|
struct xol_area *area;
|
|
|
|
area = kzalloc(sizeof(*area), GFP_KERNEL);
|
|
if (unlikely(!area))
|
|
return NULL;
|
|
|
|
area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
|
|
|
|
if (!area->bitmap)
|
|
goto fail;
|
|
|
|
init_waitqueue_head(&area->wq);
|
|
if (!xol_add_vma(area))
|
|
return area;
|
|
|
|
fail:
|
|
kfree(area->bitmap);
|
|
kfree(area);
|
|
|
|
return get_xol_area(current->mm);
|
|
}
|
|
|
|
/*
|
|
* uprobe_clear_state - Free the area allocated for slots.
|
|
*/
|
|
void uprobe_clear_state(struct mm_struct *mm)
|
|
{
|
|
struct xol_area *area = mm->uprobes_state.xol_area;
|
|
|
|
if (!area)
|
|
return;
|
|
|
|
put_page(area->page);
|
|
kfree(area->bitmap);
|
|
kfree(area);
|
|
}
|
|
|
|
void uprobe_start_dup_mmap(void)
|
|
{
|
|
percpu_down_read(&dup_mmap_sem);
|
|
}
|
|
|
|
void uprobe_end_dup_mmap(void)
|
|
{
|
|
percpu_up_read(&dup_mmap_sem);
|
|
}
|
|
|
|
void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
|
|
{
|
|
newmm->uprobes_state.xol_area = NULL;
|
|
|
|
if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
|
|
set_bit(MMF_HAS_UPROBES, &newmm->flags);
|
|
/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
|
|
set_bit(MMF_RECALC_UPROBES, &newmm->flags);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* - search for a free slot.
|
|
*/
|
|
static unsigned long xol_take_insn_slot(struct xol_area *area)
|
|
{
|
|
unsigned long slot_addr;
|
|
int slot_nr;
|
|
|
|
do {
|
|
slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
|
|
if (slot_nr < UINSNS_PER_PAGE) {
|
|
if (!test_and_set_bit(slot_nr, area->bitmap))
|
|
break;
|
|
|
|
slot_nr = UINSNS_PER_PAGE;
|
|
continue;
|
|
}
|
|
wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
|
|
} while (slot_nr >= UINSNS_PER_PAGE);
|
|
|
|
slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
|
|
atomic_inc(&area->slot_count);
|
|
|
|
return slot_addr;
|
|
}
|
|
|
|
/*
|
|
* xol_get_insn_slot - If was not allocated a slot, then
|
|
* allocate a slot.
|
|
* Returns the allocated slot address or 0.
|
|
*/
|
|
static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
|
|
{
|
|
struct xol_area *area;
|
|
unsigned long offset;
|
|
void *vaddr;
|
|
|
|
area = get_xol_area(current->mm);
|
|
if (!area) {
|
|
area = xol_alloc_area();
|
|
if (!area)
|
|
return 0;
|
|
}
|
|
current->utask->xol_vaddr = xol_take_insn_slot(area);
|
|
|
|
/*
|
|
* Initialize the slot if xol_vaddr points to valid
|
|
* instruction slot.
|
|
*/
|
|
if (unlikely(!current->utask->xol_vaddr))
|
|
return 0;
|
|
|
|
current->utask->vaddr = slot_addr;
|
|
offset = current->utask->xol_vaddr & ~PAGE_MASK;
|
|
vaddr = kmap_atomic(area->page);
|
|
memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
|
|
kunmap_atomic(vaddr);
|
|
/*
|
|
* We probably need flush_icache_user_range() but it needs vma.
|
|
* This should work on supported architectures too.
|
|
*/
|
|
flush_dcache_page(area->page);
|
|
|
|
return current->utask->xol_vaddr;
|
|
}
|
|
|
|
/*
|
|
* xol_free_insn_slot - If slot was earlier allocated by
|
|
* @xol_get_insn_slot(), make the slot available for
|
|
* subsequent requests.
|
|
*/
|
|
static void xol_free_insn_slot(struct task_struct *tsk)
|
|
{
|
|
struct xol_area *area;
|
|
unsigned long vma_end;
|
|
unsigned long slot_addr;
|
|
|
|
if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
|
|
return;
|
|
|
|
slot_addr = tsk->utask->xol_vaddr;
|
|
|
|
if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
|
|
return;
|
|
|
|
area = tsk->mm->uprobes_state.xol_area;
|
|
vma_end = area->vaddr + PAGE_SIZE;
|
|
if (area->vaddr <= slot_addr && slot_addr < vma_end) {
|
|
unsigned long offset;
|
|
int slot_nr;
|
|
|
|
offset = slot_addr - area->vaddr;
|
|
slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
|
|
if (slot_nr >= UINSNS_PER_PAGE)
|
|
return;
|
|
|
|
clear_bit(slot_nr, area->bitmap);
|
|
atomic_dec(&area->slot_count);
|
|
if (waitqueue_active(&area->wq))
|
|
wake_up(&area->wq);
|
|
|
|
tsk->utask->xol_vaddr = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
|
|
* @regs: Reflects the saved state of the task after it has hit a breakpoint
|
|
* instruction.
|
|
* Return the address of the breakpoint instruction.
|
|
*/
|
|
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
|
|
{
|
|
return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Called with no locks held.
|
|
* Called in context of a exiting or a exec-ing thread.
|
|
*/
|
|
void uprobe_free_utask(struct task_struct *t)
|
|
{
|
|
struct uprobe_task *utask = t->utask;
|
|
|
|
if (!utask)
|
|
return;
|
|
|
|
if (utask->active_uprobe)
|
|
put_uprobe(utask->active_uprobe);
|
|
|
|
xol_free_insn_slot(t);
|
|
kfree(utask);
|
|
t->utask = NULL;
|
|
}
|
|
|
|
/*
|
|
* Called in context of a new clone/fork from copy_process.
|
|
*/
|
|
void uprobe_copy_process(struct task_struct *t)
|
|
{
|
|
t->utask = NULL;
|
|
}
|
|
|
|
/*
|
|
* Allocate a uprobe_task object for the task.
|
|
* Called when the thread hits a breakpoint for the first time.
|
|
*
|
|
* Returns:
|
|
* - pointer to new uprobe_task on success
|
|
* - NULL otherwise
|
|
*/
|
|
static struct uprobe_task *add_utask(void)
|
|
{
|
|
struct uprobe_task *utask;
|
|
|
|
utask = kzalloc(sizeof *utask, GFP_KERNEL);
|
|
if (unlikely(!utask))
|
|
return NULL;
|
|
|
|
current->utask = utask;
|
|
return utask;
|
|
}
|
|
|
|
/* Prepare to single-step probed instruction out of line. */
|
|
static int
|
|
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
|
|
{
|
|
if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
|
|
return 0;
|
|
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* If we are singlestepping, then ensure this thread is not connected to
|
|
* non-fatal signals until completion of singlestep. When xol insn itself
|
|
* triggers the signal, restart the original insn even if the task is
|
|
* already SIGKILL'ed (since coredump should report the correct ip). This
|
|
* is even more important if the task has a handler for SIGSEGV/etc, The
|
|
* _same_ instruction should be repeated again after return from the signal
|
|
* handler, and SSTEP can never finish in this case.
|
|
*/
|
|
bool uprobe_deny_signal(void)
|
|
{
|
|
struct task_struct *t = current;
|
|
struct uprobe_task *utask = t->utask;
|
|
|
|
if (likely(!utask || !utask->active_uprobe))
|
|
return false;
|
|
|
|
WARN_ON_ONCE(utask->state != UTASK_SSTEP);
|
|
|
|
if (signal_pending(t)) {
|
|
spin_lock_irq(&t->sighand->siglock);
|
|
clear_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
spin_unlock_irq(&t->sighand->siglock);
|
|
|
|
if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
|
|
utask->state = UTASK_SSTEP_TRAPPED;
|
|
set_tsk_thread_flag(t, TIF_UPROBE);
|
|
set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Avoid singlestepping the original instruction if the original instruction
|
|
* is a NOP or can be emulated.
|
|
*/
|
|
static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
|
|
{
|
|
if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
|
|
if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
|
|
return true;
|
|
clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void mmf_recalc_uprobes(struct mm_struct *mm)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
for (vma = mm->mmap; vma; vma = vma->vm_next) {
|
|
if (!valid_vma(vma, false))
|
|
continue;
|
|
/*
|
|
* This is not strictly accurate, we can race with
|
|
* uprobe_unregister() and see the already removed
|
|
* uprobe if delete_uprobe() was not yet called.
|
|
*/
|
|
if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
|
|
return;
|
|
}
|
|
|
|
clear_bit(MMF_HAS_UPROBES, &mm->flags);
|
|
}
|
|
|
|
static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
|
|
{
|
|
struct page *page;
|
|
uprobe_opcode_t opcode;
|
|
int result;
|
|
|
|
pagefault_disable();
|
|
result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
|
|
sizeof(opcode));
|
|
pagefault_enable();
|
|
|
|
if (likely(result == 0))
|
|
goto out;
|
|
|
|
result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
|
|
if (result < 0)
|
|
return result;
|
|
|
|
copy_opcode(page, vaddr, &opcode);
|
|
put_page(page);
|
|
out:
|
|
return is_swbp_insn(&opcode);
|
|
}
|
|
|
|
static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct uprobe *uprobe = NULL;
|
|
struct vm_area_struct *vma;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
vma = find_vma(mm, bp_vaddr);
|
|
if (vma && vma->vm_start <= bp_vaddr) {
|
|
if (valid_vma(vma, false)) {
|
|
struct inode *inode = vma->vm_file->f_mapping->host;
|
|
loff_t offset = vaddr_to_offset(vma, bp_vaddr);
|
|
|
|
uprobe = find_uprobe(inode, offset);
|
|
}
|
|
|
|
if (!uprobe)
|
|
*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
|
|
} else {
|
|
*is_swbp = -EFAULT;
|
|
}
|
|
|
|
if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
|
|
mmf_recalc_uprobes(mm);
|
|
up_read(&mm->mmap_sem);
|
|
|
|
return uprobe;
|
|
}
|
|
|
|
/*
|
|
* Run handler and ask thread to singlestep.
|
|
* Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
|
|
*/
|
|
static void handle_swbp(struct pt_regs *regs)
|
|
{
|
|
struct uprobe_task *utask;
|
|
struct uprobe *uprobe;
|
|
unsigned long bp_vaddr;
|
|
int uninitialized_var(is_swbp);
|
|
|
|
bp_vaddr = uprobe_get_swbp_addr(regs);
|
|
uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
|
|
|
|
if (!uprobe) {
|
|
if (is_swbp > 0) {
|
|
/* No matching uprobe; signal SIGTRAP. */
|
|
send_sig(SIGTRAP, current, 0);
|
|
} else {
|
|
/*
|
|
* Either we raced with uprobe_unregister() or we can't
|
|
* access this memory. The latter is only possible if
|
|
* another thread plays with our ->mm. In both cases
|
|
* we can simply restart. If this vma was unmapped we
|
|
* can pretend this insn was not executed yet and get
|
|
* the (correct) SIGSEGV after restart.
|
|
*/
|
|
instruction_pointer_set(regs, bp_vaddr);
|
|
}
|
|
return;
|
|
}
|
|
/*
|
|
* TODO: move copy_insn/etc into _register and remove this hack.
|
|
* After we hit the bp, _unregister + _register can install the
|
|
* new and not-yet-analyzed uprobe at the same address, restart.
|
|
*/
|
|
smp_rmb(); /* pairs with wmb() in install_breakpoint() */
|
|
if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
|
|
goto restart;
|
|
|
|
utask = current->utask;
|
|
if (!utask) {
|
|
utask = add_utask();
|
|
/* Cannot allocate; re-execute the instruction. */
|
|
if (!utask)
|
|
goto restart;
|
|
}
|
|
|
|
handler_chain(uprobe, regs);
|
|
if (can_skip_sstep(uprobe, regs))
|
|
goto out;
|
|
|
|
if (!pre_ssout(uprobe, regs, bp_vaddr)) {
|
|
utask->active_uprobe = uprobe;
|
|
utask->state = UTASK_SSTEP;
|
|
return;
|
|
}
|
|
|
|
restart:
|
|
/*
|
|
* cannot singlestep; cannot skip instruction;
|
|
* re-execute the instruction.
|
|
*/
|
|
instruction_pointer_set(regs, bp_vaddr);
|
|
out:
|
|
put_uprobe(uprobe);
|
|
}
|
|
|
|
/*
|
|
* Perform required fix-ups and disable singlestep.
|
|
* Allow pending signals to take effect.
|
|
*/
|
|
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
|
|
{
|
|
struct uprobe *uprobe;
|
|
|
|
uprobe = utask->active_uprobe;
|
|
if (utask->state == UTASK_SSTEP_ACK)
|
|
arch_uprobe_post_xol(&uprobe->arch, regs);
|
|
else if (utask->state == UTASK_SSTEP_TRAPPED)
|
|
arch_uprobe_abort_xol(&uprobe->arch, regs);
|
|
else
|
|
WARN_ON_ONCE(1);
|
|
|
|
put_uprobe(uprobe);
|
|
utask->active_uprobe = NULL;
|
|
utask->state = UTASK_RUNNING;
|
|
xol_free_insn_slot(current);
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
recalc_sigpending(); /* see uprobe_deny_signal() */
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
}
|
|
|
|
/*
|
|
* On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
|
|
* allows the thread to return from interrupt. After that handle_swbp()
|
|
* sets utask->active_uprobe.
|
|
*
|
|
* On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
|
|
* and allows the thread to return from interrupt.
|
|
*
|
|
* While returning to userspace, thread notices the TIF_UPROBE flag and calls
|
|
* uprobe_notify_resume().
|
|
*/
|
|
void uprobe_notify_resume(struct pt_regs *regs)
|
|
{
|
|
struct uprobe_task *utask;
|
|
|
|
clear_thread_flag(TIF_UPROBE);
|
|
|
|
utask = current->utask;
|
|
if (utask && utask->active_uprobe)
|
|
handle_singlestep(utask, regs);
|
|
else
|
|
handle_swbp(regs);
|
|
}
|
|
|
|
/*
|
|
* uprobe_pre_sstep_notifier gets called from interrupt context as part of
|
|
* notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
|
|
*/
|
|
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
|
|
{
|
|
if (!current->mm || !test_bit(MMF_HAS_UPROBES, ¤t->mm->flags))
|
|
return 0;
|
|
|
|
set_thread_flag(TIF_UPROBE);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
|
|
* mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
|
|
*/
|
|
int uprobe_post_sstep_notifier(struct pt_regs *regs)
|
|
{
|
|
struct uprobe_task *utask = current->utask;
|
|
|
|
if (!current->mm || !utask || !utask->active_uprobe)
|
|
/* task is currently not uprobed */
|
|
return 0;
|
|
|
|
utask->state = UTASK_SSTEP_ACK;
|
|
set_thread_flag(TIF_UPROBE);
|
|
return 1;
|
|
}
|
|
|
|
static struct notifier_block uprobe_exception_nb = {
|
|
.notifier_call = arch_uprobe_exception_notify,
|
|
.priority = INT_MAX-1, /* notified after kprobes, kgdb */
|
|
};
|
|
|
|
static int __init init_uprobes(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < UPROBES_HASH_SZ; i++) {
|
|
mutex_init(&uprobes_mutex[i]);
|
|
mutex_init(&uprobes_mmap_mutex[i]);
|
|
}
|
|
|
|
if (percpu_init_rwsem(&dup_mmap_sem))
|
|
return -ENOMEM;
|
|
|
|
return register_die_notifier(&uprobe_exception_nb);
|
|
}
|
|
module_init(init_uprobes);
|
|
|
|
static void __exit exit_uprobes(void)
|
|
{
|
|
}
|
|
module_exit(exit_uprobes);
|