mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-16 10:54:09 +08:00
9d97c99b18
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
3772 lines
110 KiB
C
3772 lines
110 KiB
C
/*
|
|
* Copyright 2012 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Alex Deucher
|
|
*/
|
|
#include <linux/firmware.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include "drmP.h"
|
|
#include "radeon.h"
|
|
#include "radeon_asic.h"
|
|
#include "cikd.h"
|
|
#include "atom.h"
|
|
#include "cik_blit_shaders.h"
|
|
|
|
/* GFX */
|
|
#define CIK_PFP_UCODE_SIZE 2144
|
|
#define CIK_ME_UCODE_SIZE 2144
|
|
#define CIK_CE_UCODE_SIZE 2144
|
|
/* compute */
|
|
#define CIK_MEC_UCODE_SIZE 4192
|
|
/* interrupts */
|
|
#define BONAIRE_RLC_UCODE_SIZE 2048
|
|
#define KB_RLC_UCODE_SIZE 2560
|
|
#define KV_RLC_UCODE_SIZE 2560
|
|
/* gddr controller */
|
|
#define CIK_MC_UCODE_SIZE 7866
|
|
|
|
MODULE_FIRMWARE("radeon/BONAIRE_pfp.bin");
|
|
MODULE_FIRMWARE("radeon/BONAIRE_me.bin");
|
|
MODULE_FIRMWARE("radeon/BONAIRE_ce.bin");
|
|
MODULE_FIRMWARE("radeon/BONAIRE_mec.bin");
|
|
MODULE_FIRMWARE("radeon/BONAIRE_mc.bin");
|
|
MODULE_FIRMWARE("radeon/BONAIRE_rlc.bin");
|
|
MODULE_FIRMWARE("radeon/KAVERI_pfp.bin");
|
|
MODULE_FIRMWARE("radeon/KAVERI_me.bin");
|
|
MODULE_FIRMWARE("radeon/KAVERI_ce.bin");
|
|
MODULE_FIRMWARE("radeon/KAVERI_mec.bin");
|
|
MODULE_FIRMWARE("radeon/KAVERI_rlc.bin");
|
|
MODULE_FIRMWARE("radeon/KABINI_pfp.bin");
|
|
MODULE_FIRMWARE("radeon/KABINI_me.bin");
|
|
MODULE_FIRMWARE("radeon/KABINI_ce.bin");
|
|
MODULE_FIRMWARE("radeon/KABINI_mec.bin");
|
|
MODULE_FIRMWARE("radeon/KABINI_rlc.bin");
|
|
|
|
extern int r600_ih_ring_alloc(struct radeon_device *rdev);
|
|
extern void r600_ih_ring_fini(struct radeon_device *rdev);
|
|
extern void evergreen_mc_stop(struct radeon_device *rdev, struct evergreen_mc_save *save);
|
|
extern void evergreen_mc_resume(struct radeon_device *rdev, struct evergreen_mc_save *save);
|
|
extern void si_vram_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc);
|
|
|
|
#define BONAIRE_IO_MC_REGS_SIZE 36
|
|
|
|
static const u32 bonaire_io_mc_regs[BONAIRE_IO_MC_REGS_SIZE][2] =
|
|
{
|
|
{0x00000070, 0x04400000},
|
|
{0x00000071, 0x80c01803},
|
|
{0x00000072, 0x00004004},
|
|
{0x00000073, 0x00000100},
|
|
{0x00000074, 0x00ff0000},
|
|
{0x00000075, 0x34000000},
|
|
{0x00000076, 0x08000014},
|
|
{0x00000077, 0x00cc08ec},
|
|
{0x00000078, 0x00000400},
|
|
{0x00000079, 0x00000000},
|
|
{0x0000007a, 0x04090000},
|
|
{0x0000007c, 0x00000000},
|
|
{0x0000007e, 0x4408a8e8},
|
|
{0x0000007f, 0x00000304},
|
|
{0x00000080, 0x00000000},
|
|
{0x00000082, 0x00000001},
|
|
{0x00000083, 0x00000002},
|
|
{0x00000084, 0xf3e4f400},
|
|
{0x00000085, 0x052024e3},
|
|
{0x00000087, 0x00000000},
|
|
{0x00000088, 0x01000000},
|
|
{0x0000008a, 0x1c0a0000},
|
|
{0x0000008b, 0xff010000},
|
|
{0x0000008d, 0xffffefff},
|
|
{0x0000008e, 0xfff3efff},
|
|
{0x0000008f, 0xfff3efbf},
|
|
{0x00000092, 0xf7ffffff},
|
|
{0x00000093, 0xffffff7f},
|
|
{0x00000095, 0x00101101},
|
|
{0x00000096, 0x00000fff},
|
|
{0x00000097, 0x00116fff},
|
|
{0x00000098, 0x60010000},
|
|
{0x00000099, 0x10010000},
|
|
{0x0000009a, 0x00006000},
|
|
{0x0000009b, 0x00001000},
|
|
{0x0000009f, 0x00b48000}
|
|
};
|
|
|
|
/* ucode loading */
|
|
/**
|
|
* ci_mc_load_microcode - load MC ucode into the hw
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Load the GDDR MC ucode into the hw (CIK).
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
static int ci_mc_load_microcode(struct radeon_device *rdev)
|
|
{
|
|
const __be32 *fw_data;
|
|
u32 running, blackout = 0;
|
|
u32 *io_mc_regs;
|
|
int i, ucode_size, regs_size;
|
|
|
|
if (!rdev->mc_fw)
|
|
return -EINVAL;
|
|
|
|
switch (rdev->family) {
|
|
case CHIP_BONAIRE:
|
|
default:
|
|
io_mc_regs = (u32 *)&bonaire_io_mc_regs;
|
|
ucode_size = CIK_MC_UCODE_SIZE;
|
|
regs_size = BONAIRE_IO_MC_REGS_SIZE;
|
|
break;
|
|
}
|
|
|
|
running = RREG32(MC_SEQ_SUP_CNTL) & RUN_MASK;
|
|
|
|
if (running == 0) {
|
|
if (running) {
|
|
blackout = RREG32(MC_SHARED_BLACKOUT_CNTL);
|
|
WREG32(MC_SHARED_BLACKOUT_CNTL, blackout | 1);
|
|
}
|
|
|
|
/* reset the engine and set to writable */
|
|
WREG32(MC_SEQ_SUP_CNTL, 0x00000008);
|
|
WREG32(MC_SEQ_SUP_CNTL, 0x00000010);
|
|
|
|
/* load mc io regs */
|
|
for (i = 0; i < regs_size; i++) {
|
|
WREG32(MC_SEQ_IO_DEBUG_INDEX, io_mc_regs[(i << 1)]);
|
|
WREG32(MC_SEQ_IO_DEBUG_DATA, io_mc_regs[(i << 1) + 1]);
|
|
}
|
|
/* load the MC ucode */
|
|
fw_data = (const __be32 *)rdev->mc_fw->data;
|
|
for (i = 0; i < ucode_size; i++)
|
|
WREG32(MC_SEQ_SUP_PGM, be32_to_cpup(fw_data++));
|
|
|
|
/* put the engine back into the active state */
|
|
WREG32(MC_SEQ_SUP_CNTL, 0x00000008);
|
|
WREG32(MC_SEQ_SUP_CNTL, 0x00000004);
|
|
WREG32(MC_SEQ_SUP_CNTL, 0x00000001);
|
|
|
|
/* wait for training to complete */
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D0)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D1)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
if (running)
|
|
WREG32(MC_SHARED_BLACKOUT_CNTL, blackout);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_init_microcode - load ucode images from disk
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Use the firmware interface to load the ucode images into
|
|
* the driver (not loaded into hw).
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
static int cik_init_microcode(struct radeon_device *rdev)
|
|
{
|
|
struct platform_device *pdev;
|
|
const char *chip_name;
|
|
size_t pfp_req_size, me_req_size, ce_req_size,
|
|
mec_req_size, rlc_req_size, mc_req_size;
|
|
char fw_name[30];
|
|
int err;
|
|
|
|
DRM_DEBUG("\n");
|
|
|
|
pdev = platform_device_register_simple("radeon_cp", 0, NULL, 0);
|
|
err = IS_ERR(pdev);
|
|
if (err) {
|
|
printk(KERN_ERR "radeon_cp: Failed to register firmware\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (rdev->family) {
|
|
case CHIP_BONAIRE:
|
|
chip_name = "BONAIRE";
|
|
pfp_req_size = CIK_PFP_UCODE_SIZE * 4;
|
|
me_req_size = CIK_ME_UCODE_SIZE * 4;
|
|
ce_req_size = CIK_CE_UCODE_SIZE * 4;
|
|
mec_req_size = CIK_MEC_UCODE_SIZE * 4;
|
|
rlc_req_size = BONAIRE_RLC_UCODE_SIZE * 4;
|
|
mc_req_size = CIK_MC_UCODE_SIZE * 4;
|
|
break;
|
|
case CHIP_KAVERI:
|
|
chip_name = "KAVERI";
|
|
pfp_req_size = CIK_PFP_UCODE_SIZE * 4;
|
|
me_req_size = CIK_ME_UCODE_SIZE * 4;
|
|
ce_req_size = CIK_CE_UCODE_SIZE * 4;
|
|
mec_req_size = CIK_MEC_UCODE_SIZE * 4;
|
|
rlc_req_size = KV_RLC_UCODE_SIZE * 4;
|
|
break;
|
|
case CHIP_KABINI:
|
|
chip_name = "KABINI";
|
|
pfp_req_size = CIK_PFP_UCODE_SIZE * 4;
|
|
me_req_size = CIK_ME_UCODE_SIZE * 4;
|
|
ce_req_size = CIK_CE_UCODE_SIZE * 4;
|
|
mec_req_size = CIK_MEC_UCODE_SIZE * 4;
|
|
rlc_req_size = KB_RLC_UCODE_SIZE * 4;
|
|
break;
|
|
default: BUG();
|
|
}
|
|
|
|
DRM_INFO("Loading %s Microcode\n", chip_name);
|
|
|
|
snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name);
|
|
err = request_firmware(&rdev->pfp_fw, fw_name, &pdev->dev);
|
|
if (err)
|
|
goto out;
|
|
if (rdev->pfp_fw->size != pfp_req_size) {
|
|
printk(KERN_ERR
|
|
"cik_cp: Bogus length %zu in firmware \"%s\"\n",
|
|
rdev->pfp_fw->size, fw_name);
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name);
|
|
err = request_firmware(&rdev->me_fw, fw_name, &pdev->dev);
|
|
if (err)
|
|
goto out;
|
|
if (rdev->me_fw->size != me_req_size) {
|
|
printk(KERN_ERR
|
|
"cik_cp: Bogus length %zu in firmware \"%s\"\n",
|
|
rdev->me_fw->size, fw_name);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
snprintf(fw_name, sizeof(fw_name), "radeon/%s_ce.bin", chip_name);
|
|
err = request_firmware(&rdev->ce_fw, fw_name, &pdev->dev);
|
|
if (err)
|
|
goto out;
|
|
if (rdev->ce_fw->size != ce_req_size) {
|
|
printk(KERN_ERR
|
|
"cik_cp: Bogus length %zu in firmware \"%s\"\n",
|
|
rdev->ce_fw->size, fw_name);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
snprintf(fw_name, sizeof(fw_name), "radeon/%s_mec.bin", chip_name);
|
|
err = request_firmware(&rdev->mec_fw, fw_name, &pdev->dev);
|
|
if (err)
|
|
goto out;
|
|
if (rdev->mec_fw->size != mec_req_size) {
|
|
printk(KERN_ERR
|
|
"cik_cp: Bogus length %zu in firmware \"%s\"\n",
|
|
rdev->mec_fw->size, fw_name);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", chip_name);
|
|
err = request_firmware(&rdev->rlc_fw, fw_name, &pdev->dev);
|
|
if (err)
|
|
goto out;
|
|
if (rdev->rlc_fw->size != rlc_req_size) {
|
|
printk(KERN_ERR
|
|
"cik_rlc: Bogus length %zu in firmware \"%s\"\n",
|
|
rdev->rlc_fw->size, fw_name);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
/* No MC ucode on APUs */
|
|
if (!(rdev->flags & RADEON_IS_IGP)) {
|
|
snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc.bin", chip_name);
|
|
err = request_firmware(&rdev->mc_fw, fw_name, &pdev->dev);
|
|
if (err)
|
|
goto out;
|
|
if (rdev->mc_fw->size != mc_req_size) {
|
|
printk(KERN_ERR
|
|
"cik_mc: Bogus length %zu in firmware \"%s\"\n",
|
|
rdev->mc_fw->size, fw_name);
|
|
err = -EINVAL;
|
|
}
|
|
}
|
|
|
|
out:
|
|
platform_device_unregister(pdev);
|
|
|
|
if (err) {
|
|
if (err != -EINVAL)
|
|
printk(KERN_ERR
|
|
"cik_cp: Failed to load firmware \"%s\"\n",
|
|
fw_name);
|
|
release_firmware(rdev->pfp_fw);
|
|
rdev->pfp_fw = NULL;
|
|
release_firmware(rdev->me_fw);
|
|
rdev->me_fw = NULL;
|
|
release_firmware(rdev->ce_fw);
|
|
rdev->ce_fw = NULL;
|
|
release_firmware(rdev->rlc_fw);
|
|
rdev->rlc_fw = NULL;
|
|
release_firmware(rdev->mc_fw);
|
|
rdev->mc_fw = NULL;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Core functions
|
|
*/
|
|
/**
|
|
* cik_tiling_mode_table_init - init the hw tiling table
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Starting with SI, the tiling setup is done globally in a
|
|
* set of 32 tiling modes. Rather than selecting each set of
|
|
* parameters per surface as on older asics, we just select
|
|
* which index in the tiling table we want to use, and the
|
|
* surface uses those parameters (CIK).
|
|
*/
|
|
static void cik_tiling_mode_table_init(struct radeon_device *rdev)
|
|
{
|
|
const u32 num_tile_mode_states = 32;
|
|
const u32 num_secondary_tile_mode_states = 16;
|
|
u32 reg_offset, gb_tile_moden, split_equal_to_row_size;
|
|
u32 num_pipe_configs;
|
|
u32 num_rbs = rdev->config.cik.max_backends_per_se *
|
|
rdev->config.cik.max_shader_engines;
|
|
|
|
switch (rdev->config.cik.mem_row_size_in_kb) {
|
|
case 1:
|
|
split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_1KB;
|
|
break;
|
|
case 2:
|
|
default:
|
|
split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_2KB;
|
|
break;
|
|
case 4:
|
|
split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_4KB;
|
|
break;
|
|
}
|
|
|
|
num_pipe_configs = rdev->config.cik.max_tile_pipes;
|
|
if (num_pipe_configs > 8)
|
|
num_pipe_configs = 8; /* ??? */
|
|
|
|
if (num_pipe_configs == 8) {
|
|
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
|
|
switch (reg_offset) {
|
|
case 0:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
|
|
break;
|
|
case 1:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
|
|
break;
|
|
case 2:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
|
|
break;
|
|
case 3:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
|
|
break;
|
|
case 4:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
|
|
TILE_SPLIT(split_equal_to_row_size));
|
|
break;
|
|
case 5:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
|
|
break;
|
|
case 6:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
|
|
break;
|
|
case 7:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
|
|
TILE_SPLIT(split_equal_to_row_size));
|
|
break;
|
|
case 8:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16));
|
|
break;
|
|
case 9:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
|
|
break;
|
|
case 10:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 11:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 12:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 13:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
|
|
break;
|
|
case 14:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 16:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 17:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 27:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
|
|
break;
|
|
case 28:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 29:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 30:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
default:
|
|
gb_tile_moden = 0;
|
|
break;
|
|
}
|
|
WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
|
|
}
|
|
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
|
|
switch (reg_offset) {
|
|
case 0:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 1:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 2:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 3:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 4:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
|
|
NUM_BANKS(ADDR_SURF_8_BANK));
|
|
break;
|
|
case 5:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
|
|
NUM_BANKS(ADDR_SURF_4_BANK));
|
|
break;
|
|
case 6:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
|
|
NUM_BANKS(ADDR_SURF_2_BANK));
|
|
break;
|
|
case 8:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 9:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 10:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 11:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 12:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
|
|
NUM_BANKS(ADDR_SURF_8_BANK));
|
|
break;
|
|
case 13:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
|
|
NUM_BANKS(ADDR_SURF_4_BANK));
|
|
break;
|
|
case 14:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
|
|
NUM_BANKS(ADDR_SURF_2_BANK));
|
|
break;
|
|
default:
|
|
gb_tile_moden = 0;
|
|
break;
|
|
}
|
|
WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
|
|
}
|
|
} else if (num_pipe_configs == 4) {
|
|
if (num_rbs == 4) {
|
|
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
|
|
switch (reg_offset) {
|
|
case 0:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
|
|
break;
|
|
case 1:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
|
|
break;
|
|
case 2:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
|
|
break;
|
|
case 3:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
|
|
break;
|
|
case 4:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
|
|
TILE_SPLIT(split_equal_to_row_size));
|
|
break;
|
|
case 5:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
|
|
break;
|
|
case 6:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
|
|
break;
|
|
case 7:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
|
|
TILE_SPLIT(split_equal_to_row_size));
|
|
break;
|
|
case 8:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_16x16));
|
|
break;
|
|
case 9:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
|
|
break;
|
|
case 10:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 11:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 12:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 13:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
|
|
break;
|
|
case 14:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 16:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 17:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 27:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
|
|
break;
|
|
case 28:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 29:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 30:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
default:
|
|
gb_tile_moden = 0;
|
|
break;
|
|
}
|
|
WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
|
|
}
|
|
} else if (num_rbs < 4) {
|
|
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
|
|
switch (reg_offset) {
|
|
case 0:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
|
|
break;
|
|
case 1:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
|
|
break;
|
|
case 2:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
|
|
break;
|
|
case 3:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
|
|
break;
|
|
case 4:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
TILE_SPLIT(split_equal_to_row_size));
|
|
break;
|
|
case 5:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
|
|
break;
|
|
case 6:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
|
|
break;
|
|
case 7:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
TILE_SPLIT(split_equal_to_row_size));
|
|
break;
|
|
case 8:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16));
|
|
break;
|
|
case 9:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
|
|
break;
|
|
case 10:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 11:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 12:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 13:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
|
|
break;
|
|
case 14:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 16:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 17:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 27:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
|
|
break;
|
|
case 28:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 29:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 30:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
default:
|
|
gb_tile_moden = 0;
|
|
break;
|
|
}
|
|
WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
|
|
}
|
|
}
|
|
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
|
|
switch (reg_offset) {
|
|
case 0:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 1:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 2:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 3:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 4:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 5:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
|
|
NUM_BANKS(ADDR_SURF_8_BANK));
|
|
break;
|
|
case 6:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
|
|
NUM_BANKS(ADDR_SURF_4_BANK));
|
|
break;
|
|
case 8:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 9:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 10:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 11:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 12:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 13:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
|
|
NUM_BANKS(ADDR_SURF_8_BANK));
|
|
break;
|
|
case 14:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
|
|
NUM_BANKS(ADDR_SURF_4_BANK));
|
|
break;
|
|
default:
|
|
gb_tile_moden = 0;
|
|
break;
|
|
}
|
|
WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
|
|
}
|
|
} else if (num_pipe_configs == 2) {
|
|
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
|
|
switch (reg_offset) {
|
|
case 0:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
|
|
break;
|
|
case 1:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
|
|
break;
|
|
case 2:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
|
|
break;
|
|
case 3:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
|
|
break;
|
|
case 4:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
TILE_SPLIT(split_equal_to_row_size));
|
|
break;
|
|
case 5:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
|
|
break;
|
|
case 6:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
|
|
break;
|
|
case 7:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
TILE_SPLIT(split_equal_to_row_size));
|
|
break;
|
|
case 8:
|
|
gb_tile_moden = ARRAY_MODE(ARRAY_LINEAR_ALIGNED);
|
|
break;
|
|
case 9:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
|
|
break;
|
|
case 10:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 11:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 12:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 13:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
|
|
break;
|
|
case 14:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 16:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 17:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 27:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
|
|
break;
|
|
case 28:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 29:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
case 30:
|
|
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
|
|
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
|
|
PIPE_CONFIG(ADDR_SURF_P2) |
|
|
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
|
|
break;
|
|
default:
|
|
gb_tile_moden = 0;
|
|
break;
|
|
}
|
|
WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
|
|
}
|
|
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
|
|
switch (reg_offset) {
|
|
case 0:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 1:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 2:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 3:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 4:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 5:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 6:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
|
|
NUM_BANKS(ADDR_SURF_8_BANK));
|
|
break;
|
|
case 8:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 9:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 10:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 11:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 12:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 13:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
|
|
NUM_BANKS(ADDR_SURF_16_BANK));
|
|
break;
|
|
case 14:
|
|
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
|
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
|
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
|
|
NUM_BANKS(ADDR_SURF_8_BANK));
|
|
break;
|
|
default:
|
|
gb_tile_moden = 0;
|
|
break;
|
|
}
|
|
WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
|
|
}
|
|
} else
|
|
DRM_ERROR("unknown num pipe config: 0x%x\n", num_pipe_configs);
|
|
}
|
|
|
|
/**
|
|
* cik_select_se_sh - select which SE, SH to address
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @se_num: shader engine to address
|
|
* @sh_num: sh block to address
|
|
*
|
|
* Select which SE, SH combinations to address. Certain
|
|
* registers are instanced per SE or SH. 0xffffffff means
|
|
* broadcast to all SEs or SHs (CIK).
|
|
*/
|
|
static void cik_select_se_sh(struct radeon_device *rdev,
|
|
u32 se_num, u32 sh_num)
|
|
{
|
|
u32 data = INSTANCE_BROADCAST_WRITES;
|
|
|
|
if ((se_num == 0xffffffff) && (sh_num == 0xffffffff))
|
|
data = SH_BROADCAST_WRITES | SE_BROADCAST_WRITES;
|
|
else if (se_num == 0xffffffff)
|
|
data |= SE_BROADCAST_WRITES | SH_INDEX(sh_num);
|
|
else if (sh_num == 0xffffffff)
|
|
data |= SH_BROADCAST_WRITES | SE_INDEX(se_num);
|
|
else
|
|
data |= SH_INDEX(sh_num) | SE_INDEX(se_num);
|
|
WREG32(GRBM_GFX_INDEX, data);
|
|
}
|
|
|
|
/**
|
|
* cik_create_bitmask - create a bitmask
|
|
*
|
|
* @bit_width: length of the mask
|
|
*
|
|
* create a variable length bit mask (CIK).
|
|
* Returns the bitmask.
|
|
*/
|
|
static u32 cik_create_bitmask(u32 bit_width)
|
|
{
|
|
u32 i, mask = 0;
|
|
|
|
for (i = 0; i < bit_width; i++) {
|
|
mask <<= 1;
|
|
mask |= 1;
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* cik_select_se_sh - select which SE, SH to address
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @max_rb_num: max RBs (render backends) for the asic
|
|
* @se_num: number of SEs (shader engines) for the asic
|
|
* @sh_per_se: number of SH blocks per SE for the asic
|
|
*
|
|
* Calculates the bitmask of disabled RBs (CIK).
|
|
* Returns the disabled RB bitmask.
|
|
*/
|
|
static u32 cik_get_rb_disabled(struct radeon_device *rdev,
|
|
u32 max_rb_num, u32 se_num,
|
|
u32 sh_per_se)
|
|
{
|
|
u32 data, mask;
|
|
|
|
data = RREG32(CC_RB_BACKEND_DISABLE);
|
|
if (data & 1)
|
|
data &= BACKEND_DISABLE_MASK;
|
|
else
|
|
data = 0;
|
|
data |= RREG32(GC_USER_RB_BACKEND_DISABLE);
|
|
|
|
data >>= BACKEND_DISABLE_SHIFT;
|
|
|
|
mask = cik_create_bitmask(max_rb_num / se_num / sh_per_se);
|
|
|
|
return data & mask;
|
|
}
|
|
|
|
/**
|
|
* cik_setup_rb - setup the RBs on the asic
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @se_num: number of SEs (shader engines) for the asic
|
|
* @sh_per_se: number of SH blocks per SE for the asic
|
|
* @max_rb_num: max RBs (render backends) for the asic
|
|
*
|
|
* Configures per-SE/SH RB registers (CIK).
|
|
*/
|
|
static void cik_setup_rb(struct radeon_device *rdev,
|
|
u32 se_num, u32 sh_per_se,
|
|
u32 max_rb_num)
|
|
{
|
|
int i, j;
|
|
u32 data, mask;
|
|
u32 disabled_rbs = 0;
|
|
u32 enabled_rbs = 0;
|
|
|
|
for (i = 0; i < se_num; i++) {
|
|
for (j = 0; j < sh_per_se; j++) {
|
|
cik_select_se_sh(rdev, i, j);
|
|
data = cik_get_rb_disabled(rdev, max_rb_num, se_num, sh_per_se);
|
|
disabled_rbs |= data << ((i * sh_per_se + j) * CIK_RB_BITMAP_WIDTH_PER_SH);
|
|
}
|
|
}
|
|
cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);
|
|
|
|
mask = 1;
|
|
for (i = 0; i < max_rb_num; i++) {
|
|
if (!(disabled_rbs & mask))
|
|
enabled_rbs |= mask;
|
|
mask <<= 1;
|
|
}
|
|
|
|
for (i = 0; i < se_num; i++) {
|
|
cik_select_se_sh(rdev, i, 0xffffffff);
|
|
data = 0;
|
|
for (j = 0; j < sh_per_se; j++) {
|
|
switch (enabled_rbs & 3) {
|
|
case 1:
|
|
data |= (RASTER_CONFIG_RB_MAP_0 << (i * sh_per_se + j) * 2);
|
|
break;
|
|
case 2:
|
|
data |= (RASTER_CONFIG_RB_MAP_3 << (i * sh_per_se + j) * 2);
|
|
break;
|
|
case 3:
|
|
default:
|
|
data |= (RASTER_CONFIG_RB_MAP_2 << (i * sh_per_se + j) * 2);
|
|
break;
|
|
}
|
|
enabled_rbs >>= 2;
|
|
}
|
|
WREG32(PA_SC_RASTER_CONFIG, data);
|
|
}
|
|
cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);
|
|
}
|
|
|
|
/**
|
|
* cik_gpu_init - setup the 3D engine
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Configures the 3D engine and tiling configuration
|
|
* registers so that the 3D engine is usable.
|
|
*/
|
|
static void cik_gpu_init(struct radeon_device *rdev)
|
|
{
|
|
u32 gb_addr_config = RREG32(GB_ADDR_CONFIG);
|
|
u32 mc_shared_chmap, mc_arb_ramcfg;
|
|
u32 hdp_host_path_cntl;
|
|
u32 tmp;
|
|
int i, j;
|
|
|
|
switch (rdev->family) {
|
|
case CHIP_BONAIRE:
|
|
rdev->config.cik.max_shader_engines = 2;
|
|
rdev->config.cik.max_tile_pipes = 4;
|
|
rdev->config.cik.max_cu_per_sh = 7;
|
|
rdev->config.cik.max_sh_per_se = 1;
|
|
rdev->config.cik.max_backends_per_se = 2;
|
|
rdev->config.cik.max_texture_channel_caches = 4;
|
|
rdev->config.cik.max_gprs = 256;
|
|
rdev->config.cik.max_gs_threads = 32;
|
|
rdev->config.cik.max_hw_contexts = 8;
|
|
|
|
rdev->config.cik.sc_prim_fifo_size_frontend = 0x20;
|
|
rdev->config.cik.sc_prim_fifo_size_backend = 0x100;
|
|
rdev->config.cik.sc_hiz_tile_fifo_size = 0x30;
|
|
rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130;
|
|
gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN;
|
|
break;
|
|
case CHIP_KAVERI:
|
|
/* TODO */
|
|
break;
|
|
case CHIP_KABINI:
|
|
default:
|
|
rdev->config.cik.max_shader_engines = 1;
|
|
rdev->config.cik.max_tile_pipes = 2;
|
|
rdev->config.cik.max_cu_per_sh = 2;
|
|
rdev->config.cik.max_sh_per_se = 1;
|
|
rdev->config.cik.max_backends_per_se = 1;
|
|
rdev->config.cik.max_texture_channel_caches = 2;
|
|
rdev->config.cik.max_gprs = 256;
|
|
rdev->config.cik.max_gs_threads = 16;
|
|
rdev->config.cik.max_hw_contexts = 8;
|
|
|
|
rdev->config.cik.sc_prim_fifo_size_frontend = 0x20;
|
|
rdev->config.cik.sc_prim_fifo_size_backend = 0x100;
|
|
rdev->config.cik.sc_hiz_tile_fifo_size = 0x30;
|
|
rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130;
|
|
gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN;
|
|
break;
|
|
}
|
|
|
|
/* Initialize HDP */
|
|
for (i = 0, j = 0; i < 32; i++, j += 0x18) {
|
|
WREG32((0x2c14 + j), 0x00000000);
|
|
WREG32((0x2c18 + j), 0x00000000);
|
|
WREG32((0x2c1c + j), 0x00000000);
|
|
WREG32((0x2c20 + j), 0x00000000);
|
|
WREG32((0x2c24 + j), 0x00000000);
|
|
}
|
|
|
|
WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff));
|
|
|
|
WREG32(BIF_FB_EN, FB_READ_EN | FB_WRITE_EN);
|
|
|
|
mc_shared_chmap = RREG32(MC_SHARED_CHMAP);
|
|
mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG);
|
|
|
|
rdev->config.cik.num_tile_pipes = rdev->config.cik.max_tile_pipes;
|
|
rdev->config.cik.mem_max_burst_length_bytes = 256;
|
|
tmp = (mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT;
|
|
rdev->config.cik.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024;
|
|
if (rdev->config.cik.mem_row_size_in_kb > 4)
|
|
rdev->config.cik.mem_row_size_in_kb = 4;
|
|
/* XXX use MC settings? */
|
|
rdev->config.cik.shader_engine_tile_size = 32;
|
|
rdev->config.cik.num_gpus = 1;
|
|
rdev->config.cik.multi_gpu_tile_size = 64;
|
|
|
|
/* fix up row size */
|
|
gb_addr_config &= ~ROW_SIZE_MASK;
|
|
switch (rdev->config.cik.mem_row_size_in_kb) {
|
|
case 1:
|
|
default:
|
|
gb_addr_config |= ROW_SIZE(0);
|
|
break;
|
|
case 2:
|
|
gb_addr_config |= ROW_SIZE(1);
|
|
break;
|
|
case 4:
|
|
gb_addr_config |= ROW_SIZE(2);
|
|
break;
|
|
}
|
|
|
|
/* setup tiling info dword. gb_addr_config is not adequate since it does
|
|
* not have bank info, so create a custom tiling dword.
|
|
* bits 3:0 num_pipes
|
|
* bits 7:4 num_banks
|
|
* bits 11:8 group_size
|
|
* bits 15:12 row_size
|
|
*/
|
|
rdev->config.cik.tile_config = 0;
|
|
switch (rdev->config.cik.num_tile_pipes) {
|
|
case 1:
|
|
rdev->config.cik.tile_config |= (0 << 0);
|
|
break;
|
|
case 2:
|
|
rdev->config.cik.tile_config |= (1 << 0);
|
|
break;
|
|
case 4:
|
|
rdev->config.cik.tile_config |= (2 << 0);
|
|
break;
|
|
case 8:
|
|
default:
|
|
/* XXX what about 12? */
|
|
rdev->config.cik.tile_config |= (3 << 0);
|
|
break;
|
|
}
|
|
if ((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT)
|
|
rdev->config.cik.tile_config |= 1 << 4;
|
|
else
|
|
rdev->config.cik.tile_config |= 0 << 4;
|
|
rdev->config.cik.tile_config |=
|
|
((gb_addr_config & PIPE_INTERLEAVE_SIZE_MASK) >> PIPE_INTERLEAVE_SIZE_SHIFT) << 8;
|
|
rdev->config.cik.tile_config |=
|
|
((gb_addr_config & ROW_SIZE_MASK) >> ROW_SIZE_SHIFT) << 12;
|
|
|
|
WREG32(GB_ADDR_CONFIG, gb_addr_config);
|
|
WREG32(HDP_ADDR_CONFIG, gb_addr_config);
|
|
WREG32(DMIF_ADDR_CALC, gb_addr_config);
|
|
|
|
cik_tiling_mode_table_init(rdev);
|
|
|
|
cik_setup_rb(rdev, rdev->config.cik.max_shader_engines,
|
|
rdev->config.cik.max_sh_per_se,
|
|
rdev->config.cik.max_backends_per_se);
|
|
|
|
/* set HW defaults for 3D engine */
|
|
WREG32(CP_MEQ_THRESHOLDS, MEQ1_START(0x30) | MEQ2_START(0x60));
|
|
|
|
WREG32(SX_DEBUG_1, 0x20);
|
|
|
|
WREG32(TA_CNTL_AUX, 0x00010000);
|
|
|
|
tmp = RREG32(SPI_CONFIG_CNTL);
|
|
tmp |= 0x03000000;
|
|
WREG32(SPI_CONFIG_CNTL, tmp);
|
|
|
|
WREG32(SQ_CONFIG, 1);
|
|
|
|
WREG32(DB_DEBUG, 0);
|
|
|
|
tmp = RREG32(DB_DEBUG2) & ~0xf00fffff;
|
|
tmp |= 0x00000400;
|
|
WREG32(DB_DEBUG2, tmp);
|
|
|
|
tmp = RREG32(DB_DEBUG3) & ~0x0002021c;
|
|
tmp |= 0x00020200;
|
|
WREG32(DB_DEBUG3, tmp);
|
|
|
|
tmp = RREG32(CB_HW_CONTROL) & ~0x00010000;
|
|
tmp |= 0x00018208;
|
|
WREG32(CB_HW_CONTROL, tmp);
|
|
|
|
WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4));
|
|
|
|
WREG32(PA_SC_FIFO_SIZE, (SC_FRONTEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_frontend) |
|
|
SC_BACKEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_backend) |
|
|
SC_HIZ_TILE_FIFO_SIZE(rdev->config.cik.sc_hiz_tile_fifo_size) |
|
|
SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.cik.sc_earlyz_tile_fifo_size)));
|
|
|
|
WREG32(VGT_NUM_INSTANCES, 1);
|
|
|
|
WREG32(CP_PERFMON_CNTL, 0);
|
|
|
|
WREG32(SQ_CONFIG, 0);
|
|
|
|
WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) |
|
|
FORCE_EOV_MAX_REZ_CNT(255)));
|
|
|
|
WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC) |
|
|
AUTO_INVLD_EN(ES_AND_GS_AUTO));
|
|
|
|
WREG32(VGT_GS_VERTEX_REUSE, 16);
|
|
WREG32(PA_SC_LINE_STIPPLE_STATE, 0);
|
|
|
|
tmp = RREG32(HDP_MISC_CNTL);
|
|
tmp |= HDP_FLUSH_INVALIDATE_CACHE;
|
|
WREG32(HDP_MISC_CNTL, tmp);
|
|
|
|
hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL);
|
|
WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl);
|
|
|
|
WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3));
|
|
WREG32(PA_SC_ENHANCE, ENABLE_PA_SC_OUT_OF_ORDER);
|
|
|
|
udelay(50);
|
|
}
|
|
|
|
/*
|
|
* GPU scratch registers helpers function.
|
|
*/
|
|
/**
|
|
* cik_scratch_init - setup driver info for CP scratch regs
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Set up the number and offset of the CP scratch registers.
|
|
* NOTE: use of CP scratch registers is a legacy inferface and
|
|
* is not used by default on newer asics (r6xx+). On newer asics,
|
|
* memory buffers are used for fences rather than scratch regs.
|
|
*/
|
|
static void cik_scratch_init(struct radeon_device *rdev)
|
|
{
|
|
int i;
|
|
|
|
rdev->scratch.num_reg = 7;
|
|
rdev->scratch.reg_base = SCRATCH_REG0;
|
|
for (i = 0; i < rdev->scratch.num_reg; i++) {
|
|
rdev->scratch.free[i] = true;
|
|
rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cik_ring_test - basic gfx ring test
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Allocate a scratch register and write to it using the gfx ring (CIK).
|
|
* Provides a basic gfx ring test to verify that the ring is working.
|
|
* Used by cik_cp_gfx_resume();
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
int cik_ring_test(struct radeon_device *rdev, struct radeon_ring *ring)
|
|
{
|
|
uint32_t scratch;
|
|
uint32_t tmp = 0;
|
|
unsigned i;
|
|
int r;
|
|
|
|
r = radeon_scratch_get(rdev, &scratch);
|
|
if (r) {
|
|
DRM_ERROR("radeon: cp failed to get scratch reg (%d).\n", r);
|
|
return r;
|
|
}
|
|
WREG32(scratch, 0xCAFEDEAD);
|
|
r = radeon_ring_lock(rdev, ring, 3);
|
|
if (r) {
|
|
DRM_ERROR("radeon: cp failed to lock ring %d (%d).\n", ring->idx, r);
|
|
radeon_scratch_free(rdev, scratch);
|
|
return r;
|
|
}
|
|
radeon_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1));
|
|
radeon_ring_write(ring, ((scratch - PACKET3_SET_UCONFIG_REG_START) >> 2));
|
|
radeon_ring_write(ring, 0xDEADBEEF);
|
|
radeon_ring_unlock_commit(rdev, ring);
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
tmp = RREG32(scratch);
|
|
if (tmp == 0xDEADBEEF)
|
|
break;
|
|
DRM_UDELAY(1);
|
|
}
|
|
if (i < rdev->usec_timeout) {
|
|
DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
|
|
} else {
|
|
DRM_ERROR("radeon: ring %d test failed (scratch(0x%04X)=0x%08X)\n",
|
|
ring->idx, scratch, tmp);
|
|
r = -EINVAL;
|
|
}
|
|
radeon_scratch_free(rdev, scratch);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* cik_fence_ring_emit - emit a fence on the gfx ring
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @fence: radeon fence object
|
|
*
|
|
* Emits a fence sequnce number on the gfx ring and flushes
|
|
* GPU caches.
|
|
*/
|
|
void cik_fence_ring_emit(struct radeon_device *rdev,
|
|
struct radeon_fence *fence)
|
|
{
|
|
struct radeon_ring *ring = &rdev->ring[fence->ring];
|
|
u64 addr = rdev->fence_drv[fence->ring].gpu_addr;
|
|
|
|
/* EVENT_WRITE_EOP - flush caches, send int */
|
|
radeon_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4));
|
|
radeon_ring_write(ring, (EOP_TCL1_ACTION_EN |
|
|
EOP_TC_ACTION_EN |
|
|
EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) |
|
|
EVENT_INDEX(5)));
|
|
radeon_ring_write(ring, addr & 0xfffffffc);
|
|
radeon_ring_write(ring, (upper_32_bits(addr) & 0xffff) | DATA_SEL(1) | INT_SEL(2));
|
|
radeon_ring_write(ring, fence->seq);
|
|
radeon_ring_write(ring, 0);
|
|
/* HDP flush */
|
|
/* We should be using the new WAIT_REG_MEM special op packet here
|
|
* but it causes the CP to hang
|
|
*/
|
|
radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
|
|
radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
|
|
WRITE_DATA_DST_SEL(0)));
|
|
radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2);
|
|
radeon_ring_write(ring, 0);
|
|
radeon_ring_write(ring, 0);
|
|
}
|
|
|
|
void cik_semaphore_ring_emit(struct radeon_device *rdev,
|
|
struct radeon_ring *ring,
|
|
struct radeon_semaphore *semaphore,
|
|
bool emit_wait)
|
|
{
|
|
uint64_t addr = semaphore->gpu_addr;
|
|
unsigned sel = emit_wait ? PACKET3_SEM_SEL_WAIT : PACKET3_SEM_SEL_SIGNAL;
|
|
|
|
radeon_ring_write(ring, PACKET3(PACKET3_MEM_SEMAPHORE, 1));
|
|
radeon_ring_write(ring, addr & 0xffffffff);
|
|
radeon_ring_write(ring, (upper_32_bits(addr) & 0xffff) | sel);
|
|
}
|
|
|
|
/*
|
|
* IB stuff
|
|
*/
|
|
/**
|
|
* cik_ring_ib_execute - emit an IB (Indirect Buffer) on the gfx ring
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ib: radeon indirect buffer object
|
|
*
|
|
* Emits an DE (drawing engine) or CE (constant engine) IB
|
|
* on the gfx ring. IBs are usually generated by userspace
|
|
* acceleration drivers and submitted to the kernel for
|
|
* sheduling on the ring. This function schedules the IB
|
|
* on the gfx ring for execution by the GPU.
|
|
*/
|
|
void cik_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib)
|
|
{
|
|
struct radeon_ring *ring = &rdev->ring[ib->ring];
|
|
u32 header, control = INDIRECT_BUFFER_VALID;
|
|
|
|
if (ib->is_const_ib) {
|
|
/* set switch buffer packet before const IB */
|
|
radeon_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
|
|
radeon_ring_write(ring, 0);
|
|
|
|
header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2);
|
|
} else {
|
|
u32 next_rptr;
|
|
if (ring->rptr_save_reg) {
|
|
next_rptr = ring->wptr + 3 + 4;
|
|
radeon_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1));
|
|
radeon_ring_write(ring, ((ring->rptr_save_reg -
|
|
PACKET3_SET_UCONFIG_REG_START) >> 2));
|
|
radeon_ring_write(ring, next_rptr);
|
|
} else if (rdev->wb.enabled) {
|
|
next_rptr = ring->wptr + 5 + 4;
|
|
radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
|
|
radeon_ring_write(ring, WRITE_DATA_DST_SEL(1));
|
|
radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
|
|
radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff);
|
|
radeon_ring_write(ring, next_rptr);
|
|
}
|
|
|
|
header = PACKET3(PACKET3_INDIRECT_BUFFER, 2);
|
|
}
|
|
|
|
control |= ib->length_dw |
|
|
(ib->vm ? (ib->vm->id << 24) : 0);
|
|
|
|
radeon_ring_write(ring, header);
|
|
radeon_ring_write(ring,
|
|
#ifdef __BIG_ENDIAN
|
|
(2 << 0) |
|
|
#endif
|
|
(ib->gpu_addr & 0xFFFFFFFC));
|
|
radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF);
|
|
radeon_ring_write(ring, control);
|
|
}
|
|
|
|
/**
|
|
* cik_ib_test - basic gfx ring IB test
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Allocate an IB and execute it on the gfx ring (CIK).
|
|
* Provides a basic gfx ring test to verify that IBs are working.
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
int cik_ib_test(struct radeon_device *rdev, struct radeon_ring *ring)
|
|
{
|
|
struct radeon_ib ib;
|
|
uint32_t scratch;
|
|
uint32_t tmp = 0;
|
|
unsigned i;
|
|
int r;
|
|
|
|
r = radeon_scratch_get(rdev, &scratch);
|
|
if (r) {
|
|
DRM_ERROR("radeon: failed to get scratch reg (%d).\n", r);
|
|
return r;
|
|
}
|
|
WREG32(scratch, 0xCAFEDEAD);
|
|
r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256);
|
|
if (r) {
|
|
DRM_ERROR("radeon: failed to get ib (%d).\n", r);
|
|
return r;
|
|
}
|
|
ib.ptr[0] = PACKET3(PACKET3_SET_UCONFIG_REG, 1);
|
|
ib.ptr[1] = ((scratch - PACKET3_SET_UCONFIG_REG_START) >> 2);
|
|
ib.ptr[2] = 0xDEADBEEF;
|
|
ib.length_dw = 3;
|
|
r = radeon_ib_schedule(rdev, &ib, NULL);
|
|
if (r) {
|
|
radeon_scratch_free(rdev, scratch);
|
|
radeon_ib_free(rdev, &ib);
|
|
DRM_ERROR("radeon: failed to schedule ib (%d).\n", r);
|
|
return r;
|
|
}
|
|
r = radeon_fence_wait(ib.fence, false);
|
|
if (r) {
|
|
DRM_ERROR("radeon: fence wait failed (%d).\n", r);
|
|
return r;
|
|
}
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
tmp = RREG32(scratch);
|
|
if (tmp == 0xDEADBEEF)
|
|
break;
|
|
DRM_UDELAY(1);
|
|
}
|
|
if (i < rdev->usec_timeout) {
|
|
DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i);
|
|
} else {
|
|
DRM_ERROR("radeon: ib test failed (scratch(0x%04X)=0x%08X)\n",
|
|
scratch, tmp);
|
|
r = -EINVAL;
|
|
}
|
|
radeon_scratch_free(rdev, scratch);
|
|
radeon_ib_free(rdev, &ib);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* CP.
|
|
* On CIK, gfx and compute now have independant command processors.
|
|
*
|
|
* GFX
|
|
* Gfx consists of a single ring and can process both gfx jobs and
|
|
* compute jobs. The gfx CP consists of three microengines (ME):
|
|
* PFP - Pre-Fetch Parser
|
|
* ME - Micro Engine
|
|
* CE - Constant Engine
|
|
* The PFP and ME make up what is considered the Drawing Engine (DE).
|
|
* The CE is an asynchronous engine used for updating buffer desciptors
|
|
* used by the DE so that they can be loaded into cache in parallel
|
|
* while the DE is processing state update packets.
|
|
*
|
|
* Compute
|
|
* The compute CP consists of two microengines (ME):
|
|
* MEC1 - Compute MicroEngine 1
|
|
* MEC2 - Compute MicroEngine 2
|
|
* Each MEC supports 4 compute pipes and each pipe supports 8 queues.
|
|
* The queues are exposed to userspace and are programmed directly
|
|
* by the compute runtime.
|
|
*/
|
|
/**
|
|
* cik_cp_gfx_enable - enable/disable the gfx CP MEs
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @enable: enable or disable the MEs
|
|
*
|
|
* Halts or unhalts the gfx MEs.
|
|
*/
|
|
static void cik_cp_gfx_enable(struct radeon_device *rdev, bool enable)
|
|
{
|
|
if (enable)
|
|
WREG32(CP_ME_CNTL, 0);
|
|
else {
|
|
WREG32(CP_ME_CNTL, (CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT));
|
|
rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false;
|
|
}
|
|
udelay(50);
|
|
}
|
|
|
|
/**
|
|
* cik_cp_gfx_load_microcode - load the gfx CP ME ucode
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Loads the gfx PFP, ME, and CE ucode.
|
|
* Returns 0 for success, -EINVAL if the ucode is not available.
|
|
*/
|
|
static int cik_cp_gfx_load_microcode(struct radeon_device *rdev)
|
|
{
|
|
const __be32 *fw_data;
|
|
int i;
|
|
|
|
if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw)
|
|
return -EINVAL;
|
|
|
|
cik_cp_gfx_enable(rdev, false);
|
|
|
|
/* PFP */
|
|
fw_data = (const __be32 *)rdev->pfp_fw->data;
|
|
WREG32(CP_PFP_UCODE_ADDR, 0);
|
|
for (i = 0; i < CIK_PFP_UCODE_SIZE; i++)
|
|
WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++));
|
|
WREG32(CP_PFP_UCODE_ADDR, 0);
|
|
|
|
/* CE */
|
|
fw_data = (const __be32 *)rdev->ce_fw->data;
|
|
WREG32(CP_CE_UCODE_ADDR, 0);
|
|
for (i = 0; i < CIK_CE_UCODE_SIZE; i++)
|
|
WREG32(CP_CE_UCODE_DATA, be32_to_cpup(fw_data++));
|
|
WREG32(CP_CE_UCODE_ADDR, 0);
|
|
|
|
/* ME */
|
|
fw_data = (const __be32 *)rdev->me_fw->data;
|
|
WREG32(CP_ME_RAM_WADDR, 0);
|
|
for (i = 0; i < CIK_ME_UCODE_SIZE; i++)
|
|
WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++));
|
|
WREG32(CP_ME_RAM_WADDR, 0);
|
|
|
|
WREG32(CP_PFP_UCODE_ADDR, 0);
|
|
WREG32(CP_CE_UCODE_ADDR, 0);
|
|
WREG32(CP_ME_RAM_WADDR, 0);
|
|
WREG32(CP_ME_RAM_RADDR, 0);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_cp_gfx_start - start the gfx ring
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Enables the ring and loads the clear state context and other
|
|
* packets required to init the ring.
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
static int cik_cp_gfx_start(struct radeon_device *rdev)
|
|
{
|
|
struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
|
|
int r, i;
|
|
|
|
/* init the CP */
|
|
WREG32(CP_MAX_CONTEXT, rdev->config.cik.max_hw_contexts - 1);
|
|
WREG32(CP_ENDIAN_SWAP, 0);
|
|
WREG32(CP_DEVICE_ID, 1);
|
|
|
|
cik_cp_gfx_enable(rdev, true);
|
|
|
|
r = radeon_ring_lock(rdev, ring, cik_default_size + 17);
|
|
if (r) {
|
|
DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r);
|
|
return r;
|
|
}
|
|
|
|
/* init the CE partitions. CE only used for gfx on CIK */
|
|
radeon_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2));
|
|
radeon_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE));
|
|
radeon_ring_write(ring, 0xc000);
|
|
radeon_ring_write(ring, 0xc000);
|
|
|
|
/* setup clear context state */
|
|
radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
|
|
radeon_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
|
|
|
|
radeon_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1));
|
|
radeon_ring_write(ring, 0x80000000);
|
|
radeon_ring_write(ring, 0x80000000);
|
|
|
|
for (i = 0; i < cik_default_size; i++)
|
|
radeon_ring_write(ring, cik_default_state[i]);
|
|
|
|
radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
|
|
radeon_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE);
|
|
|
|
/* set clear context state */
|
|
radeon_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
|
|
radeon_ring_write(ring, 0);
|
|
|
|
radeon_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2));
|
|
radeon_ring_write(ring, 0x00000316);
|
|
radeon_ring_write(ring, 0x0000000e); /* VGT_VERTEX_REUSE_BLOCK_CNTL */
|
|
radeon_ring_write(ring, 0x00000010); /* VGT_OUT_DEALLOC_CNTL */
|
|
|
|
radeon_ring_unlock_commit(rdev, ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_cp_gfx_fini - stop the gfx ring
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Stop the gfx ring and tear down the driver ring
|
|
* info.
|
|
*/
|
|
static void cik_cp_gfx_fini(struct radeon_device *rdev)
|
|
{
|
|
cik_cp_gfx_enable(rdev, false);
|
|
radeon_ring_fini(rdev, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]);
|
|
}
|
|
|
|
/**
|
|
* cik_cp_gfx_resume - setup the gfx ring buffer registers
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Program the location and size of the gfx ring buffer
|
|
* and test it to make sure it's working.
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
static int cik_cp_gfx_resume(struct radeon_device *rdev)
|
|
{
|
|
struct radeon_ring *ring;
|
|
u32 tmp;
|
|
u32 rb_bufsz;
|
|
u64 rb_addr;
|
|
int r;
|
|
|
|
WREG32(CP_SEM_WAIT_TIMER, 0x0);
|
|
WREG32(CP_SEM_INCOMPLETE_TIMER_CNTL, 0x0);
|
|
|
|
/* Set the write pointer delay */
|
|
WREG32(CP_RB_WPTR_DELAY, 0);
|
|
|
|
/* set the RB to use vmid 0 */
|
|
WREG32(CP_RB_VMID, 0);
|
|
|
|
WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF);
|
|
|
|
/* ring 0 - compute and gfx */
|
|
/* Set ring buffer size */
|
|
ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
|
|
rb_bufsz = drm_order(ring->ring_size / 8);
|
|
tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz;
|
|
#ifdef __BIG_ENDIAN
|
|
tmp |= BUF_SWAP_32BIT;
|
|
#endif
|
|
WREG32(CP_RB0_CNTL, tmp);
|
|
|
|
/* Initialize the ring buffer's read and write pointers */
|
|
WREG32(CP_RB0_CNTL, tmp | RB_RPTR_WR_ENA);
|
|
ring->wptr = 0;
|
|
WREG32(CP_RB0_WPTR, ring->wptr);
|
|
|
|
/* set the wb address wether it's enabled or not */
|
|
WREG32(CP_RB0_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC);
|
|
WREG32(CP_RB0_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF);
|
|
|
|
/* scratch register shadowing is no longer supported */
|
|
WREG32(SCRATCH_UMSK, 0);
|
|
|
|
if (!rdev->wb.enabled)
|
|
tmp |= RB_NO_UPDATE;
|
|
|
|
mdelay(1);
|
|
WREG32(CP_RB0_CNTL, tmp);
|
|
|
|
rb_addr = ring->gpu_addr >> 8;
|
|
WREG32(CP_RB0_BASE, rb_addr);
|
|
WREG32(CP_RB0_BASE_HI, upper_32_bits(rb_addr));
|
|
|
|
ring->rptr = RREG32(CP_RB0_RPTR);
|
|
|
|
/* start the ring */
|
|
cik_cp_gfx_start(rdev);
|
|
rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = true;
|
|
r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]);
|
|
if (r) {
|
|
rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false;
|
|
return r;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_cp_compute_enable - enable/disable the compute CP MEs
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @enable: enable or disable the MEs
|
|
*
|
|
* Halts or unhalts the compute MEs.
|
|
*/
|
|
static void cik_cp_compute_enable(struct radeon_device *rdev, bool enable)
|
|
{
|
|
if (enable)
|
|
WREG32(CP_MEC_CNTL, 0);
|
|
else
|
|
WREG32(CP_MEC_CNTL, (MEC_ME1_HALT | MEC_ME2_HALT));
|
|
udelay(50);
|
|
}
|
|
|
|
/**
|
|
* cik_cp_compute_load_microcode - load the compute CP ME ucode
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Loads the compute MEC1&2 ucode.
|
|
* Returns 0 for success, -EINVAL if the ucode is not available.
|
|
*/
|
|
static int cik_cp_compute_load_microcode(struct radeon_device *rdev)
|
|
{
|
|
const __be32 *fw_data;
|
|
int i;
|
|
|
|
if (!rdev->mec_fw)
|
|
return -EINVAL;
|
|
|
|
cik_cp_compute_enable(rdev, false);
|
|
|
|
/* MEC1 */
|
|
fw_data = (const __be32 *)rdev->mec_fw->data;
|
|
WREG32(CP_MEC_ME1_UCODE_ADDR, 0);
|
|
for (i = 0; i < CIK_MEC_UCODE_SIZE; i++)
|
|
WREG32(CP_MEC_ME1_UCODE_DATA, be32_to_cpup(fw_data++));
|
|
WREG32(CP_MEC_ME1_UCODE_ADDR, 0);
|
|
|
|
if (rdev->family == CHIP_KAVERI) {
|
|
/* MEC2 */
|
|
fw_data = (const __be32 *)rdev->mec_fw->data;
|
|
WREG32(CP_MEC_ME2_UCODE_ADDR, 0);
|
|
for (i = 0; i < CIK_MEC_UCODE_SIZE; i++)
|
|
WREG32(CP_MEC_ME2_UCODE_DATA, be32_to_cpup(fw_data++));
|
|
WREG32(CP_MEC_ME2_UCODE_ADDR, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_cp_compute_start - start the compute queues
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Enable the compute queues.
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
static int cik_cp_compute_start(struct radeon_device *rdev)
|
|
{
|
|
//todo
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_cp_compute_fini - stop the compute queues
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Stop the compute queues and tear down the driver queue
|
|
* info.
|
|
*/
|
|
static void cik_cp_compute_fini(struct radeon_device *rdev)
|
|
{
|
|
cik_cp_compute_enable(rdev, false);
|
|
//todo
|
|
}
|
|
|
|
/**
|
|
* cik_cp_compute_resume - setup the compute queue registers
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Program the compute queues and test them to make sure they
|
|
* are working.
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
static int cik_cp_compute_resume(struct radeon_device *rdev)
|
|
{
|
|
int r;
|
|
|
|
//todo
|
|
r = cik_cp_compute_start(rdev);
|
|
if (r)
|
|
return r;
|
|
return 0;
|
|
}
|
|
|
|
/* XXX temporary wrappers to handle both compute and gfx */
|
|
/* XXX */
|
|
static void cik_cp_enable(struct radeon_device *rdev, bool enable)
|
|
{
|
|
cik_cp_gfx_enable(rdev, enable);
|
|
cik_cp_compute_enable(rdev, enable);
|
|
}
|
|
|
|
/* XXX */
|
|
static int cik_cp_load_microcode(struct radeon_device *rdev)
|
|
{
|
|
int r;
|
|
|
|
r = cik_cp_gfx_load_microcode(rdev);
|
|
if (r)
|
|
return r;
|
|
r = cik_cp_compute_load_microcode(rdev);
|
|
if (r)
|
|
return r;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* XXX */
|
|
static void cik_cp_fini(struct radeon_device *rdev)
|
|
{
|
|
cik_cp_gfx_fini(rdev);
|
|
cik_cp_compute_fini(rdev);
|
|
}
|
|
|
|
/* XXX */
|
|
static int cik_cp_resume(struct radeon_device *rdev)
|
|
{
|
|
int r;
|
|
|
|
/* Reset all cp blocks */
|
|
WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP);
|
|
RREG32(GRBM_SOFT_RESET);
|
|
mdelay(15);
|
|
WREG32(GRBM_SOFT_RESET, 0);
|
|
RREG32(GRBM_SOFT_RESET);
|
|
|
|
r = cik_cp_load_microcode(rdev);
|
|
if (r)
|
|
return r;
|
|
|
|
r = cik_cp_gfx_resume(rdev);
|
|
if (r)
|
|
return r;
|
|
r = cik_cp_compute_resume(rdev);
|
|
if (r)
|
|
return r;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_gpu_is_lockup - check if the 3D engine is locked up
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Check if the 3D engine is locked up (CIK).
|
|
* Returns true if the engine is locked, false if not.
|
|
*/
|
|
bool cik_gpu_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
|
|
{
|
|
u32 srbm_status, srbm_status2;
|
|
u32 grbm_status, grbm_status2;
|
|
u32 grbm_status_se0, grbm_status_se1, grbm_status_se2, grbm_status_se3;
|
|
|
|
srbm_status = RREG32(SRBM_STATUS);
|
|
srbm_status2 = RREG32(SRBM_STATUS2);
|
|
grbm_status = RREG32(GRBM_STATUS);
|
|
grbm_status2 = RREG32(GRBM_STATUS2);
|
|
grbm_status_se0 = RREG32(GRBM_STATUS_SE0);
|
|
grbm_status_se1 = RREG32(GRBM_STATUS_SE1);
|
|
grbm_status_se2 = RREG32(GRBM_STATUS_SE2);
|
|
grbm_status_se3 = RREG32(GRBM_STATUS_SE3);
|
|
if (!(grbm_status & GUI_ACTIVE)) {
|
|
radeon_ring_lockup_update(ring);
|
|
return false;
|
|
}
|
|
/* force CP activities */
|
|
radeon_ring_force_activity(rdev, ring);
|
|
return radeon_ring_test_lockup(rdev, ring);
|
|
}
|
|
|
|
/**
|
|
* cik_gfx_gpu_soft_reset - soft reset the 3D engine and CPG
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Soft reset the GFX engine and CPG blocks (CIK).
|
|
* XXX: deal with reseting RLC and CPF
|
|
* Returns 0 for success.
|
|
*/
|
|
static int cik_gfx_gpu_soft_reset(struct radeon_device *rdev)
|
|
{
|
|
struct evergreen_mc_save save;
|
|
u32 grbm_reset = 0;
|
|
|
|
if (!(RREG32(GRBM_STATUS) & GUI_ACTIVE))
|
|
return 0;
|
|
|
|
dev_info(rdev->dev, "GPU GFX softreset \n");
|
|
dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n",
|
|
RREG32(GRBM_STATUS));
|
|
dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n",
|
|
RREG32(GRBM_STATUS2));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE0));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE1));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE2));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE3));
|
|
dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n",
|
|
RREG32(SRBM_STATUS));
|
|
dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n",
|
|
RREG32(SRBM_STATUS2));
|
|
evergreen_mc_stop(rdev, &save);
|
|
if (radeon_mc_wait_for_idle(rdev)) {
|
|
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
|
|
}
|
|
/* Disable CP parsing/prefetching */
|
|
WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT);
|
|
|
|
/* reset all the gfx block and all CPG blocks */
|
|
grbm_reset = SOFT_RESET_CPG | SOFT_RESET_GFX;
|
|
|
|
dev_info(rdev->dev, " GRBM_SOFT_RESET=0x%08X\n", grbm_reset);
|
|
WREG32(GRBM_SOFT_RESET, grbm_reset);
|
|
(void)RREG32(GRBM_SOFT_RESET);
|
|
udelay(50);
|
|
WREG32(GRBM_SOFT_RESET, 0);
|
|
(void)RREG32(GRBM_SOFT_RESET);
|
|
/* Wait a little for things to settle down */
|
|
udelay(50);
|
|
dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n",
|
|
RREG32(GRBM_STATUS));
|
|
dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n",
|
|
RREG32(GRBM_STATUS2));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE0));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE1));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE2));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE3));
|
|
dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n",
|
|
RREG32(SRBM_STATUS));
|
|
dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n",
|
|
RREG32(SRBM_STATUS2));
|
|
evergreen_mc_resume(rdev, &save);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_compute_gpu_soft_reset - soft reset CPC
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Soft reset the CPC blocks (CIK).
|
|
* XXX: deal with reseting RLC and CPF
|
|
* Returns 0 for success.
|
|
*/
|
|
static int cik_compute_gpu_soft_reset(struct radeon_device *rdev)
|
|
{
|
|
struct evergreen_mc_save save;
|
|
u32 grbm_reset = 0;
|
|
|
|
dev_info(rdev->dev, "GPU compute softreset \n");
|
|
dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n",
|
|
RREG32(GRBM_STATUS));
|
|
dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n",
|
|
RREG32(GRBM_STATUS2));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE0));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE1));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE2));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE3));
|
|
dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n",
|
|
RREG32(SRBM_STATUS));
|
|
dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n",
|
|
RREG32(SRBM_STATUS2));
|
|
evergreen_mc_stop(rdev, &save);
|
|
if (radeon_mc_wait_for_idle(rdev)) {
|
|
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
|
|
}
|
|
/* Disable CP parsing/prefetching */
|
|
WREG32(CP_MEC_CNTL, MEC_ME1_HALT | MEC_ME2_HALT);
|
|
|
|
/* reset all the CPC blocks */
|
|
grbm_reset = SOFT_RESET_CPG;
|
|
|
|
dev_info(rdev->dev, " GRBM_SOFT_RESET=0x%08X\n", grbm_reset);
|
|
WREG32(GRBM_SOFT_RESET, grbm_reset);
|
|
(void)RREG32(GRBM_SOFT_RESET);
|
|
udelay(50);
|
|
WREG32(GRBM_SOFT_RESET, 0);
|
|
(void)RREG32(GRBM_SOFT_RESET);
|
|
/* Wait a little for things to settle down */
|
|
udelay(50);
|
|
dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n",
|
|
RREG32(GRBM_STATUS));
|
|
dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n",
|
|
RREG32(GRBM_STATUS2));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE0));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE1));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE2));
|
|
dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n",
|
|
RREG32(GRBM_STATUS_SE3));
|
|
dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n",
|
|
RREG32(SRBM_STATUS));
|
|
dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n",
|
|
RREG32(SRBM_STATUS2));
|
|
evergreen_mc_resume(rdev, &save);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_asic_reset - soft reset compute and gfx
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Soft reset the CPC blocks (CIK).
|
|
* XXX: make this more fine grained and only reset
|
|
* what is necessary.
|
|
* Returns 0 for success.
|
|
*/
|
|
int cik_asic_reset(struct radeon_device *rdev)
|
|
{
|
|
int r;
|
|
|
|
r = cik_compute_gpu_soft_reset(rdev);
|
|
if (r)
|
|
dev_info(rdev->dev, "Compute reset failed!\n");
|
|
|
|
return cik_gfx_gpu_soft_reset(rdev);
|
|
}
|
|
|
|
/* MC */
|
|
/**
|
|
* cik_mc_program - program the GPU memory controller
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Set the location of vram, gart, and AGP in the GPU's
|
|
* physical address space (CIK).
|
|
*/
|
|
static void cik_mc_program(struct radeon_device *rdev)
|
|
{
|
|
struct evergreen_mc_save save;
|
|
u32 tmp;
|
|
int i, j;
|
|
|
|
/* Initialize HDP */
|
|
for (i = 0, j = 0; i < 32; i++, j += 0x18) {
|
|
WREG32((0x2c14 + j), 0x00000000);
|
|
WREG32((0x2c18 + j), 0x00000000);
|
|
WREG32((0x2c1c + j), 0x00000000);
|
|
WREG32((0x2c20 + j), 0x00000000);
|
|
WREG32((0x2c24 + j), 0x00000000);
|
|
}
|
|
WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0);
|
|
|
|
evergreen_mc_stop(rdev, &save);
|
|
if (radeon_mc_wait_for_idle(rdev)) {
|
|
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
|
|
}
|
|
/* Lockout access through VGA aperture*/
|
|
WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE);
|
|
/* Update configuration */
|
|
WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
|
|
rdev->mc.vram_start >> 12);
|
|
WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
|
|
rdev->mc.vram_end >> 12);
|
|
WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
|
|
rdev->vram_scratch.gpu_addr >> 12);
|
|
tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16;
|
|
tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF);
|
|
WREG32(MC_VM_FB_LOCATION, tmp);
|
|
/* XXX double check these! */
|
|
WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8));
|
|
WREG32(HDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
|
|
WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF);
|
|
WREG32(MC_VM_AGP_BASE, 0);
|
|
WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF);
|
|
WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF);
|
|
if (radeon_mc_wait_for_idle(rdev)) {
|
|
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
|
|
}
|
|
evergreen_mc_resume(rdev, &save);
|
|
/* we need to own VRAM, so turn off the VGA renderer here
|
|
* to stop it overwriting our objects */
|
|
rv515_vga_render_disable(rdev);
|
|
}
|
|
|
|
/**
|
|
* cik_mc_init - initialize the memory controller driver params
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Look up the amount of vram, vram width, and decide how to place
|
|
* vram and gart within the GPU's physical address space (CIK).
|
|
* Returns 0 for success.
|
|
*/
|
|
static int cik_mc_init(struct radeon_device *rdev)
|
|
{
|
|
u32 tmp;
|
|
int chansize, numchan;
|
|
|
|
/* Get VRAM informations */
|
|
rdev->mc.vram_is_ddr = true;
|
|
tmp = RREG32(MC_ARB_RAMCFG);
|
|
if (tmp & CHANSIZE_MASK) {
|
|
chansize = 64;
|
|
} else {
|
|
chansize = 32;
|
|
}
|
|
tmp = RREG32(MC_SHARED_CHMAP);
|
|
switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
|
|
case 0:
|
|
default:
|
|
numchan = 1;
|
|
break;
|
|
case 1:
|
|
numchan = 2;
|
|
break;
|
|
case 2:
|
|
numchan = 4;
|
|
break;
|
|
case 3:
|
|
numchan = 8;
|
|
break;
|
|
case 4:
|
|
numchan = 3;
|
|
break;
|
|
case 5:
|
|
numchan = 6;
|
|
break;
|
|
case 6:
|
|
numchan = 10;
|
|
break;
|
|
case 7:
|
|
numchan = 12;
|
|
break;
|
|
case 8:
|
|
numchan = 16;
|
|
break;
|
|
}
|
|
rdev->mc.vram_width = numchan * chansize;
|
|
/* Could aper size report 0 ? */
|
|
rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0);
|
|
rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0);
|
|
/* size in MB on si */
|
|
rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024;
|
|
rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024;
|
|
rdev->mc.visible_vram_size = rdev->mc.aper_size;
|
|
si_vram_gtt_location(rdev, &rdev->mc);
|
|
radeon_update_bandwidth_info(rdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* GART
|
|
* VMID 0 is the physical GPU addresses as used by the kernel.
|
|
* VMIDs 1-15 are used for userspace clients and are handled
|
|
* by the radeon vm/hsa code.
|
|
*/
|
|
/**
|
|
* cik_pcie_gart_tlb_flush - gart tlb flush callback
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Flush the TLB for the VMID 0 page table (CIK).
|
|
*/
|
|
void cik_pcie_gart_tlb_flush(struct radeon_device *rdev)
|
|
{
|
|
/* flush hdp cache */
|
|
WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0);
|
|
|
|
/* bits 0-15 are the VM contexts0-15 */
|
|
WREG32(VM_INVALIDATE_REQUEST, 0x1);
|
|
}
|
|
|
|
/**
|
|
* cik_pcie_gart_enable - gart enable
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* This sets up the TLBs, programs the page tables for VMID0,
|
|
* sets up the hw for VMIDs 1-15 which are allocated on
|
|
* demand, and sets up the global locations for the LDS, GDS,
|
|
* and GPUVM for FSA64 clients (CIK).
|
|
* Returns 0 for success, errors for failure.
|
|
*/
|
|
static int cik_pcie_gart_enable(struct radeon_device *rdev)
|
|
{
|
|
int r, i;
|
|
|
|
if (rdev->gart.robj == NULL) {
|
|
dev_err(rdev->dev, "No VRAM object for PCIE GART.\n");
|
|
return -EINVAL;
|
|
}
|
|
r = radeon_gart_table_vram_pin(rdev);
|
|
if (r)
|
|
return r;
|
|
radeon_gart_restore(rdev);
|
|
/* Setup TLB control */
|
|
WREG32(MC_VM_MX_L1_TLB_CNTL,
|
|
(0xA << 7) |
|
|
ENABLE_L1_TLB |
|
|
SYSTEM_ACCESS_MODE_NOT_IN_SYS |
|
|
ENABLE_ADVANCED_DRIVER_MODEL |
|
|
SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU);
|
|
/* Setup L2 cache */
|
|
WREG32(VM_L2_CNTL, ENABLE_L2_CACHE |
|
|
ENABLE_L2_FRAGMENT_PROCESSING |
|
|
ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
|
|
ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE |
|
|
EFFECTIVE_L2_QUEUE_SIZE(7) |
|
|
CONTEXT1_IDENTITY_ACCESS_MODE(1));
|
|
WREG32(VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS | INVALIDATE_L2_CACHE);
|
|
WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY |
|
|
L2_CACHE_BIGK_FRAGMENT_SIZE(6));
|
|
/* setup context0 */
|
|
WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12);
|
|
WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12);
|
|
WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12);
|
|
WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
|
|
(u32)(rdev->dummy_page.addr >> 12));
|
|
WREG32(VM_CONTEXT0_CNTL2, 0);
|
|
WREG32(VM_CONTEXT0_CNTL, (ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) |
|
|
RANGE_PROTECTION_FAULT_ENABLE_DEFAULT));
|
|
|
|
WREG32(0x15D4, 0);
|
|
WREG32(0x15D8, 0);
|
|
WREG32(0x15DC, 0);
|
|
|
|
/* empty context1-15 */
|
|
/* FIXME start with 4G, once using 2 level pt switch to full
|
|
* vm size space
|
|
*/
|
|
/* set vm size, must be a multiple of 4 */
|
|
WREG32(VM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
|
|
WREG32(VM_CONTEXT1_PAGE_TABLE_END_ADDR, rdev->vm_manager.max_pfn);
|
|
for (i = 1; i < 16; i++) {
|
|
if (i < 8)
|
|
WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (i << 2),
|
|
rdev->gart.table_addr >> 12);
|
|
else
|
|
WREG32(VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((i - 8) << 2),
|
|
rdev->gart.table_addr >> 12);
|
|
}
|
|
|
|
/* enable context1-15 */
|
|
WREG32(VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
|
|
(u32)(rdev->dummy_page.addr >> 12));
|
|
WREG32(VM_CONTEXT1_CNTL2, 4);
|
|
WREG32(VM_CONTEXT1_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(1) |
|
|
RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT |
|
|
RANGE_PROTECTION_FAULT_ENABLE_DEFAULT |
|
|
DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT |
|
|
DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT |
|
|
PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT |
|
|
PDE0_PROTECTION_FAULT_ENABLE_DEFAULT |
|
|
VALID_PROTECTION_FAULT_ENABLE_INTERRUPT |
|
|
VALID_PROTECTION_FAULT_ENABLE_DEFAULT |
|
|
READ_PROTECTION_FAULT_ENABLE_INTERRUPT |
|
|
READ_PROTECTION_FAULT_ENABLE_DEFAULT |
|
|
WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT |
|
|
WRITE_PROTECTION_FAULT_ENABLE_DEFAULT);
|
|
|
|
/* TC cache setup ??? */
|
|
WREG32(TC_CFG_L1_LOAD_POLICY0, 0);
|
|
WREG32(TC_CFG_L1_LOAD_POLICY1, 0);
|
|
WREG32(TC_CFG_L1_STORE_POLICY, 0);
|
|
|
|
WREG32(TC_CFG_L2_LOAD_POLICY0, 0);
|
|
WREG32(TC_CFG_L2_LOAD_POLICY1, 0);
|
|
WREG32(TC_CFG_L2_STORE_POLICY0, 0);
|
|
WREG32(TC_CFG_L2_STORE_POLICY1, 0);
|
|
WREG32(TC_CFG_L2_ATOMIC_POLICY, 0);
|
|
|
|
WREG32(TC_CFG_L1_VOLATILE, 0);
|
|
WREG32(TC_CFG_L2_VOLATILE, 0);
|
|
|
|
if (rdev->family == CHIP_KAVERI) {
|
|
u32 tmp = RREG32(CHUB_CONTROL);
|
|
tmp &= ~BYPASS_VM;
|
|
WREG32(CHUB_CONTROL, tmp);
|
|
}
|
|
|
|
/* XXX SH_MEM regs */
|
|
/* where to put LDS, scratch, GPUVM in FSA64 space */
|
|
for (i = 0; i < 16; i++) {
|
|
WREG32(SRBM_GFX_CNTL, VMID(i));
|
|
WREG32(SH_MEM_CONFIG, 0);
|
|
WREG32(SH_MEM_APE1_BASE, 1);
|
|
WREG32(SH_MEM_APE1_LIMIT, 0);
|
|
WREG32(SH_MEM_BASES, 0);
|
|
}
|
|
WREG32(SRBM_GFX_CNTL, 0);
|
|
|
|
cik_pcie_gart_tlb_flush(rdev);
|
|
DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
|
|
(unsigned)(rdev->mc.gtt_size >> 20),
|
|
(unsigned long long)rdev->gart.table_addr);
|
|
rdev->gart.ready = true;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_pcie_gart_disable - gart disable
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* This disables all VM page table (CIK).
|
|
*/
|
|
static void cik_pcie_gart_disable(struct radeon_device *rdev)
|
|
{
|
|
/* Disable all tables */
|
|
WREG32(VM_CONTEXT0_CNTL, 0);
|
|
WREG32(VM_CONTEXT1_CNTL, 0);
|
|
/* Setup TLB control */
|
|
WREG32(MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE_NOT_IN_SYS |
|
|
SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU);
|
|
/* Setup L2 cache */
|
|
WREG32(VM_L2_CNTL,
|
|
ENABLE_L2_FRAGMENT_PROCESSING |
|
|
ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
|
|
ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE |
|
|
EFFECTIVE_L2_QUEUE_SIZE(7) |
|
|
CONTEXT1_IDENTITY_ACCESS_MODE(1));
|
|
WREG32(VM_L2_CNTL2, 0);
|
|
WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY |
|
|
L2_CACHE_BIGK_FRAGMENT_SIZE(6));
|
|
radeon_gart_table_vram_unpin(rdev);
|
|
}
|
|
|
|
/**
|
|
* cik_pcie_gart_fini - vm fini callback
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Tears down the driver GART/VM setup (CIK).
|
|
*/
|
|
static void cik_pcie_gart_fini(struct radeon_device *rdev)
|
|
{
|
|
cik_pcie_gart_disable(rdev);
|
|
radeon_gart_table_vram_free(rdev);
|
|
radeon_gart_fini(rdev);
|
|
}
|
|
|
|
/* vm parser */
|
|
/**
|
|
* cik_ib_parse - vm ib_parse callback
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ib: indirect buffer pointer
|
|
*
|
|
* CIK uses hw IB checking so this is a nop (CIK).
|
|
*/
|
|
int cik_ib_parse(struct radeon_device *rdev, struct radeon_ib *ib)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* vm
|
|
* VMID 0 is the physical GPU addresses as used by the kernel.
|
|
* VMIDs 1-15 are used for userspace clients and are handled
|
|
* by the radeon vm/hsa code.
|
|
*/
|
|
/**
|
|
* cik_vm_init - cik vm init callback
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Inits cik specific vm parameters (number of VMs, base of vram for
|
|
* VMIDs 1-15) (CIK).
|
|
* Returns 0 for success.
|
|
*/
|
|
int cik_vm_init(struct radeon_device *rdev)
|
|
{
|
|
/* number of VMs */
|
|
rdev->vm_manager.nvm = 16;
|
|
/* base offset of vram pages */
|
|
if (rdev->flags & RADEON_IS_IGP) {
|
|
u64 tmp = RREG32(MC_VM_FB_OFFSET);
|
|
tmp <<= 22;
|
|
rdev->vm_manager.vram_base_offset = tmp;
|
|
} else
|
|
rdev->vm_manager.vram_base_offset = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_vm_fini - cik vm fini callback
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Tear down any asic specific VM setup (CIK).
|
|
*/
|
|
void cik_vm_fini(struct radeon_device *rdev)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* cik_vm_flush - cik vm flush using the CP
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Update the page table base and flush the VM TLB
|
|
* using the CP (CIK).
|
|
*/
|
|
void cik_vm_flush(struct radeon_device *rdev, int ridx, struct radeon_vm *vm)
|
|
{
|
|
struct radeon_ring *ring = &rdev->ring[ridx];
|
|
|
|
if (vm == NULL)
|
|
return;
|
|
|
|
radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
|
|
radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
|
|
WRITE_DATA_DST_SEL(0)));
|
|
if (vm->id < 8) {
|
|
radeon_ring_write(ring,
|
|
(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm->id << 2)) >> 2);
|
|
} else {
|
|
radeon_ring_write(ring,
|
|
(VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm->id - 8) << 2)) >> 2);
|
|
}
|
|
radeon_ring_write(ring, 0);
|
|
radeon_ring_write(ring, vm->pd_gpu_addr >> 12);
|
|
|
|
/* update SH_MEM_* regs */
|
|
radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
|
|
radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
|
|
WRITE_DATA_DST_SEL(0)));
|
|
radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
|
|
radeon_ring_write(ring, 0);
|
|
radeon_ring_write(ring, VMID(vm->id));
|
|
|
|
radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 6));
|
|
radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
|
|
WRITE_DATA_DST_SEL(0)));
|
|
radeon_ring_write(ring, SH_MEM_BASES >> 2);
|
|
radeon_ring_write(ring, 0);
|
|
|
|
radeon_ring_write(ring, 0); /* SH_MEM_BASES */
|
|
radeon_ring_write(ring, 0); /* SH_MEM_CONFIG */
|
|
radeon_ring_write(ring, 1); /* SH_MEM_APE1_BASE */
|
|
radeon_ring_write(ring, 0); /* SH_MEM_APE1_LIMIT */
|
|
|
|
radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
|
|
radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
|
|
WRITE_DATA_DST_SEL(0)));
|
|
radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
|
|
radeon_ring_write(ring, 0);
|
|
radeon_ring_write(ring, VMID(0));
|
|
|
|
/* HDP flush */
|
|
/* We should be using the WAIT_REG_MEM packet here like in
|
|
* cik_fence_ring_emit(), but it causes the CP to hang in this
|
|
* context...
|
|
*/
|
|
radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
|
|
radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
|
|
WRITE_DATA_DST_SEL(0)));
|
|
radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2);
|
|
radeon_ring_write(ring, 0);
|
|
radeon_ring_write(ring, 0);
|
|
|
|
/* bits 0-15 are the VM contexts0-15 */
|
|
radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
|
|
radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
|
|
WRITE_DATA_DST_SEL(0)));
|
|
radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2);
|
|
radeon_ring_write(ring, 0);
|
|
radeon_ring_write(ring, 1 << vm->id);
|
|
|
|
/* sync PFP to ME, otherwise we might get invalid PFP reads */
|
|
radeon_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0));
|
|
radeon_ring_write(ring, 0x0);
|
|
}
|
|
|
|
/*
|
|
* RLC
|
|
* The RLC is a multi-purpose microengine that handles a
|
|
* variety of functions, the most important of which is
|
|
* the interrupt controller.
|
|
*/
|
|
/**
|
|
* cik_rlc_stop - stop the RLC ME
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Halt the RLC ME (MicroEngine) (CIK).
|
|
*/
|
|
static void cik_rlc_stop(struct radeon_device *rdev)
|
|
{
|
|
int i, j, k;
|
|
u32 mask, tmp;
|
|
|
|
tmp = RREG32(CP_INT_CNTL_RING0);
|
|
tmp &= ~(CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
|
|
WREG32(CP_INT_CNTL_RING0, tmp);
|
|
|
|
RREG32(CB_CGTT_SCLK_CTRL);
|
|
RREG32(CB_CGTT_SCLK_CTRL);
|
|
RREG32(CB_CGTT_SCLK_CTRL);
|
|
RREG32(CB_CGTT_SCLK_CTRL);
|
|
|
|
tmp = RREG32(RLC_CGCG_CGLS_CTRL) & 0xfffffffc;
|
|
WREG32(RLC_CGCG_CGLS_CTRL, tmp);
|
|
|
|
WREG32(RLC_CNTL, 0);
|
|
|
|
for (i = 0; i < rdev->config.cik.max_shader_engines; i++) {
|
|
for (j = 0; j < rdev->config.cik.max_sh_per_se; j++) {
|
|
cik_select_se_sh(rdev, i, j);
|
|
for (k = 0; k < rdev->usec_timeout; k++) {
|
|
if (RREG32(RLC_SERDES_CU_MASTER_BUSY) == 0)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
}
|
|
}
|
|
cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);
|
|
|
|
mask = SE_MASTER_BUSY_MASK | GC_MASTER_BUSY | TC0_MASTER_BUSY | TC1_MASTER_BUSY;
|
|
for (k = 0; k < rdev->usec_timeout; k++) {
|
|
if ((RREG32(RLC_SERDES_NONCU_MASTER_BUSY) & mask) == 0)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cik_rlc_start - start the RLC ME
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Unhalt the RLC ME (MicroEngine) (CIK).
|
|
*/
|
|
static void cik_rlc_start(struct radeon_device *rdev)
|
|
{
|
|
u32 tmp;
|
|
|
|
WREG32(RLC_CNTL, RLC_ENABLE);
|
|
|
|
tmp = RREG32(CP_INT_CNTL_RING0);
|
|
tmp |= (CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
|
|
WREG32(CP_INT_CNTL_RING0, tmp);
|
|
|
|
udelay(50);
|
|
}
|
|
|
|
/**
|
|
* cik_rlc_resume - setup the RLC hw
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Initialize the RLC registers, load the ucode,
|
|
* and start the RLC (CIK).
|
|
* Returns 0 for success, -EINVAL if the ucode is not available.
|
|
*/
|
|
static int cik_rlc_resume(struct radeon_device *rdev)
|
|
{
|
|
u32 i, size;
|
|
u32 clear_state_info[3];
|
|
const __be32 *fw_data;
|
|
|
|
if (!rdev->rlc_fw)
|
|
return -EINVAL;
|
|
|
|
switch (rdev->family) {
|
|
case CHIP_BONAIRE:
|
|
default:
|
|
size = BONAIRE_RLC_UCODE_SIZE;
|
|
break;
|
|
case CHIP_KAVERI:
|
|
size = KV_RLC_UCODE_SIZE;
|
|
break;
|
|
case CHIP_KABINI:
|
|
size = KB_RLC_UCODE_SIZE;
|
|
break;
|
|
}
|
|
|
|
cik_rlc_stop(rdev);
|
|
|
|
WREG32(GRBM_SOFT_RESET, SOFT_RESET_RLC);
|
|
RREG32(GRBM_SOFT_RESET);
|
|
udelay(50);
|
|
WREG32(GRBM_SOFT_RESET, 0);
|
|
RREG32(GRBM_SOFT_RESET);
|
|
udelay(50);
|
|
|
|
WREG32(RLC_LB_CNTR_INIT, 0);
|
|
WREG32(RLC_LB_CNTR_MAX, 0x00008000);
|
|
|
|
cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);
|
|
WREG32(RLC_LB_INIT_CU_MASK, 0xffffffff);
|
|
WREG32(RLC_LB_PARAMS, 0x00600408);
|
|
WREG32(RLC_LB_CNTL, 0x80000004);
|
|
|
|
WREG32(RLC_MC_CNTL, 0);
|
|
WREG32(RLC_UCODE_CNTL, 0);
|
|
|
|
fw_data = (const __be32 *)rdev->rlc_fw->data;
|
|
WREG32(RLC_GPM_UCODE_ADDR, 0);
|
|
for (i = 0; i < size; i++)
|
|
WREG32(RLC_GPM_UCODE_DATA, be32_to_cpup(fw_data++));
|
|
WREG32(RLC_GPM_UCODE_ADDR, 0);
|
|
|
|
/* XXX */
|
|
clear_state_info[0] = 0;//upper_32_bits(rdev->rlc.save_restore_gpu_addr);
|
|
clear_state_info[1] = 0;//rdev->rlc.save_restore_gpu_addr;
|
|
clear_state_info[2] = 0;//cik_default_size;
|
|
WREG32(RLC_GPM_SCRATCH_ADDR, 0x3d);
|
|
for (i = 0; i < 3; i++)
|
|
WREG32(RLC_GPM_SCRATCH_DATA, clear_state_info[i]);
|
|
WREG32(RLC_DRIVER_DMA_STATUS, 0);
|
|
|
|
cik_rlc_start(rdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Interrupts
|
|
* Starting with r6xx, interrupts are handled via a ring buffer.
|
|
* Ring buffers are areas of GPU accessible memory that the GPU
|
|
* writes interrupt vectors into and the host reads vectors out of.
|
|
* There is a rptr (read pointer) that determines where the
|
|
* host is currently reading, and a wptr (write pointer)
|
|
* which determines where the GPU has written. When the
|
|
* pointers are equal, the ring is idle. When the GPU
|
|
* writes vectors to the ring buffer, it increments the
|
|
* wptr. When there is an interrupt, the host then starts
|
|
* fetching commands and processing them until the pointers are
|
|
* equal again at which point it updates the rptr.
|
|
*/
|
|
|
|
/**
|
|
* cik_enable_interrupts - Enable the interrupt ring buffer
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Enable the interrupt ring buffer (CIK).
|
|
*/
|
|
static void cik_enable_interrupts(struct radeon_device *rdev)
|
|
{
|
|
u32 ih_cntl = RREG32(IH_CNTL);
|
|
u32 ih_rb_cntl = RREG32(IH_RB_CNTL);
|
|
|
|
ih_cntl |= ENABLE_INTR;
|
|
ih_rb_cntl |= IH_RB_ENABLE;
|
|
WREG32(IH_CNTL, ih_cntl);
|
|
WREG32(IH_RB_CNTL, ih_rb_cntl);
|
|
rdev->ih.enabled = true;
|
|
}
|
|
|
|
/**
|
|
* cik_disable_interrupts - Disable the interrupt ring buffer
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Disable the interrupt ring buffer (CIK).
|
|
*/
|
|
static void cik_disable_interrupts(struct radeon_device *rdev)
|
|
{
|
|
u32 ih_rb_cntl = RREG32(IH_RB_CNTL);
|
|
u32 ih_cntl = RREG32(IH_CNTL);
|
|
|
|
ih_rb_cntl &= ~IH_RB_ENABLE;
|
|
ih_cntl &= ~ENABLE_INTR;
|
|
WREG32(IH_RB_CNTL, ih_rb_cntl);
|
|
WREG32(IH_CNTL, ih_cntl);
|
|
/* set rptr, wptr to 0 */
|
|
WREG32(IH_RB_RPTR, 0);
|
|
WREG32(IH_RB_WPTR, 0);
|
|
rdev->ih.enabled = false;
|
|
rdev->ih.rptr = 0;
|
|
}
|
|
|
|
/**
|
|
* cik_disable_interrupt_state - Disable all interrupt sources
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Clear all interrupt enable bits used by the driver (CIK).
|
|
*/
|
|
static void cik_disable_interrupt_state(struct radeon_device *rdev)
|
|
{
|
|
u32 tmp;
|
|
|
|
/* gfx ring */
|
|
WREG32(CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
|
|
/* compute queues */
|
|
WREG32(CP_ME1_PIPE0_INT_CNTL, 0);
|
|
WREG32(CP_ME1_PIPE1_INT_CNTL, 0);
|
|
WREG32(CP_ME1_PIPE2_INT_CNTL, 0);
|
|
WREG32(CP_ME1_PIPE3_INT_CNTL, 0);
|
|
WREG32(CP_ME2_PIPE0_INT_CNTL, 0);
|
|
WREG32(CP_ME2_PIPE1_INT_CNTL, 0);
|
|
WREG32(CP_ME2_PIPE2_INT_CNTL, 0);
|
|
WREG32(CP_ME2_PIPE3_INT_CNTL, 0);
|
|
/* grbm */
|
|
WREG32(GRBM_INT_CNTL, 0);
|
|
/* vline/vblank, etc. */
|
|
WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, 0);
|
|
WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, 0);
|
|
if (rdev->num_crtc >= 4) {
|
|
WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, 0);
|
|
WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, 0);
|
|
}
|
|
if (rdev->num_crtc >= 6) {
|
|
WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, 0);
|
|
WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, 0);
|
|
}
|
|
|
|
/* dac hotplug */
|
|
WREG32(DAC_AUTODETECT_INT_CONTROL, 0);
|
|
|
|
/* digital hotplug */
|
|
tmp = RREG32(DC_HPD1_INT_CONTROL) & DC_HPDx_INT_POLARITY;
|
|
WREG32(DC_HPD1_INT_CONTROL, tmp);
|
|
tmp = RREG32(DC_HPD2_INT_CONTROL) & DC_HPDx_INT_POLARITY;
|
|
WREG32(DC_HPD2_INT_CONTROL, tmp);
|
|
tmp = RREG32(DC_HPD3_INT_CONTROL) & DC_HPDx_INT_POLARITY;
|
|
WREG32(DC_HPD3_INT_CONTROL, tmp);
|
|
tmp = RREG32(DC_HPD4_INT_CONTROL) & DC_HPDx_INT_POLARITY;
|
|
WREG32(DC_HPD4_INT_CONTROL, tmp);
|
|
tmp = RREG32(DC_HPD5_INT_CONTROL) & DC_HPDx_INT_POLARITY;
|
|
WREG32(DC_HPD5_INT_CONTROL, tmp);
|
|
tmp = RREG32(DC_HPD6_INT_CONTROL) & DC_HPDx_INT_POLARITY;
|
|
WREG32(DC_HPD6_INT_CONTROL, tmp);
|
|
|
|
}
|
|
|
|
/**
|
|
* cik_irq_init - init and enable the interrupt ring
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Allocate a ring buffer for the interrupt controller,
|
|
* enable the RLC, disable interrupts, enable the IH
|
|
* ring buffer and enable it (CIK).
|
|
* Called at device load and reume.
|
|
* Returns 0 for success, errors for failure.
|
|
*/
|
|
static int cik_irq_init(struct radeon_device *rdev)
|
|
{
|
|
int ret = 0;
|
|
int rb_bufsz;
|
|
u32 interrupt_cntl, ih_cntl, ih_rb_cntl;
|
|
|
|
/* allocate ring */
|
|
ret = r600_ih_ring_alloc(rdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* disable irqs */
|
|
cik_disable_interrupts(rdev);
|
|
|
|
/* init rlc */
|
|
ret = cik_rlc_resume(rdev);
|
|
if (ret) {
|
|
r600_ih_ring_fini(rdev);
|
|
return ret;
|
|
}
|
|
|
|
/* setup interrupt control */
|
|
/* XXX this should actually be a bus address, not an MC address. same on older asics */
|
|
WREG32(INTERRUPT_CNTL2, rdev->ih.gpu_addr >> 8);
|
|
interrupt_cntl = RREG32(INTERRUPT_CNTL);
|
|
/* IH_DUMMY_RD_OVERRIDE=0 - dummy read disabled with msi, enabled without msi
|
|
* IH_DUMMY_RD_OVERRIDE=1 - dummy read controlled by IH_DUMMY_RD_EN
|
|
*/
|
|
interrupt_cntl &= ~IH_DUMMY_RD_OVERRIDE;
|
|
/* IH_REQ_NONSNOOP_EN=1 if ring is in non-cacheable memory, e.g., vram */
|
|
interrupt_cntl &= ~IH_REQ_NONSNOOP_EN;
|
|
WREG32(INTERRUPT_CNTL, interrupt_cntl);
|
|
|
|
WREG32(IH_RB_BASE, rdev->ih.gpu_addr >> 8);
|
|
rb_bufsz = drm_order(rdev->ih.ring_size / 4);
|
|
|
|
ih_rb_cntl = (IH_WPTR_OVERFLOW_ENABLE |
|
|
IH_WPTR_OVERFLOW_CLEAR |
|
|
(rb_bufsz << 1));
|
|
|
|
if (rdev->wb.enabled)
|
|
ih_rb_cntl |= IH_WPTR_WRITEBACK_ENABLE;
|
|
|
|
/* set the writeback address whether it's enabled or not */
|
|
WREG32(IH_RB_WPTR_ADDR_LO, (rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFFFFFFFC);
|
|
WREG32(IH_RB_WPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFF);
|
|
|
|
WREG32(IH_RB_CNTL, ih_rb_cntl);
|
|
|
|
/* set rptr, wptr to 0 */
|
|
WREG32(IH_RB_RPTR, 0);
|
|
WREG32(IH_RB_WPTR, 0);
|
|
|
|
/* Default settings for IH_CNTL (disabled at first) */
|
|
ih_cntl = MC_WRREQ_CREDIT(0x10) | MC_WR_CLEAN_CNT(0x10) | MC_VMID(0);
|
|
/* RPTR_REARM only works if msi's are enabled */
|
|
if (rdev->msi_enabled)
|
|
ih_cntl |= RPTR_REARM;
|
|
WREG32(IH_CNTL, ih_cntl);
|
|
|
|
/* force the active interrupt state to all disabled */
|
|
cik_disable_interrupt_state(rdev);
|
|
|
|
pci_set_master(rdev->pdev);
|
|
|
|
/* enable irqs */
|
|
cik_enable_interrupts(rdev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cik_irq_set - enable/disable interrupt sources
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Enable interrupt sources on the GPU (vblanks, hpd,
|
|
* etc.) (CIK).
|
|
* Returns 0 for success, errors for failure.
|
|
*/
|
|
int cik_irq_set(struct radeon_device *rdev)
|
|
{
|
|
u32 cp_int_cntl = CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE |
|
|
PRIV_INSTR_INT_ENABLE | PRIV_REG_INT_ENABLE;
|
|
u32 crtc1 = 0, crtc2 = 0, crtc3 = 0, crtc4 = 0, crtc5 = 0, crtc6 = 0;
|
|
u32 hpd1, hpd2, hpd3, hpd4, hpd5, hpd6;
|
|
u32 grbm_int_cntl = 0;
|
|
|
|
if (!rdev->irq.installed) {
|
|
WARN(1, "Can't enable IRQ/MSI because no handler is installed\n");
|
|
return -EINVAL;
|
|
}
|
|
/* don't enable anything if the ih is disabled */
|
|
if (!rdev->ih.enabled) {
|
|
cik_disable_interrupts(rdev);
|
|
/* force the active interrupt state to all disabled */
|
|
cik_disable_interrupt_state(rdev);
|
|
return 0;
|
|
}
|
|
|
|
hpd1 = RREG32(DC_HPD1_INT_CONTROL) & ~DC_HPDx_INT_EN;
|
|
hpd2 = RREG32(DC_HPD2_INT_CONTROL) & ~DC_HPDx_INT_EN;
|
|
hpd3 = RREG32(DC_HPD3_INT_CONTROL) & ~DC_HPDx_INT_EN;
|
|
hpd4 = RREG32(DC_HPD4_INT_CONTROL) & ~DC_HPDx_INT_EN;
|
|
hpd5 = RREG32(DC_HPD5_INT_CONTROL) & ~DC_HPDx_INT_EN;
|
|
hpd6 = RREG32(DC_HPD6_INT_CONTROL) & ~DC_HPDx_INT_EN;
|
|
|
|
/* enable CP interrupts on all rings */
|
|
if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) {
|
|
DRM_DEBUG("cik_irq_set: sw int gfx\n");
|
|
cp_int_cntl |= TIME_STAMP_INT_ENABLE;
|
|
}
|
|
/* TODO: compute queues! */
|
|
/* CP_ME[1-2]_PIPE[0-3]_INT_CNTL */
|
|
|
|
if (rdev->irq.crtc_vblank_int[0] ||
|
|
atomic_read(&rdev->irq.pflip[0])) {
|
|
DRM_DEBUG("cik_irq_set: vblank 0\n");
|
|
crtc1 |= VBLANK_INTERRUPT_MASK;
|
|
}
|
|
if (rdev->irq.crtc_vblank_int[1] ||
|
|
atomic_read(&rdev->irq.pflip[1])) {
|
|
DRM_DEBUG("cik_irq_set: vblank 1\n");
|
|
crtc2 |= VBLANK_INTERRUPT_MASK;
|
|
}
|
|
if (rdev->irq.crtc_vblank_int[2] ||
|
|
atomic_read(&rdev->irq.pflip[2])) {
|
|
DRM_DEBUG("cik_irq_set: vblank 2\n");
|
|
crtc3 |= VBLANK_INTERRUPT_MASK;
|
|
}
|
|
if (rdev->irq.crtc_vblank_int[3] ||
|
|
atomic_read(&rdev->irq.pflip[3])) {
|
|
DRM_DEBUG("cik_irq_set: vblank 3\n");
|
|
crtc4 |= VBLANK_INTERRUPT_MASK;
|
|
}
|
|
if (rdev->irq.crtc_vblank_int[4] ||
|
|
atomic_read(&rdev->irq.pflip[4])) {
|
|
DRM_DEBUG("cik_irq_set: vblank 4\n");
|
|
crtc5 |= VBLANK_INTERRUPT_MASK;
|
|
}
|
|
if (rdev->irq.crtc_vblank_int[5] ||
|
|
atomic_read(&rdev->irq.pflip[5])) {
|
|
DRM_DEBUG("cik_irq_set: vblank 5\n");
|
|
crtc6 |= VBLANK_INTERRUPT_MASK;
|
|
}
|
|
if (rdev->irq.hpd[0]) {
|
|
DRM_DEBUG("cik_irq_set: hpd 1\n");
|
|
hpd1 |= DC_HPDx_INT_EN;
|
|
}
|
|
if (rdev->irq.hpd[1]) {
|
|
DRM_DEBUG("cik_irq_set: hpd 2\n");
|
|
hpd2 |= DC_HPDx_INT_EN;
|
|
}
|
|
if (rdev->irq.hpd[2]) {
|
|
DRM_DEBUG("cik_irq_set: hpd 3\n");
|
|
hpd3 |= DC_HPDx_INT_EN;
|
|
}
|
|
if (rdev->irq.hpd[3]) {
|
|
DRM_DEBUG("cik_irq_set: hpd 4\n");
|
|
hpd4 |= DC_HPDx_INT_EN;
|
|
}
|
|
if (rdev->irq.hpd[4]) {
|
|
DRM_DEBUG("cik_irq_set: hpd 5\n");
|
|
hpd5 |= DC_HPDx_INT_EN;
|
|
}
|
|
if (rdev->irq.hpd[5]) {
|
|
DRM_DEBUG("cik_irq_set: hpd 6\n");
|
|
hpd6 |= DC_HPDx_INT_EN;
|
|
}
|
|
|
|
WREG32(CP_INT_CNTL_RING0, cp_int_cntl);
|
|
|
|
WREG32(GRBM_INT_CNTL, grbm_int_cntl);
|
|
|
|
WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, crtc1);
|
|
WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, crtc2);
|
|
if (rdev->num_crtc >= 4) {
|
|
WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, crtc3);
|
|
WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, crtc4);
|
|
}
|
|
if (rdev->num_crtc >= 6) {
|
|
WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, crtc5);
|
|
WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, crtc6);
|
|
}
|
|
|
|
WREG32(DC_HPD1_INT_CONTROL, hpd1);
|
|
WREG32(DC_HPD2_INT_CONTROL, hpd2);
|
|
WREG32(DC_HPD3_INT_CONTROL, hpd3);
|
|
WREG32(DC_HPD4_INT_CONTROL, hpd4);
|
|
WREG32(DC_HPD5_INT_CONTROL, hpd5);
|
|
WREG32(DC_HPD6_INT_CONTROL, hpd6);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_irq_ack - ack interrupt sources
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Ack interrupt sources on the GPU (vblanks, hpd,
|
|
* etc.) (CIK). Certain interrupts sources are sw
|
|
* generated and do not require an explicit ack.
|
|
*/
|
|
static inline void cik_irq_ack(struct radeon_device *rdev)
|
|
{
|
|
u32 tmp;
|
|
|
|
rdev->irq.stat_regs.cik.disp_int = RREG32(DISP_INTERRUPT_STATUS);
|
|
rdev->irq.stat_regs.cik.disp_int_cont = RREG32(DISP_INTERRUPT_STATUS_CONTINUE);
|
|
rdev->irq.stat_regs.cik.disp_int_cont2 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE2);
|
|
rdev->irq.stat_regs.cik.disp_int_cont3 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE3);
|
|
rdev->irq.stat_regs.cik.disp_int_cont4 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE4);
|
|
rdev->irq.stat_regs.cik.disp_int_cont5 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE5);
|
|
rdev->irq.stat_regs.cik.disp_int_cont6 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE6);
|
|
|
|
if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VBLANK_INTERRUPT)
|
|
WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VBLANK_ACK);
|
|
if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VLINE_INTERRUPT)
|
|
WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VLINE_ACK);
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VBLANK_INTERRUPT)
|
|
WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VBLANK_ACK);
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VLINE_INTERRUPT)
|
|
WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VLINE_ACK);
|
|
|
|
if (rdev->num_crtc >= 4) {
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT)
|
|
WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VBLANK_ACK);
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VLINE_INTERRUPT)
|
|
WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VLINE_ACK);
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT)
|
|
WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VBLANK_ACK);
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VLINE_INTERRUPT)
|
|
WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VLINE_ACK);
|
|
}
|
|
|
|
if (rdev->num_crtc >= 6) {
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT)
|
|
WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VBLANK_ACK);
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VLINE_INTERRUPT)
|
|
WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VLINE_ACK);
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT)
|
|
WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VBLANK_ACK);
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VLINE_INTERRUPT)
|
|
WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VLINE_ACK);
|
|
}
|
|
|
|
if (rdev->irq.stat_regs.cik.disp_int & DC_HPD1_INTERRUPT) {
|
|
tmp = RREG32(DC_HPD1_INT_CONTROL);
|
|
tmp |= DC_HPDx_INT_ACK;
|
|
WREG32(DC_HPD1_INT_CONTROL, tmp);
|
|
}
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont & DC_HPD2_INTERRUPT) {
|
|
tmp = RREG32(DC_HPD2_INT_CONTROL);
|
|
tmp |= DC_HPDx_INT_ACK;
|
|
WREG32(DC_HPD2_INT_CONTROL, tmp);
|
|
}
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont2 & DC_HPD3_INTERRUPT) {
|
|
tmp = RREG32(DC_HPD3_INT_CONTROL);
|
|
tmp |= DC_HPDx_INT_ACK;
|
|
WREG32(DC_HPD3_INT_CONTROL, tmp);
|
|
}
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont3 & DC_HPD4_INTERRUPT) {
|
|
tmp = RREG32(DC_HPD4_INT_CONTROL);
|
|
tmp |= DC_HPDx_INT_ACK;
|
|
WREG32(DC_HPD4_INT_CONTROL, tmp);
|
|
}
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont4 & DC_HPD5_INTERRUPT) {
|
|
tmp = RREG32(DC_HPD5_INT_CONTROL);
|
|
tmp |= DC_HPDx_INT_ACK;
|
|
WREG32(DC_HPD5_INT_CONTROL, tmp);
|
|
}
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont5 & DC_HPD6_INTERRUPT) {
|
|
tmp = RREG32(DC_HPD5_INT_CONTROL);
|
|
tmp |= DC_HPDx_INT_ACK;
|
|
WREG32(DC_HPD6_INT_CONTROL, tmp);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cik_irq_disable - disable interrupts
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Disable interrupts on the hw (CIK).
|
|
*/
|
|
static void cik_irq_disable(struct radeon_device *rdev)
|
|
{
|
|
cik_disable_interrupts(rdev);
|
|
/* Wait and acknowledge irq */
|
|
mdelay(1);
|
|
cik_irq_ack(rdev);
|
|
cik_disable_interrupt_state(rdev);
|
|
}
|
|
|
|
/**
|
|
* cik_irq_disable - disable interrupts for suspend
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Disable interrupts and stop the RLC (CIK).
|
|
* Used for suspend.
|
|
*/
|
|
static void cik_irq_suspend(struct radeon_device *rdev)
|
|
{
|
|
cik_irq_disable(rdev);
|
|
cik_rlc_stop(rdev);
|
|
}
|
|
|
|
/**
|
|
* cik_irq_fini - tear down interrupt support
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Disable interrupts on the hw and free the IH ring
|
|
* buffer (CIK).
|
|
* Used for driver unload.
|
|
*/
|
|
static void cik_irq_fini(struct radeon_device *rdev)
|
|
{
|
|
cik_irq_suspend(rdev);
|
|
r600_ih_ring_fini(rdev);
|
|
}
|
|
|
|
/**
|
|
* cik_get_ih_wptr - get the IH ring buffer wptr
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Get the IH ring buffer wptr from either the register
|
|
* or the writeback memory buffer (CIK). Also check for
|
|
* ring buffer overflow and deal with it.
|
|
* Used by cik_irq_process().
|
|
* Returns the value of the wptr.
|
|
*/
|
|
static inline u32 cik_get_ih_wptr(struct radeon_device *rdev)
|
|
{
|
|
u32 wptr, tmp;
|
|
|
|
if (rdev->wb.enabled)
|
|
wptr = le32_to_cpu(rdev->wb.wb[R600_WB_IH_WPTR_OFFSET/4]);
|
|
else
|
|
wptr = RREG32(IH_RB_WPTR);
|
|
|
|
if (wptr & RB_OVERFLOW) {
|
|
/* When a ring buffer overflow happen start parsing interrupt
|
|
* from the last not overwritten vector (wptr + 16). Hopefully
|
|
* this should allow us to catchup.
|
|
*/
|
|
dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, %d, %d)\n",
|
|
wptr, rdev->ih.rptr, (wptr + 16) + rdev->ih.ptr_mask);
|
|
rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask;
|
|
tmp = RREG32(IH_RB_CNTL);
|
|
tmp |= IH_WPTR_OVERFLOW_CLEAR;
|
|
WREG32(IH_RB_CNTL, tmp);
|
|
}
|
|
return (wptr & rdev->ih.ptr_mask);
|
|
}
|
|
|
|
/* CIK IV Ring
|
|
* Each IV ring entry is 128 bits:
|
|
* [7:0] - interrupt source id
|
|
* [31:8] - reserved
|
|
* [59:32] - interrupt source data
|
|
* [63:60] - reserved
|
|
* [71:64] - RINGID: ME_ID [1:0], PIPE_ID[1:0], QUEUE_ID[2:0]
|
|
* QUEUE_ID - for compute, which of the 8 queues owned by the dispatcher
|
|
* - for gfx, hw shader state (0=PS...5=LS, 6=CS)
|
|
* ME_ID - 0 = gfx, 1 = first 4 CS pipes, 2 = second 4 CS pipes
|
|
* PIPE_ID - ME0 0=3D
|
|
* - ME1&2 compute dispatcher (4 pipes each)
|
|
* [79:72] - VMID
|
|
* [95:80] - PASID
|
|
* [127:96] - reserved
|
|
*/
|
|
/**
|
|
* cik_irq_process - interrupt handler
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Interrupt hander (CIK). Walk the IH ring,
|
|
* ack interrupts and schedule work to handle
|
|
* interrupt events.
|
|
* Returns irq process return code.
|
|
*/
|
|
int cik_irq_process(struct radeon_device *rdev)
|
|
{
|
|
u32 wptr;
|
|
u32 rptr;
|
|
u32 src_id, src_data, ring_id;
|
|
u8 me_id, pipe_id, queue_id;
|
|
u32 ring_index;
|
|
bool queue_hotplug = false;
|
|
bool queue_reset = false;
|
|
|
|
if (!rdev->ih.enabled || rdev->shutdown)
|
|
return IRQ_NONE;
|
|
|
|
wptr = cik_get_ih_wptr(rdev);
|
|
|
|
restart_ih:
|
|
/* is somebody else already processing irqs? */
|
|
if (atomic_xchg(&rdev->ih.lock, 1))
|
|
return IRQ_NONE;
|
|
|
|
rptr = rdev->ih.rptr;
|
|
DRM_DEBUG("cik_irq_process start: rptr %d, wptr %d\n", rptr, wptr);
|
|
|
|
/* Order reading of wptr vs. reading of IH ring data */
|
|
rmb();
|
|
|
|
/* display interrupts */
|
|
cik_irq_ack(rdev);
|
|
|
|
while (rptr != wptr) {
|
|
/* wptr/rptr are in bytes! */
|
|
ring_index = rptr / 4;
|
|
src_id = le32_to_cpu(rdev->ih.ring[ring_index]) & 0xff;
|
|
src_data = le32_to_cpu(rdev->ih.ring[ring_index + 1]) & 0xfffffff;
|
|
ring_id = le32_to_cpu(rdev->ih.ring[ring_index + 2]) & 0xff;
|
|
/* XXX check the bitfield order! */
|
|
me_id = (ring_id & 0x60) >> 5;
|
|
pipe_id = (ring_id & 0x18) >> 3;
|
|
queue_id = (ring_id & 0x7) >> 0;
|
|
|
|
switch (src_id) {
|
|
case 1: /* D1 vblank/vline */
|
|
switch (src_data) {
|
|
case 0: /* D1 vblank */
|
|
if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VBLANK_INTERRUPT) {
|
|
if (rdev->irq.crtc_vblank_int[0]) {
|
|
drm_handle_vblank(rdev->ddev, 0);
|
|
rdev->pm.vblank_sync = true;
|
|
wake_up(&rdev->irq.vblank_queue);
|
|
}
|
|
if (atomic_read(&rdev->irq.pflip[0]))
|
|
radeon_crtc_handle_flip(rdev, 0);
|
|
rdev->irq.stat_regs.cik.disp_int &= ~LB_D1_VBLANK_INTERRUPT;
|
|
DRM_DEBUG("IH: D1 vblank\n");
|
|
}
|
|
break;
|
|
case 1: /* D1 vline */
|
|
if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VLINE_INTERRUPT) {
|
|
rdev->irq.stat_regs.cik.disp_int &= ~LB_D1_VLINE_INTERRUPT;
|
|
DRM_DEBUG("IH: D1 vline\n");
|
|
}
|
|
break;
|
|
default:
|
|
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
|
|
break;
|
|
}
|
|
break;
|
|
case 2: /* D2 vblank/vline */
|
|
switch (src_data) {
|
|
case 0: /* D2 vblank */
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VBLANK_INTERRUPT) {
|
|
if (rdev->irq.crtc_vblank_int[1]) {
|
|
drm_handle_vblank(rdev->ddev, 1);
|
|
rdev->pm.vblank_sync = true;
|
|
wake_up(&rdev->irq.vblank_queue);
|
|
}
|
|
if (atomic_read(&rdev->irq.pflip[1]))
|
|
radeon_crtc_handle_flip(rdev, 1);
|
|
rdev->irq.stat_regs.cik.disp_int_cont &= ~LB_D2_VBLANK_INTERRUPT;
|
|
DRM_DEBUG("IH: D2 vblank\n");
|
|
}
|
|
break;
|
|
case 1: /* D2 vline */
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VLINE_INTERRUPT) {
|
|
rdev->irq.stat_regs.cik.disp_int_cont &= ~LB_D2_VLINE_INTERRUPT;
|
|
DRM_DEBUG("IH: D2 vline\n");
|
|
}
|
|
break;
|
|
default:
|
|
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
|
|
break;
|
|
}
|
|
break;
|
|
case 3: /* D3 vblank/vline */
|
|
switch (src_data) {
|
|
case 0: /* D3 vblank */
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT) {
|
|
if (rdev->irq.crtc_vblank_int[2]) {
|
|
drm_handle_vblank(rdev->ddev, 2);
|
|
rdev->pm.vblank_sync = true;
|
|
wake_up(&rdev->irq.vblank_queue);
|
|
}
|
|
if (atomic_read(&rdev->irq.pflip[2]))
|
|
radeon_crtc_handle_flip(rdev, 2);
|
|
rdev->irq.stat_regs.cik.disp_int_cont2 &= ~LB_D3_VBLANK_INTERRUPT;
|
|
DRM_DEBUG("IH: D3 vblank\n");
|
|
}
|
|
break;
|
|
case 1: /* D3 vline */
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VLINE_INTERRUPT) {
|
|
rdev->irq.stat_regs.cik.disp_int_cont2 &= ~LB_D3_VLINE_INTERRUPT;
|
|
DRM_DEBUG("IH: D3 vline\n");
|
|
}
|
|
break;
|
|
default:
|
|
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
|
|
break;
|
|
}
|
|
break;
|
|
case 4: /* D4 vblank/vline */
|
|
switch (src_data) {
|
|
case 0: /* D4 vblank */
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT) {
|
|
if (rdev->irq.crtc_vblank_int[3]) {
|
|
drm_handle_vblank(rdev->ddev, 3);
|
|
rdev->pm.vblank_sync = true;
|
|
wake_up(&rdev->irq.vblank_queue);
|
|
}
|
|
if (atomic_read(&rdev->irq.pflip[3]))
|
|
radeon_crtc_handle_flip(rdev, 3);
|
|
rdev->irq.stat_regs.cik.disp_int_cont3 &= ~LB_D4_VBLANK_INTERRUPT;
|
|
DRM_DEBUG("IH: D4 vblank\n");
|
|
}
|
|
break;
|
|
case 1: /* D4 vline */
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VLINE_INTERRUPT) {
|
|
rdev->irq.stat_regs.cik.disp_int_cont3 &= ~LB_D4_VLINE_INTERRUPT;
|
|
DRM_DEBUG("IH: D4 vline\n");
|
|
}
|
|
break;
|
|
default:
|
|
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
|
|
break;
|
|
}
|
|
break;
|
|
case 5: /* D5 vblank/vline */
|
|
switch (src_data) {
|
|
case 0: /* D5 vblank */
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT) {
|
|
if (rdev->irq.crtc_vblank_int[4]) {
|
|
drm_handle_vblank(rdev->ddev, 4);
|
|
rdev->pm.vblank_sync = true;
|
|
wake_up(&rdev->irq.vblank_queue);
|
|
}
|
|
if (atomic_read(&rdev->irq.pflip[4]))
|
|
radeon_crtc_handle_flip(rdev, 4);
|
|
rdev->irq.stat_regs.cik.disp_int_cont4 &= ~LB_D5_VBLANK_INTERRUPT;
|
|
DRM_DEBUG("IH: D5 vblank\n");
|
|
}
|
|
break;
|
|
case 1: /* D5 vline */
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VLINE_INTERRUPT) {
|
|
rdev->irq.stat_regs.cik.disp_int_cont4 &= ~LB_D5_VLINE_INTERRUPT;
|
|
DRM_DEBUG("IH: D5 vline\n");
|
|
}
|
|
break;
|
|
default:
|
|
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
|
|
break;
|
|
}
|
|
break;
|
|
case 6: /* D6 vblank/vline */
|
|
switch (src_data) {
|
|
case 0: /* D6 vblank */
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT) {
|
|
if (rdev->irq.crtc_vblank_int[5]) {
|
|
drm_handle_vblank(rdev->ddev, 5);
|
|
rdev->pm.vblank_sync = true;
|
|
wake_up(&rdev->irq.vblank_queue);
|
|
}
|
|
if (atomic_read(&rdev->irq.pflip[5]))
|
|
radeon_crtc_handle_flip(rdev, 5);
|
|
rdev->irq.stat_regs.cik.disp_int_cont5 &= ~LB_D6_VBLANK_INTERRUPT;
|
|
DRM_DEBUG("IH: D6 vblank\n");
|
|
}
|
|
break;
|
|
case 1: /* D6 vline */
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VLINE_INTERRUPT) {
|
|
rdev->irq.stat_regs.cik.disp_int_cont5 &= ~LB_D6_VLINE_INTERRUPT;
|
|
DRM_DEBUG("IH: D6 vline\n");
|
|
}
|
|
break;
|
|
default:
|
|
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
|
|
break;
|
|
}
|
|
break;
|
|
case 42: /* HPD hotplug */
|
|
switch (src_data) {
|
|
case 0:
|
|
if (rdev->irq.stat_regs.cik.disp_int & DC_HPD1_INTERRUPT) {
|
|
rdev->irq.stat_regs.cik.disp_int &= ~DC_HPD1_INTERRUPT;
|
|
queue_hotplug = true;
|
|
DRM_DEBUG("IH: HPD1\n");
|
|
}
|
|
break;
|
|
case 1:
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont & DC_HPD2_INTERRUPT) {
|
|
rdev->irq.stat_regs.cik.disp_int_cont &= ~DC_HPD2_INTERRUPT;
|
|
queue_hotplug = true;
|
|
DRM_DEBUG("IH: HPD2\n");
|
|
}
|
|
break;
|
|
case 2:
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont2 & DC_HPD3_INTERRUPT) {
|
|
rdev->irq.stat_regs.cik.disp_int_cont2 &= ~DC_HPD3_INTERRUPT;
|
|
queue_hotplug = true;
|
|
DRM_DEBUG("IH: HPD3\n");
|
|
}
|
|
break;
|
|
case 3:
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont3 & DC_HPD4_INTERRUPT) {
|
|
rdev->irq.stat_regs.cik.disp_int_cont3 &= ~DC_HPD4_INTERRUPT;
|
|
queue_hotplug = true;
|
|
DRM_DEBUG("IH: HPD4\n");
|
|
}
|
|
break;
|
|
case 4:
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont4 & DC_HPD5_INTERRUPT) {
|
|
rdev->irq.stat_regs.cik.disp_int_cont4 &= ~DC_HPD5_INTERRUPT;
|
|
queue_hotplug = true;
|
|
DRM_DEBUG("IH: HPD5\n");
|
|
}
|
|
break;
|
|
case 5:
|
|
if (rdev->irq.stat_regs.cik.disp_int_cont5 & DC_HPD6_INTERRUPT) {
|
|
rdev->irq.stat_regs.cik.disp_int_cont5 &= ~DC_HPD6_INTERRUPT;
|
|
queue_hotplug = true;
|
|
DRM_DEBUG("IH: HPD6\n");
|
|
}
|
|
break;
|
|
default:
|
|
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
|
|
break;
|
|
}
|
|
break;
|
|
case 146:
|
|
case 147:
|
|
dev_err(rdev->dev, "GPU fault detected: %d 0x%08x\n", src_id, src_data);
|
|
dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
|
|
RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR));
|
|
dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
|
|
RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS));
|
|
/* reset addr and status */
|
|
WREG32_P(VM_CONTEXT1_CNTL2, 1, ~1);
|
|
break;
|
|
case 176: /* GFX RB CP_INT */
|
|
case 177: /* GFX IB CP_INT */
|
|
radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX);
|
|
break;
|
|
case 181: /* CP EOP event */
|
|
DRM_DEBUG("IH: CP EOP\n");
|
|
switch (me_id) {
|
|
case 0:
|
|
radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX);
|
|
break;
|
|
case 1:
|
|
/* XXX compute */
|
|
break;
|
|
case 2:
|
|
/* XXX compute */
|
|
break;
|
|
}
|
|
break;
|
|
case 184: /* CP Privileged reg access */
|
|
DRM_ERROR("Illegal register access in command stream\n");
|
|
/* XXX check the bitfield order! */
|
|
me_id = (ring_id & 0x60) >> 5;
|
|
pipe_id = (ring_id & 0x18) >> 3;
|
|
queue_id = (ring_id & 0x7) >> 0;
|
|
switch (me_id) {
|
|
case 0:
|
|
/* This results in a full GPU reset, but all we need to do is soft
|
|
* reset the CP for gfx
|
|
*/
|
|
queue_reset = true;
|
|
break;
|
|
case 1:
|
|
/* XXX compute */
|
|
break;
|
|
case 2:
|
|
/* XXX compute */
|
|
break;
|
|
}
|
|
break;
|
|
case 185: /* CP Privileged inst */
|
|
DRM_ERROR("Illegal instruction in command stream\n");
|
|
switch (me_id) {
|
|
case 0:
|
|
/* This results in a full GPU reset, but all we need to do is soft
|
|
* reset the CP for gfx
|
|
*/
|
|
queue_reset = true;
|
|
break;
|
|
case 1:
|
|
/* XXX compute */
|
|
break;
|
|
case 2:
|
|
/* XXX compute */
|
|
break;
|
|
}
|
|
break;
|
|
case 233: /* GUI IDLE */
|
|
DRM_DEBUG("IH: GUI idle\n");
|
|
break;
|
|
default:
|
|
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
|
|
break;
|
|
}
|
|
|
|
/* wptr/rptr are in bytes! */
|
|
rptr += 16;
|
|
rptr &= rdev->ih.ptr_mask;
|
|
}
|
|
if (queue_hotplug)
|
|
schedule_work(&rdev->hotplug_work);
|
|
if (queue_reset)
|
|
schedule_work(&rdev->reset_work);
|
|
rdev->ih.rptr = rptr;
|
|
WREG32(IH_RB_RPTR, rdev->ih.rptr);
|
|
atomic_set(&rdev->ih.lock, 0);
|
|
|
|
/* make sure wptr hasn't changed while processing */
|
|
wptr = cik_get_ih_wptr(rdev);
|
|
if (wptr != rptr)
|
|
goto restart_ih;
|
|
|
|
return IRQ_HANDLED;
|
|
}
|