mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-05 10:04:12 +08:00
cd6714f940
For spdx, use // for *.c files Replacements significanty to significantly Signed-off-by: Tom Rix <trix@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
787 lines
21 KiB
Perl
787 lines
21 KiB
Perl
#! /usr/bin/env perl
|
|
# SPDX-License-Identifier: GPL-2.0
|
|
|
|
# This code is taken from the OpenSSL project but the author (Andy Polyakov)
|
|
# has relicensed it under the GPLv2. Therefore this program is free software;
|
|
# you can redistribute it and/or modify it under the terms of the GNU General
|
|
# Public License version 2 as published by the Free Software Foundation.
|
|
#
|
|
# The original headers, including the original license headers, are
|
|
# included below for completeness.
|
|
|
|
# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the OpenSSL license (the "License"). You may not use
|
|
# this file except in compliance with the License. You can obtain a copy
|
|
# in the file LICENSE in the source distribution or at
|
|
# https://www.openssl.org/source/license.html
|
|
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
#
|
|
# SHA256/512 for ARMv8.
|
|
#
|
|
# Performance in cycles per processed byte and improvement coefficient
|
|
# over code generated with "default" compiler:
|
|
#
|
|
# SHA256-hw SHA256(*) SHA512
|
|
# Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**))
|
|
# Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***))
|
|
# Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***))
|
|
# Denver 2.01 10.5 (+26%) 6.70 (+8%)
|
|
# X-Gene 20.0 (+100%) 12.8 (+300%(***))
|
|
# Mongoose 2.36 13.0 (+50%) 8.36 (+33%)
|
|
#
|
|
# (*) Software SHA256 results are of lesser relevance, presented
|
|
# mostly for informational purposes.
|
|
# (**) The result is a trade-off: it's possible to improve it by
|
|
# 10% (or by 1 cycle per round), but at the cost of 20% loss
|
|
# on Cortex-A53 (or by 4 cycles per round).
|
|
# (***) Super-impressive coefficients over gcc-generated code are
|
|
# indication of some compiler "pathology", most notably code
|
|
# generated with -mgeneral-regs-only is significantly faster
|
|
# and the gap is only 40-90%.
|
|
#
|
|
# October 2016.
|
|
#
|
|
# Originally it was reckoned that it makes no sense to implement NEON
|
|
# version of SHA256 for 64-bit processors. This is because performance
|
|
# improvement on most wide-spread Cortex-A5x processors was observed
|
|
# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
|
|
# observed that 32-bit NEON SHA256 performs significantly better than
|
|
# 64-bit scalar version on *some* of the more recent processors. As
|
|
# result 64-bit NEON version of SHA256 was added to provide best
|
|
# all-round performance. For example it executes ~30% faster on X-Gene
|
|
# and Mongoose. [For reference, NEON version of SHA512 is bound to
|
|
# deliver much less improvement, likely *negative* on Cortex-A5x.
|
|
# Which is why NEON support is limited to SHA256.]
|
|
|
|
$output=pop;
|
|
$flavour=pop;
|
|
|
|
if ($flavour && $flavour ne "void") {
|
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
|
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
|
|
( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
|
|
die "can't locate arm-xlate.pl";
|
|
|
|
open OUT,"| \"$^X\" $xlate $flavour $output";
|
|
*STDOUT=*OUT;
|
|
} else {
|
|
open STDOUT,">$output";
|
|
}
|
|
|
|
if ($output =~ /512/) {
|
|
$BITS=512;
|
|
$SZ=8;
|
|
@Sigma0=(28,34,39);
|
|
@Sigma1=(14,18,41);
|
|
@sigma0=(1, 8, 7);
|
|
@sigma1=(19,61, 6);
|
|
$rounds=80;
|
|
$reg_t="x";
|
|
} else {
|
|
$BITS=256;
|
|
$SZ=4;
|
|
@Sigma0=( 2,13,22);
|
|
@Sigma1=( 6,11,25);
|
|
@sigma0=( 7,18, 3);
|
|
@sigma1=(17,19,10);
|
|
$rounds=64;
|
|
$reg_t="w";
|
|
}
|
|
|
|
$func="sha${BITS}_block_data_order";
|
|
|
|
($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
|
|
|
|
@X=map("$reg_t$_",(3..15,0..2));
|
|
@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
|
|
($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
|
|
|
|
sub BODY_00_xx {
|
|
my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
|
|
my $j=($i+1)&15;
|
|
my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
|
|
$T0=@X[$i+3] if ($i<11);
|
|
|
|
$code.=<<___ if ($i<16);
|
|
#ifndef __AARCH64EB__
|
|
rev @X[$i],@X[$i] // $i
|
|
#endif
|
|
___
|
|
$code.=<<___ if ($i<13 && ($i&1));
|
|
ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ
|
|
___
|
|
$code.=<<___ if ($i==13);
|
|
ldp @X[14],@X[15],[$inp]
|
|
___
|
|
$code.=<<___ if ($i>=14);
|
|
ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
|
|
___
|
|
$code.=<<___ if ($i>0 && $i<16);
|
|
add $a,$a,$t1 // h+=Sigma0(a)
|
|
___
|
|
$code.=<<___ if ($i>=11);
|
|
str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
|
|
___
|
|
# While ARMv8 specifies merged rotate-n-logical operation such as
|
|
# 'eor x,y,z,ror#n', it was found to negatively affect performance
|
|
# on Apple A7. The reason seems to be that it requires even 'y' to
|
|
# be available earlier. This means that such merged instruction is
|
|
# not necessarily best choice on critical path... On the other hand
|
|
# Cortex-A5x handles merged instructions much better than disjoint
|
|
# rotate and logical... See (**) footnote above.
|
|
$code.=<<___ if ($i<15);
|
|
ror $t0,$e,#$Sigma1[0]
|
|
add $h,$h,$t2 // h+=K[i]
|
|
eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
|
|
and $t1,$f,$e
|
|
bic $t2,$g,$e
|
|
add $h,$h,@X[$i&15] // h+=X[i]
|
|
orr $t1,$t1,$t2 // Ch(e,f,g)
|
|
eor $t2,$a,$b // a^b, b^c in next round
|
|
eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e)
|
|
ror $T0,$a,#$Sigma0[0]
|
|
add $h,$h,$t1 // h+=Ch(e,f,g)
|
|
eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
|
|
add $h,$h,$t0 // h+=Sigma1(e)
|
|
and $t3,$t3,$t2 // (b^c)&=(a^b)
|
|
add $d,$d,$h // d+=h
|
|
eor $t3,$t3,$b // Maj(a,b,c)
|
|
eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a)
|
|
add $h,$h,$t3 // h+=Maj(a,b,c)
|
|
ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
|
|
//add $h,$h,$t1 // h+=Sigma0(a)
|
|
___
|
|
$code.=<<___ if ($i>=15);
|
|
ror $t0,$e,#$Sigma1[0]
|
|
add $h,$h,$t2 // h+=K[i]
|
|
ror $T1,@X[($j+1)&15],#$sigma0[0]
|
|
and $t1,$f,$e
|
|
ror $T2,@X[($j+14)&15],#$sigma1[0]
|
|
bic $t2,$g,$e
|
|
ror $T0,$a,#$Sigma0[0]
|
|
add $h,$h,@X[$i&15] // h+=X[i]
|
|
eor $t0,$t0,$e,ror#$Sigma1[1]
|
|
eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
|
|
orr $t1,$t1,$t2 // Ch(e,f,g)
|
|
eor $t2,$a,$b // a^b, b^c in next round
|
|
eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e)
|
|
eor $T0,$T0,$a,ror#$Sigma0[1]
|
|
add $h,$h,$t1 // h+=Ch(e,f,g)
|
|
and $t3,$t3,$t2 // (b^c)&=(a^b)
|
|
eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
|
|
eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1])
|
|
add $h,$h,$t0 // h+=Sigma1(e)
|
|
eor $t3,$t3,$b // Maj(a,b,c)
|
|
eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a)
|
|
eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14])
|
|
add @X[$j],@X[$j],@X[($j+9)&15]
|
|
add $d,$d,$h // d+=h
|
|
add $h,$h,$t3 // h+=Maj(a,b,c)
|
|
ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
|
|
add @X[$j],@X[$j],$T1
|
|
add $h,$h,$t1 // h+=Sigma0(a)
|
|
add @X[$j],@X[$j],$T2
|
|
___
|
|
($t2,$t3)=($t3,$t2);
|
|
}
|
|
|
|
$code.=<<___;
|
|
#ifndef __KERNEL__
|
|
# include "arm_arch.h"
|
|
#endif
|
|
|
|
.text
|
|
|
|
.extern OPENSSL_armcap_P
|
|
.globl $func
|
|
.type $func,%function
|
|
.align 6
|
|
$func:
|
|
___
|
|
$code.=<<___ if ($SZ==4);
|
|
#ifndef __KERNEL__
|
|
# ifdef __ILP32__
|
|
ldrsw x16,.LOPENSSL_armcap_P
|
|
# else
|
|
ldr x16,.LOPENSSL_armcap_P
|
|
# endif
|
|
adr x17,.LOPENSSL_armcap_P
|
|
add x16,x16,x17
|
|
ldr w16,[x16]
|
|
tst w16,#ARMV8_SHA256
|
|
b.ne .Lv8_entry
|
|
tst w16,#ARMV7_NEON
|
|
b.ne .Lneon_entry
|
|
#endif
|
|
___
|
|
$code.=<<___;
|
|
stp x29,x30,[sp,#-128]!
|
|
add x29,sp,#0
|
|
|
|
stp x19,x20,[sp,#16]
|
|
stp x21,x22,[sp,#32]
|
|
stp x23,x24,[sp,#48]
|
|
stp x25,x26,[sp,#64]
|
|
stp x27,x28,[sp,#80]
|
|
sub sp,sp,#4*$SZ
|
|
|
|
ldp $A,$B,[$ctx] // load context
|
|
ldp $C,$D,[$ctx,#2*$SZ]
|
|
ldp $E,$F,[$ctx,#4*$SZ]
|
|
add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
|
|
ldp $G,$H,[$ctx,#6*$SZ]
|
|
adr $Ktbl,.LK$BITS
|
|
stp $ctx,$num,[x29,#96]
|
|
|
|
.Loop:
|
|
ldp @X[0],@X[1],[$inp],#2*$SZ
|
|
ldr $t2,[$Ktbl],#$SZ // *K++
|
|
eor $t3,$B,$C // magic seed
|
|
str $inp,[x29,#112]
|
|
___
|
|
for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
|
|
$code.=".Loop_16_xx:\n";
|
|
for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
|
|
$code.=<<___;
|
|
cbnz $t2,.Loop_16_xx
|
|
|
|
ldp $ctx,$num,[x29,#96]
|
|
ldr $inp,[x29,#112]
|
|
sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind
|
|
|
|
ldp @X[0],@X[1],[$ctx]
|
|
ldp @X[2],@X[3],[$ctx,#2*$SZ]
|
|
add $inp,$inp,#14*$SZ // advance input pointer
|
|
ldp @X[4],@X[5],[$ctx,#4*$SZ]
|
|
add $A,$A,@X[0]
|
|
ldp @X[6],@X[7],[$ctx,#6*$SZ]
|
|
add $B,$B,@X[1]
|
|
add $C,$C,@X[2]
|
|
add $D,$D,@X[3]
|
|
stp $A,$B,[$ctx]
|
|
add $E,$E,@X[4]
|
|
add $F,$F,@X[5]
|
|
stp $C,$D,[$ctx,#2*$SZ]
|
|
add $G,$G,@X[6]
|
|
add $H,$H,@X[7]
|
|
cmp $inp,$num
|
|
stp $E,$F,[$ctx,#4*$SZ]
|
|
stp $G,$H,[$ctx,#6*$SZ]
|
|
b.ne .Loop
|
|
|
|
ldp x19,x20,[x29,#16]
|
|
add sp,sp,#4*$SZ
|
|
ldp x21,x22,[x29,#32]
|
|
ldp x23,x24,[x29,#48]
|
|
ldp x25,x26,[x29,#64]
|
|
ldp x27,x28,[x29,#80]
|
|
ldp x29,x30,[sp],#128
|
|
ret
|
|
.size $func,.-$func
|
|
|
|
.align 6
|
|
.type .LK$BITS,%object
|
|
.LK$BITS:
|
|
___
|
|
$code.=<<___ if ($SZ==8);
|
|
.quad 0x428a2f98d728ae22,0x7137449123ef65cd
|
|
.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
|
|
.quad 0x3956c25bf348b538,0x59f111f1b605d019
|
|
.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
|
|
.quad 0xd807aa98a3030242,0x12835b0145706fbe
|
|
.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
|
|
.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
|
|
.quad 0x9bdc06a725c71235,0xc19bf174cf692694
|
|
.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
|
|
.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
|
|
.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
|
|
.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
|
|
.quad 0x983e5152ee66dfab,0xa831c66d2db43210
|
|
.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
|
|
.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
|
|
.quad 0x06ca6351e003826f,0x142929670a0e6e70
|
|
.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
|
|
.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
|
|
.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
|
|
.quad 0x81c2c92e47edaee6,0x92722c851482353b
|
|
.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
|
|
.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
|
|
.quad 0xd192e819d6ef5218,0xd69906245565a910
|
|
.quad 0xf40e35855771202a,0x106aa07032bbd1b8
|
|
.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
|
|
.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
|
|
.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
|
|
.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
|
|
.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
|
|
.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
|
|
.quad 0x90befffa23631e28,0xa4506cebde82bde9
|
|
.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
|
|
.quad 0xca273eceea26619c,0xd186b8c721c0c207
|
|
.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
|
|
.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
|
|
.quad 0x113f9804bef90dae,0x1b710b35131c471b
|
|
.quad 0x28db77f523047d84,0x32caab7b40c72493
|
|
.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
|
|
.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
|
|
.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
|
|
.quad 0 // terminator
|
|
___
|
|
$code.=<<___ if ($SZ==4);
|
|
.long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
|
|
.long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
|
|
.long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
|
|
.long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
|
|
.long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
|
|
.long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
|
|
.long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
|
|
.long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
|
|
.long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
|
|
.long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
|
|
.long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
|
|
.long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
|
|
.long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
|
|
.long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
|
|
.long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
|
|
.long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
|
|
.long 0 //terminator
|
|
___
|
|
$code.=<<___;
|
|
.size .LK$BITS,.-.LK$BITS
|
|
#ifndef __KERNEL__
|
|
.align 3
|
|
.LOPENSSL_armcap_P:
|
|
# ifdef __ILP32__
|
|
.long OPENSSL_armcap_P-.
|
|
# else
|
|
.quad OPENSSL_armcap_P-.
|
|
# endif
|
|
#endif
|
|
.asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
|
|
.align 2
|
|
___
|
|
|
|
if ($SZ==4) {
|
|
my $Ktbl="x3";
|
|
|
|
my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
|
|
my @MSG=map("v$_.16b",(4..7));
|
|
my ($W0,$W1)=("v16.4s","v17.4s");
|
|
my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
|
|
|
|
$code.=<<___;
|
|
#ifndef __KERNEL__
|
|
.type sha256_block_armv8,%function
|
|
.align 6
|
|
sha256_block_armv8:
|
|
.Lv8_entry:
|
|
stp x29,x30,[sp,#-16]!
|
|
add x29,sp,#0
|
|
|
|
ld1.32 {$ABCD,$EFGH},[$ctx]
|
|
adr $Ktbl,.LK256
|
|
|
|
.Loop_hw:
|
|
ld1 {@MSG[0]-@MSG[3]},[$inp],#64
|
|
sub $num,$num,#1
|
|
ld1.32 {$W0},[$Ktbl],#16
|
|
rev32 @MSG[0],@MSG[0]
|
|
rev32 @MSG[1],@MSG[1]
|
|
rev32 @MSG[2],@MSG[2]
|
|
rev32 @MSG[3],@MSG[3]
|
|
orr $ABCD_SAVE,$ABCD,$ABCD // offload
|
|
orr $EFGH_SAVE,$EFGH,$EFGH
|
|
___
|
|
for($i=0;$i<12;$i++) {
|
|
$code.=<<___;
|
|
ld1.32 {$W1},[$Ktbl],#16
|
|
add.i32 $W0,$W0,@MSG[0]
|
|
sha256su0 @MSG[0],@MSG[1]
|
|
orr $abcd,$ABCD,$ABCD
|
|
sha256h $ABCD,$EFGH,$W0
|
|
sha256h2 $EFGH,$abcd,$W0
|
|
sha256su1 @MSG[0],@MSG[2],@MSG[3]
|
|
___
|
|
($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
|
|
}
|
|
$code.=<<___;
|
|
ld1.32 {$W1},[$Ktbl],#16
|
|
add.i32 $W0,$W0,@MSG[0]
|
|
orr $abcd,$ABCD,$ABCD
|
|
sha256h $ABCD,$EFGH,$W0
|
|
sha256h2 $EFGH,$abcd,$W0
|
|
|
|
ld1.32 {$W0},[$Ktbl],#16
|
|
add.i32 $W1,$W1,@MSG[1]
|
|
orr $abcd,$ABCD,$ABCD
|
|
sha256h $ABCD,$EFGH,$W1
|
|
sha256h2 $EFGH,$abcd,$W1
|
|
|
|
ld1.32 {$W1},[$Ktbl]
|
|
add.i32 $W0,$W0,@MSG[2]
|
|
sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind
|
|
orr $abcd,$ABCD,$ABCD
|
|
sha256h $ABCD,$EFGH,$W0
|
|
sha256h2 $EFGH,$abcd,$W0
|
|
|
|
add.i32 $W1,$W1,@MSG[3]
|
|
orr $abcd,$ABCD,$ABCD
|
|
sha256h $ABCD,$EFGH,$W1
|
|
sha256h2 $EFGH,$abcd,$W1
|
|
|
|
add.i32 $ABCD,$ABCD,$ABCD_SAVE
|
|
add.i32 $EFGH,$EFGH,$EFGH_SAVE
|
|
|
|
cbnz $num,.Loop_hw
|
|
|
|
st1.32 {$ABCD,$EFGH},[$ctx]
|
|
|
|
ldr x29,[sp],#16
|
|
ret
|
|
.size sha256_block_armv8,.-sha256_block_armv8
|
|
#endif
|
|
___
|
|
}
|
|
|
|
if ($SZ==4) { ######################################### NEON stuff #
|
|
# You'll surely note a lot of similarities with sha256-armv4 module,
|
|
# and of course it's not a coincidence. sha256-armv4 was used as
|
|
# initial template, but was adapted for ARMv8 instruction set and
|
|
# extensively re-tuned for all-round performance.
|
|
|
|
my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
|
|
my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
|
|
my $Ktbl="x16";
|
|
my $Xfer="x17";
|
|
my @X = map("q$_",(0..3));
|
|
my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
|
|
my $j=0;
|
|
|
|
sub AUTOLOAD() # thunk [simplified] x86-style perlasm
|
|
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
|
|
my $arg = pop;
|
|
$arg = "#$arg" if ($arg*1 eq $arg);
|
|
$code .= "\t$opcode\t".join(',',@_,$arg)."\n";
|
|
}
|
|
|
|
sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
|
|
sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
|
|
sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
|
|
|
|
sub Xupdate()
|
|
{ use integer;
|
|
my $body = shift;
|
|
my @insns = (&$body,&$body,&$body,&$body);
|
|
my ($a,$b,$c,$d,$e,$f,$g,$h);
|
|
|
|
&ext_8 ($T0,@X[0],@X[1],4); # X[1..4]
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&ext_8 ($T3,@X[2],@X[3],4); # X[9..12]
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15]
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&ushr_32 ($T2,$T0,$sigma0[0]);
|
|
eval(shift(@insns));
|
|
&ushr_32 ($T1,$T0,$sigma0[2]);
|
|
eval(shift(@insns));
|
|
&add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12]
|
|
eval(shift(@insns));
|
|
&sli_32 ($T2,$T0,32-$sigma0[0]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&ushr_32 ($T3,$T0,$sigma0[1]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&eor_8 ($T1,$T1,$T2);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&sli_32 ($T3,$T0,32-$sigma0[1]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&ushr_32 ($T4,$T7,$sigma1[0]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&eor_8 ($T1,$T1,$T3); # sigma0(X[1..4])
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&sli_32 ($T4,$T7,32-$sigma1[0]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&ushr_32 ($T5,$T7,$sigma1[2]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&ushr_32 ($T3,$T7,$sigma1[1]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&sli_u32 ($T3,$T7,32-$sigma1[1]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&eor_8 ($T5,$T5,$T4);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&eor_8 ($T5,$T5,$T3); # sigma1(X[14..15])
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15])
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&ushr_32 ($T6,@X[0],$sigma1[0]);
|
|
eval(shift(@insns));
|
|
&ushr_32 ($T7,@X[0],$sigma1[2]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&sli_32 ($T6,@X[0],32-$sigma1[0]);
|
|
eval(shift(@insns));
|
|
&ushr_32 ($T5,@X[0],$sigma1[1]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&eor_8 ($T7,$T7,$T6);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&sli_32 ($T5,@X[0],32-$sigma1[1]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&ld1_32 ("{$T0}","[$Ktbl], #16");
|
|
eval(shift(@insns));
|
|
&eor_8 ($T7,$T7,$T5); # sigma1(X[16..17])
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&eor_8 ($T5,$T5,$T5);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&mov (&Dhi($T5), &Dlo($T7));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17])
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&add_32 ($T0,$T0,@X[0]);
|
|
while($#insns>=1) { eval(shift(@insns)); }
|
|
&st1_32 ("{$T0}","[$Xfer], #16");
|
|
eval(shift(@insns));
|
|
|
|
push(@X,shift(@X)); # "rotate" X[]
|
|
}
|
|
|
|
sub Xpreload()
|
|
{ use integer;
|
|
my $body = shift;
|
|
my @insns = (&$body,&$body,&$body,&$body);
|
|
my ($a,$b,$c,$d,$e,$f,$g,$h);
|
|
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&ld1_8 ("{@X[0]}","[$inp],#16");
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&ld1_32 ("{$T0}","[$Ktbl],#16");
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&rev32 (@X[0],@X[0]);
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
eval(shift(@insns));
|
|
&add_32 ($T0,$T0,@X[0]);
|
|
foreach (@insns) { eval; } # remaining instructions
|
|
&st1_32 ("{$T0}","[$Xfer], #16");
|
|
|
|
push(@X,shift(@X)); # "rotate" X[]
|
|
}
|
|
|
|
sub body_00_15 () {
|
|
(
|
|
'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
|
|
'&add ($h,$h,$t1)', # h+=X[i]+K[i]
|
|
'&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past
|
|
'&and ($t1,$f,$e)',
|
|
'&bic ($t4,$g,$e)',
|
|
'&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
|
|
'&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
|
|
'&orr ($t1,$t1,$t4)', # Ch(e,f,g)
|
|
'&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
|
|
'&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
|
|
'&add ($h,$h,$t1)', # h+=Ch(e,f,g)
|
|
'&ror ($t0,$t0,"#$Sigma1[0]")',
|
|
'&eor ($t2,$a,$b)', # a^b, b^c in next round
|
|
'&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
|
|
'&add ($h,$h,$t0)', # h+=Sigma1(e)
|
|
'&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
|
|
'&ldr ($t1,"[$Ktbl]") if ($j==15);'.
|
|
'&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
|
|
'&ror ($t4,$t4,"#$Sigma0[0]")',
|
|
'&add ($d,$d,$h)', # d+=h
|
|
'&eor ($t3,$t3,$b)', # Maj(a,b,c)
|
|
'$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
|
|
)
|
|
}
|
|
|
|
$code.=<<___;
|
|
#ifdef __KERNEL__
|
|
.globl sha256_block_neon
|
|
#endif
|
|
.type sha256_block_neon,%function
|
|
.align 4
|
|
sha256_block_neon:
|
|
.Lneon_entry:
|
|
stp x29, x30, [sp, #-16]!
|
|
mov x29, sp
|
|
sub sp,sp,#16*4
|
|
|
|
adr $Ktbl,.LK256
|
|
add $num,$inp,$num,lsl#6 // len to point at the end of inp
|
|
|
|
ld1.8 {@X[0]},[$inp], #16
|
|
ld1.8 {@X[1]},[$inp], #16
|
|
ld1.8 {@X[2]},[$inp], #16
|
|
ld1.8 {@X[3]},[$inp], #16
|
|
ld1.32 {$T0},[$Ktbl], #16
|
|
ld1.32 {$T1},[$Ktbl], #16
|
|
ld1.32 {$T2},[$Ktbl], #16
|
|
ld1.32 {$T3},[$Ktbl], #16
|
|
rev32 @X[0],@X[0] // yes, even on
|
|
rev32 @X[1],@X[1] // big-endian
|
|
rev32 @X[2],@X[2]
|
|
rev32 @X[3],@X[3]
|
|
mov $Xfer,sp
|
|
add.32 $T0,$T0,@X[0]
|
|
add.32 $T1,$T1,@X[1]
|
|
add.32 $T2,$T2,@X[2]
|
|
st1.32 {$T0-$T1},[$Xfer], #32
|
|
add.32 $T3,$T3,@X[3]
|
|
st1.32 {$T2-$T3},[$Xfer]
|
|
sub $Xfer,$Xfer,#32
|
|
|
|
ldp $A,$B,[$ctx]
|
|
ldp $C,$D,[$ctx,#8]
|
|
ldp $E,$F,[$ctx,#16]
|
|
ldp $G,$H,[$ctx,#24]
|
|
ldr $t1,[sp,#0]
|
|
mov $t2,wzr
|
|
eor $t3,$B,$C
|
|
mov $t4,wzr
|
|
b .L_00_48
|
|
|
|
.align 4
|
|
.L_00_48:
|
|
___
|
|
&Xupdate(\&body_00_15);
|
|
&Xupdate(\&body_00_15);
|
|
&Xupdate(\&body_00_15);
|
|
&Xupdate(\&body_00_15);
|
|
$code.=<<___;
|
|
cmp $t1,#0 // check for K256 terminator
|
|
ldr $t1,[sp,#0]
|
|
sub $Xfer,$Xfer,#64
|
|
bne .L_00_48
|
|
|
|
sub $Ktbl,$Ktbl,#256 // rewind $Ktbl
|
|
cmp $inp,$num
|
|
mov $Xfer, #64
|
|
csel $Xfer, $Xfer, xzr, eq
|
|
sub $inp,$inp,$Xfer // avoid SEGV
|
|
mov $Xfer,sp
|
|
___
|
|
&Xpreload(\&body_00_15);
|
|
&Xpreload(\&body_00_15);
|
|
&Xpreload(\&body_00_15);
|
|
&Xpreload(\&body_00_15);
|
|
$code.=<<___;
|
|
add $A,$A,$t4 // h+=Sigma0(a) from the past
|
|
ldp $t0,$t1,[$ctx,#0]
|
|
add $A,$A,$t2 // h+=Maj(a,b,c) from the past
|
|
ldp $t2,$t3,[$ctx,#8]
|
|
add $A,$A,$t0 // accumulate
|
|
add $B,$B,$t1
|
|
ldp $t0,$t1,[$ctx,#16]
|
|
add $C,$C,$t2
|
|
add $D,$D,$t3
|
|
ldp $t2,$t3,[$ctx,#24]
|
|
add $E,$E,$t0
|
|
add $F,$F,$t1
|
|
ldr $t1,[sp,#0]
|
|
stp $A,$B,[$ctx,#0]
|
|
add $G,$G,$t2
|
|
mov $t2,wzr
|
|
stp $C,$D,[$ctx,#8]
|
|
add $H,$H,$t3
|
|
stp $E,$F,[$ctx,#16]
|
|
eor $t3,$B,$C
|
|
stp $G,$H,[$ctx,#24]
|
|
mov $t4,wzr
|
|
mov $Xfer,sp
|
|
b.ne .L_00_48
|
|
|
|
ldr x29,[x29]
|
|
add sp,sp,#16*4+16
|
|
ret
|
|
.size sha256_block_neon,.-sha256_block_neon
|
|
___
|
|
}
|
|
|
|
$code.=<<___;
|
|
#ifndef __KERNEL__
|
|
.comm OPENSSL_armcap_P,4,4
|
|
#endif
|
|
___
|
|
|
|
{ my %opcode = (
|
|
"sha256h" => 0x5e004000, "sha256h2" => 0x5e005000,
|
|
"sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 );
|
|
|
|
sub unsha256 {
|
|
my ($mnemonic,$arg)=@_;
|
|
|
|
$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
|
|
&&
|
|
sprintf ".inst\t0x%08x\t//%s %s",
|
|
$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
|
|
$mnemonic,$arg;
|
|
}
|
|
}
|
|
|
|
open SELF,$0;
|
|
while(<SELF>) {
|
|
next if (/^#!/);
|
|
last if (!s/^#/\/\// and !/^$/);
|
|
print;
|
|
}
|
|
close SELF;
|
|
|
|
foreach(split("\n",$code)) {
|
|
|
|
s/\`([^\`]*)\`/eval($1)/ge;
|
|
|
|
s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
|
|
|
|
s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers
|
|
|
|
s/\.[ui]?8(\s)/$1/;
|
|
s/\.\w?32\b// and s/\.16b/\.4s/g;
|
|
m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g;
|
|
|
|
print $_,"\n";
|
|
}
|
|
|
|
close STDOUT;
|