mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-16 15:34:48 +08:00
493cc07385
In the case where page tables are not freed, native_flush_tlb_multi() does not do a remote TLB flush on CPUs in lazy TLB mode because the CPU will flush itself at the next context switch. By comparison, the Hyper-V enlightened TLB flush does not exclude CPUs in lazy TLB mode and so performs unnecessary flushes. If we're not freeing page tables, add logic to test for lazy TLB mode when adding CPUs to the input argument to the Hyper-V TLB flush hypercall. Exclude lazy TLB mode CPUs so the behavior matches native_flush_tlb_multi() and the unnecessary flushes are avoided. Handle both the <=64 vCPU case and the _ex case for >64 vCPUs. Signed-off-by: Michael Kelley <mikelley@microsoft.com> Link: https://lore.kernel.org/r/1679922967-26582-3-git-send-email-mikelley@microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org>
253 lines
6.5 KiB
C
253 lines
6.5 KiB
C
#define pr_fmt(fmt) "Hyper-V: " fmt
|
|
|
|
#include <linux/hyperv.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/mshyperv.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/tlb.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <asm/trace/hyperv.h>
|
|
|
|
/* Each gva in gva_list encodes up to 4096 pages to flush */
|
|
#define HV_TLB_FLUSH_UNIT (4096 * PAGE_SIZE)
|
|
|
|
static u64 hyperv_flush_tlb_others_ex(const struct cpumask *cpus,
|
|
const struct flush_tlb_info *info);
|
|
|
|
/*
|
|
* Fills in gva_list starting from offset. Returns the number of items added.
|
|
*/
|
|
static inline int fill_gva_list(u64 gva_list[], int offset,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
int gva_n = offset;
|
|
unsigned long cur = start, diff;
|
|
|
|
do {
|
|
diff = end > cur ? end - cur : 0;
|
|
|
|
gva_list[gva_n] = cur & PAGE_MASK;
|
|
/*
|
|
* Lower 12 bits encode the number of additional
|
|
* pages to flush (in addition to the 'cur' page).
|
|
*/
|
|
if (diff >= HV_TLB_FLUSH_UNIT) {
|
|
gva_list[gva_n] |= ~PAGE_MASK;
|
|
cur += HV_TLB_FLUSH_UNIT;
|
|
} else if (diff) {
|
|
gva_list[gva_n] |= (diff - 1) >> PAGE_SHIFT;
|
|
cur = end;
|
|
}
|
|
|
|
gva_n++;
|
|
|
|
} while (cur < end);
|
|
|
|
return gva_n - offset;
|
|
}
|
|
|
|
static bool cpu_is_lazy(int cpu)
|
|
{
|
|
return per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
|
|
}
|
|
|
|
static void hyperv_flush_tlb_multi(const struct cpumask *cpus,
|
|
const struct flush_tlb_info *info)
|
|
{
|
|
int cpu, vcpu, gva_n, max_gvas;
|
|
struct hv_tlb_flush **flush_pcpu;
|
|
struct hv_tlb_flush *flush;
|
|
u64 status;
|
|
unsigned long flags;
|
|
bool do_lazy = !info->freed_tables;
|
|
|
|
trace_hyperv_mmu_flush_tlb_multi(cpus, info);
|
|
|
|
if (!hv_hypercall_pg)
|
|
goto do_native;
|
|
|
|
local_irq_save(flags);
|
|
|
|
flush_pcpu = (struct hv_tlb_flush **)
|
|
this_cpu_ptr(hyperv_pcpu_input_arg);
|
|
|
|
flush = *flush_pcpu;
|
|
|
|
if (unlikely(!flush)) {
|
|
local_irq_restore(flags);
|
|
goto do_native;
|
|
}
|
|
|
|
if (info->mm) {
|
|
/*
|
|
* AddressSpace argument must match the CR3 with PCID bits
|
|
* stripped out.
|
|
*/
|
|
flush->address_space = virt_to_phys(info->mm->pgd);
|
|
flush->address_space &= CR3_ADDR_MASK;
|
|
flush->flags = 0;
|
|
} else {
|
|
flush->address_space = 0;
|
|
flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
|
|
}
|
|
|
|
flush->processor_mask = 0;
|
|
if (cpumask_equal(cpus, cpu_present_mask)) {
|
|
flush->flags |= HV_FLUSH_ALL_PROCESSORS;
|
|
} else {
|
|
/*
|
|
* From the supplied CPU set we need to figure out if we can get
|
|
* away with cheaper HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}
|
|
* hypercalls. This is possible when the highest VP number in
|
|
* the set is < 64. As VP numbers are usually in ascending order
|
|
* and match Linux CPU ids, here is an optimization: we check
|
|
* the VP number for the highest bit in the supplied set first
|
|
* so we can quickly find out if using *_EX hypercalls is a
|
|
* must. We will also check all VP numbers when walking the
|
|
* supplied CPU set to remain correct in all cases.
|
|
*/
|
|
cpu = cpumask_last(cpus);
|
|
|
|
if (cpu < nr_cpumask_bits && hv_cpu_number_to_vp_number(cpu) >= 64)
|
|
goto do_ex_hypercall;
|
|
|
|
for_each_cpu(cpu, cpus) {
|
|
if (do_lazy && cpu_is_lazy(cpu))
|
|
continue;
|
|
vcpu = hv_cpu_number_to_vp_number(cpu);
|
|
if (vcpu == VP_INVAL) {
|
|
local_irq_restore(flags);
|
|
goto do_native;
|
|
}
|
|
|
|
if (vcpu >= 64)
|
|
goto do_ex_hypercall;
|
|
|
|
__set_bit(vcpu, (unsigned long *)
|
|
&flush->processor_mask);
|
|
}
|
|
|
|
/* nothing to flush if 'processor_mask' ends up being empty */
|
|
if (!flush->processor_mask) {
|
|
local_irq_restore(flags);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We can flush not more than max_gvas with one hypercall. Flush the
|
|
* whole address space if we were asked to do more.
|
|
*/
|
|
max_gvas = (PAGE_SIZE - sizeof(*flush)) / sizeof(flush->gva_list[0]);
|
|
|
|
if (info->end == TLB_FLUSH_ALL) {
|
|
flush->flags |= HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY;
|
|
status = hv_do_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE,
|
|
flush, NULL);
|
|
} else if (info->end &&
|
|
((info->end - info->start)/HV_TLB_FLUSH_UNIT) > max_gvas) {
|
|
status = hv_do_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE,
|
|
flush, NULL);
|
|
} else {
|
|
gva_n = fill_gva_list(flush->gva_list, 0,
|
|
info->start, info->end);
|
|
status = hv_do_rep_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST,
|
|
gva_n, 0, flush, NULL);
|
|
}
|
|
goto check_status;
|
|
|
|
do_ex_hypercall:
|
|
status = hyperv_flush_tlb_others_ex(cpus, info);
|
|
|
|
check_status:
|
|
local_irq_restore(flags);
|
|
|
|
if (hv_result_success(status))
|
|
return;
|
|
do_native:
|
|
native_flush_tlb_multi(cpus, info);
|
|
}
|
|
|
|
static u64 hyperv_flush_tlb_others_ex(const struct cpumask *cpus,
|
|
const struct flush_tlb_info *info)
|
|
{
|
|
int nr_bank = 0, max_gvas, gva_n;
|
|
struct hv_tlb_flush_ex **flush_pcpu;
|
|
struct hv_tlb_flush_ex *flush;
|
|
u64 status;
|
|
|
|
if (!(ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
|
|
return HV_STATUS_INVALID_PARAMETER;
|
|
|
|
flush_pcpu = (struct hv_tlb_flush_ex **)
|
|
this_cpu_ptr(hyperv_pcpu_input_arg);
|
|
|
|
flush = *flush_pcpu;
|
|
|
|
if (info->mm) {
|
|
/*
|
|
* AddressSpace argument must match the CR3 with PCID bits
|
|
* stripped out.
|
|
*/
|
|
flush->address_space = virt_to_phys(info->mm->pgd);
|
|
flush->address_space &= CR3_ADDR_MASK;
|
|
flush->flags = 0;
|
|
} else {
|
|
flush->address_space = 0;
|
|
flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
|
|
}
|
|
|
|
flush->hv_vp_set.valid_bank_mask = 0;
|
|
|
|
flush->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
|
|
nr_bank = cpumask_to_vpset_skip(&flush->hv_vp_set, cpus,
|
|
info->freed_tables ? NULL : cpu_is_lazy);
|
|
if (nr_bank < 0)
|
|
return HV_STATUS_INVALID_PARAMETER;
|
|
|
|
/*
|
|
* We can flush not more than max_gvas with one hypercall. Flush the
|
|
* whole address space if we were asked to do more.
|
|
*/
|
|
max_gvas =
|
|
(PAGE_SIZE - sizeof(*flush) - nr_bank *
|
|
sizeof(flush->hv_vp_set.bank_contents[0])) /
|
|
sizeof(flush->gva_list[0]);
|
|
|
|
if (info->end == TLB_FLUSH_ALL) {
|
|
flush->flags |= HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY;
|
|
status = hv_do_rep_hypercall(
|
|
HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX,
|
|
0, nr_bank, flush, NULL);
|
|
} else if (info->end &&
|
|
((info->end - info->start)/HV_TLB_FLUSH_UNIT) > max_gvas) {
|
|
status = hv_do_rep_hypercall(
|
|
HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX,
|
|
0, nr_bank, flush, NULL);
|
|
} else {
|
|
gva_n = fill_gva_list(flush->gva_list, nr_bank,
|
|
info->start, info->end);
|
|
status = hv_do_rep_hypercall(
|
|
HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX,
|
|
gva_n, nr_bank, flush, NULL);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
void hyperv_setup_mmu_ops(void)
|
|
{
|
|
if (!(ms_hyperv.hints & HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED))
|
|
return;
|
|
|
|
pr_info("Using hypercall for remote TLB flush\n");
|
|
pv_ops.mmu.flush_tlb_multi = hyperv_flush_tlb_multi;
|
|
pv_ops.mmu.tlb_remove_table = tlb_remove_table;
|
|
}
|