mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-16 08:44:21 +08:00
618 lines
13 KiB
C
618 lines
13 KiB
C
/*
|
|
* linux/arch/arm/kernel/smp.c
|
|
*
|
|
* Copyright (C) 2002 ARM Limited, All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/completion.h>
|
|
|
|
#include <asm/atomic.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/localtimer.h>
|
|
|
|
/*
|
|
* as from 2.5, kernels no longer have an init_tasks structure
|
|
* so we need some other way of telling a new secondary core
|
|
* where to place its SVC stack
|
|
*/
|
|
struct secondary_data secondary_data;
|
|
|
|
enum ipi_msg_type {
|
|
IPI_TIMER = 2,
|
|
IPI_RESCHEDULE,
|
|
IPI_CALL_FUNC,
|
|
IPI_CALL_FUNC_SINGLE,
|
|
IPI_CPU_STOP,
|
|
};
|
|
|
|
int __cpuinit __cpu_up(unsigned int cpu)
|
|
{
|
|
struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
|
|
struct task_struct *idle = ci->idle;
|
|
pgd_t *pgd;
|
|
int ret;
|
|
|
|
/*
|
|
* Spawn a new process manually, if not already done.
|
|
* Grab a pointer to its task struct so we can mess with it
|
|
*/
|
|
if (!idle) {
|
|
idle = fork_idle(cpu);
|
|
if (IS_ERR(idle)) {
|
|
printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
|
|
return PTR_ERR(idle);
|
|
}
|
|
ci->idle = idle;
|
|
} else {
|
|
/*
|
|
* Since this idle thread is being re-used, call
|
|
* init_idle() to reinitialize the thread structure.
|
|
*/
|
|
init_idle(idle, cpu);
|
|
}
|
|
|
|
/*
|
|
* Allocate initial page tables to allow the new CPU to
|
|
* enable the MMU safely. This essentially means a set
|
|
* of our "standard" page tables, with the addition of
|
|
* a 1:1 mapping for the physical address of the kernel.
|
|
*/
|
|
pgd = pgd_alloc(&init_mm);
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
|
|
if (PHYS_OFFSET != PAGE_OFFSET) {
|
|
#ifndef CONFIG_HOTPLUG_CPU
|
|
identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
|
|
#endif
|
|
identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
|
|
identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
|
|
}
|
|
|
|
/*
|
|
* We need to tell the secondary core where to find
|
|
* its stack and the page tables.
|
|
*/
|
|
secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
|
|
secondary_data.pgdir = virt_to_phys(pgd);
|
|
__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
|
|
outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
|
|
|
|
/*
|
|
* Now bring the CPU into our world.
|
|
*/
|
|
ret = boot_secondary(cpu, idle);
|
|
if (ret == 0) {
|
|
unsigned long timeout;
|
|
|
|
/*
|
|
* CPU was successfully started, wait for it
|
|
* to come online or time out.
|
|
*/
|
|
timeout = jiffies + HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
if (cpu_online(cpu))
|
|
break;
|
|
|
|
udelay(10);
|
|
barrier();
|
|
}
|
|
|
|
if (!cpu_online(cpu)) {
|
|
pr_crit("CPU%u: failed to come online\n", cpu);
|
|
ret = -EIO;
|
|
}
|
|
} else {
|
|
pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
|
|
}
|
|
|
|
secondary_data.stack = NULL;
|
|
secondary_data.pgdir = 0;
|
|
|
|
if (PHYS_OFFSET != PAGE_OFFSET) {
|
|
#ifndef CONFIG_HOTPLUG_CPU
|
|
identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
|
|
#endif
|
|
identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
|
|
identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
|
|
}
|
|
|
|
pgd_free(&init_mm, pgd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void percpu_timer_stop(void);
|
|
|
|
/*
|
|
* __cpu_disable runs on the processor to be shutdown.
|
|
*/
|
|
int __cpu_disable(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct task_struct *p;
|
|
int ret;
|
|
|
|
ret = platform_cpu_disable(cpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Take this CPU offline. Once we clear this, we can't return,
|
|
* and we must not schedule until we're ready to give up the cpu.
|
|
*/
|
|
set_cpu_online(cpu, false);
|
|
|
|
/*
|
|
* OK - migrate IRQs away from this CPU
|
|
*/
|
|
migrate_irqs();
|
|
|
|
/*
|
|
* Stop the local timer for this CPU.
|
|
*/
|
|
percpu_timer_stop();
|
|
|
|
/*
|
|
* Flush user cache and TLB mappings, and then remove this CPU
|
|
* from the vm mask set of all processes.
|
|
*/
|
|
flush_cache_all();
|
|
local_flush_tlb_all();
|
|
|
|
read_lock(&tasklist_lock);
|
|
for_each_process(p) {
|
|
if (p->mm)
|
|
cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static DECLARE_COMPLETION(cpu_died);
|
|
|
|
/*
|
|
* called on the thread which is asking for a CPU to be shutdown -
|
|
* waits until shutdown has completed, or it is timed out.
|
|
*/
|
|
void __cpu_die(unsigned int cpu)
|
|
{
|
|
if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
|
|
pr_err("CPU%u: cpu didn't die\n", cpu);
|
|
return;
|
|
}
|
|
printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
|
|
|
|
if (!platform_cpu_kill(cpu))
|
|
printk("CPU%u: unable to kill\n", cpu);
|
|
}
|
|
|
|
/*
|
|
* Called from the idle thread for the CPU which has been shutdown.
|
|
*
|
|
* Note that we disable IRQs here, but do not re-enable them
|
|
* before returning to the caller. This is also the behaviour
|
|
* of the other hotplug-cpu capable cores, so presumably coming
|
|
* out of idle fixes this.
|
|
*/
|
|
void __ref cpu_die(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
idle_task_exit();
|
|
|
|
local_irq_disable();
|
|
mb();
|
|
|
|
/* Tell __cpu_die() that this CPU is now safe to dispose of */
|
|
complete(&cpu_died);
|
|
|
|
/*
|
|
* actual CPU shutdown procedure is at least platform (if not
|
|
* CPU) specific.
|
|
*/
|
|
platform_cpu_die(cpu);
|
|
|
|
/*
|
|
* Do not return to the idle loop - jump back to the secondary
|
|
* cpu initialisation. There's some initialisation which needs
|
|
* to be repeated to undo the effects of taking the CPU offline.
|
|
*/
|
|
__asm__("mov sp, %0\n"
|
|
" mov fp, #0\n"
|
|
" b secondary_start_kernel"
|
|
:
|
|
: "r" (task_stack_page(current) + THREAD_SIZE - 8));
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
/*
|
|
* Called by both boot and secondaries to move global data into
|
|
* per-processor storage.
|
|
*/
|
|
static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
|
|
{
|
|
struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
|
|
|
|
cpu_info->loops_per_jiffy = loops_per_jiffy;
|
|
}
|
|
|
|
/*
|
|
* This is the secondary CPU boot entry. We're using this CPUs
|
|
* idle thread stack, but a set of temporary page tables.
|
|
*/
|
|
asmlinkage void __cpuinit secondary_start_kernel(void)
|
|
{
|
|
struct mm_struct *mm = &init_mm;
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
printk("CPU%u: Booted secondary processor\n", cpu);
|
|
|
|
/*
|
|
* All kernel threads share the same mm context; grab a
|
|
* reference and switch to it.
|
|
*/
|
|
atomic_inc(&mm->mm_count);
|
|
current->active_mm = mm;
|
|
cpumask_set_cpu(cpu, mm_cpumask(mm));
|
|
cpu_switch_mm(mm->pgd, mm);
|
|
enter_lazy_tlb(mm, current);
|
|
local_flush_tlb_all();
|
|
|
|
cpu_init();
|
|
preempt_disable();
|
|
trace_hardirqs_off();
|
|
|
|
/*
|
|
* Give the platform a chance to do its own initialisation.
|
|
*/
|
|
platform_secondary_init(cpu);
|
|
|
|
/*
|
|
* Enable local interrupts.
|
|
*/
|
|
notify_cpu_starting(cpu);
|
|
local_irq_enable();
|
|
local_fiq_enable();
|
|
|
|
/*
|
|
* Setup the percpu timer for this CPU.
|
|
*/
|
|
percpu_timer_setup();
|
|
|
|
calibrate_delay();
|
|
|
|
smp_store_cpu_info(cpu);
|
|
|
|
/*
|
|
* OK, now it's safe to let the boot CPU continue
|
|
*/
|
|
set_cpu_online(cpu, true);
|
|
|
|
/*
|
|
* OK, it's off to the idle thread for us
|
|
*/
|
|
cpu_idle();
|
|
}
|
|
|
|
void __init smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
int cpu;
|
|
unsigned long bogosum = 0;
|
|
|
|
for_each_online_cpu(cpu)
|
|
bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
|
|
|
|
printk(KERN_INFO "SMP: Total of %d processors activated "
|
|
"(%lu.%02lu BogoMIPS).\n",
|
|
num_online_cpus(),
|
|
bogosum / (500000/HZ),
|
|
(bogosum / (5000/HZ)) % 100);
|
|
}
|
|
|
|
void __init smp_prepare_boot_cpu(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
per_cpu(cpu_data, cpu).idle = current;
|
|
}
|
|
|
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
unsigned int ncores = num_possible_cpus();
|
|
|
|
smp_store_cpu_info(smp_processor_id());
|
|
|
|
/*
|
|
* are we trying to boot more cores than exist?
|
|
*/
|
|
if (max_cpus > ncores)
|
|
max_cpus = ncores;
|
|
|
|
if (max_cpus > 1) {
|
|
/*
|
|
* Enable the local timer or broadcast device for the
|
|
* boot CPU, but only if we have more than one CPU.
|
|
*/
|
|
percpu_timer_setup();
|
|
|
|
/*
|
|
* Initialise the SCU if there are more than one CPU
|
|
* and let them know where to start.
|
|
*/
|
|
platform_smp_prepare_cpus(max_cpus);
|
|
}
|
|
}
|
|
|
|
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
|
|
{
|
|
smp_cross_call(mask, IPI_CALL_FUNC);
|
|
}
|
|
|
|
void arch_send_call_function_single_ipi(int cpu)
|
|
{
|
|
smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
|
|
}
|
|
|
|
static const char *ipi_types[NR_IPI] = {
|
|
#define S(x,s) [x - IPI_TIMER] = s
|
|
S(IPI_TIMER, "Timer broadcast interrupts"),
|
|
S(IPI_RESCHEDULE, "Rescheduling interrupts"),
|
|
S(IPI_CALL_FUNC, "Function call interrupts"),
|
|
S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
|
|
S(IPI_CPU_STOP, "CPU stop interrupts"),
|
|
};
|
|
|
|
void show_ipi_list(struct seq_file *p, int prec)
|
|
{
|
|
unsigned int cpu, i;
|
|
|
|
for (i = 0; i < NR_IPI; i++) {
|
|
seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
|
|
|
|
for_each_present_cpu(cpu)
|
|
seq_printf(p, "%10u ",
|
|
__get_irq_stat(cpu, ipi_irqs[i]));
|
|
|
|
seq_printf(p, " %s\n", ipi_types[i]);
|
|
}
|
|
}
|
|
|
|
u64 smp_irq_stat_cpu(unsigned int cpu)
|
|
{
|
|
u64 sum = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < NR_IPI; i++)
|
|
sum += __get_irq_stat(cpu, ipi_irqs[i]);
|
|
|
|
#ifdef CONFIG_LOCAL_TIMERS
|
|
sum += __get_irq_stat(cpu, local_timer_irqs);
|
|
#endif
|
|
|
|
return sum;
|
|
}
|
|
|
|
/*
|
|
* Timer (local or broadcast) support
|
|
*/
|
|
static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
|
|
|
|
static void ipi_timer(void)
|
|
{
|
|
struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
|
|
irq_enter();
|
|
evt->event_handler(evt);
|
|
irq_exit();
|
|
}
|
|
|
|
#ifdef CONFIG_LOCAL_TIMERS
|
|
asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
int cpu = smp_processor_id();
|
|
|
|
if (local_timer_ack()) {
|
|
__inc_irq_stat(cpu, local_timer_irqs);
|
|
ipi_timer();
|
|
}
|
|
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
void show_local_irqs(struct seq_file *p, int prec)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
seq_printf(p, "%*s: ", prec, "LOC");
|
|
|
|
for_each_present_cpu(cpu)
|
|
seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
|
|
|
|
seq_printf(p, " Local timer interrupts\n");
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
|
static void smp_timer_broadcast(const struct cpumask *mask)
|
|
{
|
|
smp_cross_call(mask, IPI_TIMER);
|
|
}
|
|
#else
|
|
#define smp_timer_broadcast NULL
|
|
#endif
|
|
|
|
static void broadcast_timer_set_mode(enum clock_event_mode mode,
|
|
struct clock_event_device *evt)
|
|
{
|
|
}
|
|
|
|
static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
|
|
{
|
|
evt->name = "dummy_timer";
|
|
evt->features = CLOCK_EVT_FEAT_ONESHOT |
|
|
CLOCK_EVT_FEAT_PERIODIC |
|
|
CLOCK_EVT_FEAT_DUMMY;
|
|
evt->rating = 400;
|
|
evt->mult = 1;
|
|
evt->set_mode = broadcast_timer_set_mode;
|
|
|
|
clockevents_register_device(evt);
|
|
}
|
|
|
|
void __cpuinit percpu_timer_setup(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
|
|
|
|
evt->cpumask = cpumask_of(cpu);
|
|
evt->broadcast = smp_timer_broadcast;
|
|
|
|
if (local_timer_setup(evt))
|
|
broadcast_timer_setup(evt);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/*
|
|
* The generic clock events code purposely does not stop the local timer
|
|
* on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
|
|
* manually here.
|
|
*/
|
|
static void percpu_timer_stop(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
|
|
|
|
evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
|
|
}
|
|
#endif
|
|
|
|
static DEFINE_SPINLOCK(stop_lock);
|
|
|
|
/*
|
|
* ipi_cpu_stop - handle IPI from smp_send_stop()
|
|
*/
|
|
static void ipi_cpu_stop(unsigned int cpu)
|
|
{
|
|
if (system_state == SYSTEM_BOOTING ||
|
|
system_state == SYSTEM_RUNNING) {
|
|
spin_lock(&stop_lock);
|
|
printk(KERN_CRIT "CPU%u: stopping\n", cpu);
|
|
dump_stack();
|
|
spin_unlock(&stop_lock);
|
|
}
|
|
|
|
set_cpu_online(cpu, false);
|
|
|
|
local_fiq_disable();
|
|
local_irq_disable();
|
|
|
|
while (1)
|
|
cpu_relax();
|
|
}
|
|
|
|
/*
|
|
* Main handler for inter-processor interrupts
|
|
*/
|
|
asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
|
|
if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
|
|
__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
|
|
|
|
switch (ipinr) {
|
|
case IPI_TIMER:
|
|
ipi_timer();
|
|
break;
|
|
|
|
case IPI_RESCHEDULE:
|
|
scheduler_ipi();
|
|
break;
|
|
|
|
case IPI_CALL_FUNC:
|
|
generic_smp_call_function_interrupt();
|
|
break;
|
|
|
|
case IPI_CALL_FUNC_SINGLE:
|
|
generic_smp_call_function_single_interrupt();
|
|
break;
|
|
|
|
case IPI_CPU_STOP:
|
|
ipi_cpu_stop(cpu);
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
|
|
cpu, ipinr);
|
|
break;
|
|
}
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
void smp_send_reschedule(int cpu)
|
|
{
|
|
smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
|
|
}
|
|
|
|
void smp_send_stop(void)
|
|
{
|
|
unsigned long timeout;
|
|
|
|
if (num_online_cpus() > 1) {
|
|
cpumask_t mask = cpu_online_map;
|
|
cpu_clear(smp_processor_id(), mask);
|
|
|
|
smp_cross_call(&mask, IPI_CPU_STOP);
|
|
}
|
|
|
|
/* Wait up to one second for other CPUs to stop */
|
|
timeout = USEC_PER_SEC;
|
|
while (num_online_cpus() > 1 && timeout--)
|
|
udelay(1);
|
|
|
|
if (num_online_cpus() > 1)
|
|
pr_warning("SMP: failed to stop secondary CPUs\n");
|
|
}
|
|
|
|
/*
|
|
* not supported here
|
|
*/
|
|
int setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
return -EINVAL;
|
|
}
|