mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-20 04:44:26 +08:00
f56141e3e2
If an attacker can cause a controlled kernel stack overflow, overwriting the restart block is a very juicy exploit target. This is because the restart_block is held in the same memory allocation as the kernel stack. Moving the restart block to struct task_struct prevents this exploit by making the restart_block harder to locate. Note that there are other fields in thread_info that are also easy targets, at least on some architectures. It's also a decent simplification, since the restart code is more or less identical on all architectures. [james.hogan@imgtec.com: metag: align thread_info::supervisor_stack] Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: David Miller <davem@davemloft.net> Acked-by: Richard Weinberger <richard@nod.at> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Steven Miao <realmz6@gmail.com> Cc: Mark Salter <msalter@redhat.com> Cc: Aurelien Jacquiot <a-jacquiot@ti.com> Cc: Mikael Starvik <starvik@axis.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Michal Simek <monstr@monstr.eu> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Tested-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Chris Zankel <chris@zankel.net> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Signed-off-by: James Hogan <james.hogan@imgtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
636 lines
17 KiB
C
636 lines
17 KiB
C
/*
|
|
* linux/arch/arm/kernel/signal.c
|
|
*
|
|
* Copyright (C) 1995-2009 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/random.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/tracehook.h>
|
|
#include <linux/uprobes.h>
|
|
|
|
#include <asm/elf.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/ucontext.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/vfp.h>
|
|
|
|
extern const unsigned long sigreturn_codes[7];
|
|
|
|
static unsigned long signal_return_offset;
|
|
|
|
#ifdef CONFIG_CRUNCH
|
|
static int preserve_crunch_context(struct crunch_sigframe __user *frame)
|
|
{
|
|
char kbuf[sizeof(*frame) + 8];
|
|
struct crunch_sigframe *kframe;
|
|
|
|
/* the crunch context must be 64 bit aligned */
|
|
kframe = (struct crunch_sigframe *)((unsigned long)(kbuf + 8) & ~7);
|
|
kframe->magic = CRUNCH_MAGIC;
|
|
kframe->size = CRUNCH_STORAGE_SIZE;
|
|
crunch_task_copy(current_thread_info(), &kframe->storage);
|
|
return __copy_to_user(frame, kframe, sizeof(*frame));
|
|
}
|
|
|
|
static int restore_crunch_context(struct crunch_sigframe __user *frame)
|
|
{
|
|
char kbuf[sizeof(*frame) + 8];
|
|
struct crunch_sigframe *kframe;
|
|
|
|
/* the crunch context must be 64 bit aligned */
|
|
kframe = (struct crunch_sigframe *)((unsigned long)(kbuf + 8) & ~7);
|
|
if (__copy_from_user(kframe, frame, sizeof(*frame)))
|
|
return -1;
|
|
if (kframe->magic != CRUNCH_MAGIC ||
|
|
kframe->size != CRUNCH_STORAGE_SIZE)
|
|
return -1;
|
|
crunch_task_restore(current_thread_info(), &kframe->storage);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_IWMMXT
|
|
|
|
static int preserve_iwmmxt_context(struct iwmmxt_sigframe *frame)
|
|
{
|
|
char kbuf[sizeof(*frame) + 8];
|
|
struct iwmmxt_sigframe *kframe;
|
|
|
|
/* the iWMMXt context must be 64 bit aligned */
|
|
kframe = (struct iwmmxt_sigframe *)((unsigned long)(kbuf + 8) & ~7);
|
|
kframe->magic = IWMMXT_MAGIC;
|
|
kframe->size = IWMMXT_STORAGE_SIZE;
|
|
iwmmxt_task_copy(current_thread_info(), &kframe->storage);
|
|
return __copy_to_user(frame, kframe, sizeof(*frame));
|
|
}
|
|
|
|
static int restore_iwmmxt_context(struct iwmmxt_sigframe *frame)
|
|
{
|
|
char kbuf[sizeof(*frame) + 8];
|
|
struct iwmmxt_sigframe *kframe;
|
|
|
|
/* the iWMMXt context must be 64 bit aligned */
|
|
kframe = (struct iwmmxt_sigframe *)((unsigned long)(kbuf + 8) & ~7);
|
|
if (__copy_from_user(kframe, frame, sizeof(*frame)))
|
|
return -1;
|
|
if (kframe->magic != IWMMXT_MAGIC ||
|
|
kframe->size != IWMMXT_STORAGE_SIZE)
|
|
return -1;
|
|
iwmmxt_task_restore(current_thread_info(), &kframe->storage);
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_VFP
|
|
|
|
static int preserve_vfp_context(struct vfp_sigframe __user *frame)
|
|
{
|
|
const unsigned long magic = VFP_MAGIC;
|
|
const unsigned long size = VFP_STORAGE_SIZE;
|
|
int err = 0;
|
|
|
|
__put_user_error(magic, &frame->magic, err);
|
|
__put_user_error(size, &frame->size, err);
|
|
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
return vfp_preserve_user_clear_hwstate(&frame->ufp, &frame->ufp_exc);
|
|
}
|
|
|
|
static int restore_vfp_context(struct vfp_sigframe __user *frame)
|
|
{
|
|
unsigned long magic;
|
|
unsigned long size;
|
|
int err = 0;
|
|
|
|
__get_user_error(magic, &frame->magic, err);
|
|
__get_user_error(size, &frame->size, err);
|
|
|
|
if (err)
|
|
return -EFAULT;
|
|
if (magic != VFP_MAGIC || size != VFP_STORAGE_SIZE)
|
|
return -EINVAL;
|
|
|
|
return vfp_restore_user_hwstate(&frame->ufp, &frame->ufp_exc);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Do a signal return; undo the signal stack. These are aligned to 64-bit.
|
|
*/
|
|
struct sigframe {
|
|
struct ucontext uc;
|
|
unsigned long retcode[2];
|
|
};
|
|
|
|
struct rt_sigframe {
|
|
struct siginfo info;
|
|
struct sigframe sig;
|
|
};
|
|
|
|
static int restore_sigframe(struct pt_regs *regs, struct sigframe __user *sf)
|
|
{
|
|
struct aux_sigframe __user *aux;
|
|
sigset_t set;
|
|
int err;
|
|
|
|
err = __copy_from_user(&set, &sf->uc.uc_sigmask, sizeof(set));
|
|
if (err == 0)
|
|
set_current_blocked(&set);
|
|
|
|
__get_user_error(regs->ARM_r0, &sf->uc.uc_mcontext.arm_r0, err);
|
|
__get_user_error(regs->ARM_r1, &sf->uc.uc_mcontext.arm_r1, err);
|
|
__get_user_error(regs->ARM_r2, &sf->uc.uc_mcontext.arm_r2, err);
|
|
__get_user_error(regs->ARM_r3, &sf->uc.uc_mcontext.arm_r3, err);
|
|
__get_user_error(regs->ARM_r4, &sf->uc.uc_mcontext.arm_r4, err);
|
|
__get_user_error(regs->ARM_r5, &sf->uc.uc_mcontext.arm_r5, err);
|
|
__get_user_error(regs->ARM_r6, &sf->uc.uc_mcontext.arm_r6, err);
|
|
__get_user_error(regs->ARM_r7, &sf->uc.uc_mcontext.arm_r7, err);
|
|
__get_user_error(regs->ARM_r8, &sf->uc.uc_mcontext.arm_r8, err);
|
|
__get_user_error(regs->ARM_r9, &sf->uc.uc_mcontext.arm_r9, err);
|
|
__get_user_error(regs->ARM_r10, &sf->uc.uc_mcontext.arm_r10, err);
|
|
__get_user_error(regs->ARM_fp, &sf->uc.uc_mcontext.arm_fp, err);
|
|
__get_user_error(regs->ARM_ip, &sf->uc.uc_mcontext.arm_ip, err);
|
|
__get_user_error(regs->ARM_sp, &sf->uc.uc_mcontext.arm_sp, err);
|
|
__get_user_error(regs->ARM_lr, &sf->uc.uc_mcontext.arm_lr, err);
|
|
__get_user_error(regs->ARM_pc, &sf->uc.uc_mcontext.arm_pc, err);
|
|
__get_user_error(regs->ARM_cpsr, &sf->uc.uc_mcontext.arm_cpsr, err);
|
|
|
|
err |= !valid_user_regs(regs);
|
|
|
|
aux = (struct aux_sigframe __user *) sf->uc.uc_regspace;
|
|
#ifdef CONFIG_CRUNCH
|
|
if (err == 0)
|
|
err |= restore_crunch_context(&aux->crunch);
|
|
#endif
|
|
#ifdef CONFIG_IWMMXT
|
|
if (err == 0 && test_thread_flag(TIF_USING_IWMMXT))
|
|
err |= restore_iwmmxt_context(&aux->iwmmxt);
|
|
#endif
|
|
#ifdef CONFIG_VFP
|
|
if (err == 0)
|
|
err |= restore_vfp_context(&aux->vfp);
|
|
#endif
|
|
|
|
return err;
|
|
}
|
|
|
|
asmlinkage int sys_sigreturn(struct pt_regs *regs)
|
|
{
|
|
struct sigframe __user *frame;
|
|
|
|
/* Always make any pending restarted system calls return -EINTR */
|
|
current->restart_block.fn = do_no_restart_syscall;
|
|
|
|
/*
|
|
* Since we stacked the signal on a 64-bit boundary,
|
|
* then 'sp' should be word aligned here. If it's
|
|
* not, then the user is trying to mess with us.
|
|
*/
|
|
if (regs->ARM_sp & 7)
|
|
goto badframe;
|
|
|
|
frame = (struct sigframe __user *)regs->ARM_sp;
|
|
|
|
if (!access_ok(VERIFY_READ, frame, sizeof (*frame)))
|
|
goto badframe;
|
|
|
|
if (restore_sigframe(regs, frame))
|
|
goto badframe;
|
|
|
|
return regs->ARM_r0;
|
|
|
|
badframe:
|
|
force_sig(SIGSEGV, current);
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage int sys_rt_sigreturn(struct pt_regs *regs)
|
|
{
|
|
struct rt_sigframe __user *frame;
|
|
|
|
/* Always make any pending restarted system calls return -EINTR */
|
|
current->restart_block.fn = do_no_restart_syscall;
|
|
|
|
/*
|
|
* Since we stacked the signal on a 64-bit boundary,
|
|
* then 'sp' should be word aligned here. If it's
|
|
* not, then the user is trying to mess with us.
|
|
*/
|
|
if (regs->ARM_sp & 7)
|
|
goto badframe;
|
|
|
|
frame = (struct rt_sigframe __user *)regs->ARM_sp;
|
|
|
|
if (!access_ok(VERIFY_READ, frame, sizeof (*frame)))
|
|
goto badframe;
|
|
|
|
if (restore_sigframe(regs, &frame->sig))
|
|
goto badframe;
|
|
|
|
if (restore_altstack(&frame->sig.uc.uc_stack))
|
|
goto badframe;
|
|
|
|
return regs->ARM_r0;
|
|
|
|
badframe:
|
|
force_sig(SIGSEGV, current);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
setup_sigframe(struct sigframe __user *sf, struct pt_regs *regs, sigset_t *set)
|
|
{
|
|
struct aux_sigframe __user *aux;
|
|
int err = 0;
|
|
|
|
__put_user_error(regs->ARM_r0, &sf->uc.uc_mcontext.arm_r0, err);
|
|
__put_user_error(regs->ARM_r1, &sf->uc.uc_mcontext.arm_r1, err);
|
|
__put_user_error(regs->ARM_r2, &sf->uc.uc_mcontext.arm_r2, err);
|
|
__put_user_error(regs->ARM_r3, &sf->uc.uc_mcontext.arm_r3, err);
|
|
__put_user_error(regs->ARM_r4, &sf->uc.uc_mcontext.arm_r4, err);
|
|
__put_user_error(regs->ARM_r5, &sf->uc.uc_mcontext.arm_r5, err);
|
|
__put_user_error(regs->ARM_r6, &sf->uc.uc_mcontext.arm_r6, err);
|
|
__put_user_error(regs->ARM_r7, &sf->uc.uc_mcontext.arm_r7, err);
|
|
__put_user_error(regs->ARM_r8, &sf->uc.uc_mcontext.arm_r8, err);
|
|
__put_user_error(regs->ARM_r9, &sf->uc.uc_mcontext.arm_r9, err);
|
|
__put_user_error(regs->ARM_r10, &sf->uc.uc_mcontext.arm_r10, err);
|
|
__put_user_error(regs->ARM_fp, &sf->uc.uc_mcontext.arm_fp, err);
|
|
__put_user_error(regs->ARM_ip, &sf->uc.uc_mcontext.arm_ip, err);
|
|
__put_user_error(regs->ARM_sp, &sf->uc.uc_mcontext.arm_sp, err);
|
|
__put_user_error(regs->ARM_lr, &sf->uc.uc_mcontext.arm_lr, err);
|
|
__put_user_error(regs->ARM_pc, &sf->uc.uc_mcontext.arm_pc, err);
|
|
__put_user_error(regs->ARM_cpsr, &sf->uc.uc_mcontext.arm_cpsr, err);
|
|
|
|
__put_user_error(current->thread.trap_no, &sf->uc.uc_mcontext.trap_no, err);
|
|
__put_user_error(current->thread.error_code, &sf->uc.uc_mcontext.error_code, err);
|
|
__put_user_error(current->thread.address, &sf->uc.uc_mcontext.fault_address, err);
|
|
__put_user_error(set->sig[0], &sf->uc.uc_mcontext.oldmask, err);
|
|
|
|
err |= __copy_to_user(&sf->uc.uc_sigmask, set, sizeof(*set));
|
|
|
|
aux = (struct aux_sigframe __user *) sf->uc.uc_regspace;
|
|
#ifdef CONFIG_CRUNCH
|
|
if (err == 0)
|
|
err |= preserve_crunch_context(&aux->crunch);
|
|
#endif
|
|
#ifdef CONFIG_IWMMXT
|
|
if (err == 0 && test_thread_flag(TIF_USING_IWMMXT))
|
|
err |= preserve_iwmmxt_context(&aux->iwmmxt);
|
|
#endif
|
|
#ifdef CONFIG_VFP
|
|
if (err == 0)
|
|
err |= preserve_vfp_context(&aux->vfp);
|
|
#endif
|
|
__put_user_error(0, &aux->end_magic, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline void __user *
|
|
get_sigframe(struct ksignal *ksig, struct pt_regs *regs, int framesize)
|
|
{
|
|
unsigned long sp = sigsp(regs->ARM_sp, ksig);
|
|
void __user *frame;
|
|
|
|
/*
|
|
* ATPCS B01 mandates 8-byte alignment
|
|
*/
|
|
frame = (void __user *)((sp - framesize) & ~7);
|
|
|
|
/*
|
|
* Check that we can actually write to the signal frame.
|
|
*/
|
|
if (!access_ok(VERIFY_WRITE, frame, framesize))
|
|
frame = NULL;
|
|
|
|
return frame;
|
|
}
|
|
|
|
/*
|
|
* translate the signal
|
|
*/
|
|
static inline int map_sig(int sig)
|
|
{
|
|
struct thread_info *thread = current_thread_info();
|
|
if (sig < 32 && thread->exec_domain && thread->exec_domain->signal_invmap)
|
|
sig = thread->exec_domain->signal_invmap[sig];
|
|
return sig;
|
|
}
|
|
|
|
static int
|
|
setup_return(struct pt_regs *regs, struct ksignal *ksig,
|
|
unsigned long __user *rc, void __user *frame)
|
|
{
|
|
unsigned long handler = (unsigned long)ksig->ka.sa.sa_handler;
|
|
unsigned long retcode;
|
|
int thumb = 0;
|
|
unsigned long cpsr = regs->ARM_cpsr & ~(PSR_f | PSR_E_BIT);
|
|
|
|
cpsr |= PSR_ENDSTATE;
|
|
|
|
/*
|
|
* Maybe we need to deliver a 32-bit signal to a 26-bit task.
|
|
*/
|
|
if (ksig->ka.sa.sa_flags & SA_THIRTYTWO)
|
|
cpsr = (cpsr & ~MODE_MASK) | USR_MODE;
|
|
|
|
#ifdef CONFIG_ARM_THUMB
|
|
if (elf_hwcap & HWCAP_THUMB) {
|
|
/*
|
|
* The LSB of the handler determines if we're going to
|
|
* be using THUMB or ARM mode for this signal handler.
|
|
*/
|
|
thumb = handler & 1;
|
|
|
|
#if __LINUX_ARM_ARCH__ >= 7
|
|
/*
|
|
* Clear the If-Then Thumb-2 execution state
|
|
* ARM spec requires this to be all 000s in ARM mode
|
|
* Snapdragon S4/Krait misbehaves on a Thumb=>ARM
|
|
* signal transition without this.
|
|
*/
|
|
cpsr &= ~PSR_IT_MASK;
|
|
#endif
|
|
|
|
if (thumb) {
|
|
cpsr |= PSR_T_BIT;
|
|
} else
|
|
cpsr &= ~PSR_T_BIT;
|
|
}
|
|
#endif
|
|
|
|
if (ksig->ka.sa.sa_flags & SA_RESTORER) {
|
|
retcode = (unsigned long)ksig->ka.sa.sa_restorer;
|
|
} else {
|
|
unsigned int idx = thumb << 1;
|
|
|
|
if (ksig->ka.sa.sa_flags & SA_SIGINFO)
|
|
idx += 3;
|
|
|
|
/*
|
|
* Put the sigreturn code on the stack no matter which return
|
|
* mechanism we use in order to remain ABI compliant
|
|
*/
|
|
if (__put_user(sigreturn_codes[idx], rc) ||
|
|
__put_user(sigreturn_codes[idx+1], rc+1))
|
|
return 1;
|
|
|
|
#ifdef CONFIG_MMU
|
|
if (cpsr & MODE32_BIT) {
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
/*
|
|
* 32-bit code can use the signal return page
|
|
* except when the MPU has protected the vectors
|
|
* page from PL0
|
|
*/
|
|
retcode = mm->context.sigpage + signal_return_offset +
|
|
(idx << 2) + thumb;
|
|
} else
|
|
#endif
|
|
{
|
|
/*
|
|
* Ensure that the instruction cache sees
|
|
* the return code written onto the stack.
|
|
*/
|
|
flush_icache_range((unsigned long)rc,
|
|
(unsigned long)(rc + 2));
|
|
|
|
retcode = ((unsigned long)rc) + thumb;
|
|
}
|
|
}
|
|
|
|
regs->ARM_r0 = map_sig(ksig->sig);
|
|
regs->ARM_sp = (unsigned long)frame;
|
|
regs->ARM_lr = retcode;
|
|
regs->ARM_pc = handler;
|
|
regs->ARM_cpsr = cpsr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
setup_frame(struct ksignal *ksig, sigset_t *set, struct pt_regs *regs)
|
|
{
|
|
struct sigframe __user *frame = get_sigframe(ksig, regs, sizeof(*frame));
|
|
int err = 0;
|
|
|
|
if (!frame)
|
|
return 1;
|
|
|
|
/*
|
|
* Set uc.uc_flags to a value which sc.trap_no would never have.
|
|
*/
|
|
__put_user_error(0x5ac3c35a, &frame->uc.uc_flags, err);
|
|
|
|
err |= setup_sigframe(frame, regs, set);
|
|
if (err == 0)
|
|
err = setup_return(regs, ksig, frame->retcode, frame);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
setup_rt_frame(struct ksignal *ksig, sigset_t *set, struct pt_regs *regs)
|
|
{
|
|
struct rt_sigframe __user *frame = get_sigframe(ksig, regs, sizeof(*frame));
|
|
int err = 0;
|
|
|
|
if (!frame)
|
|
return 1;
|
|
|
|
err |= copy_siginfo_to_user(&frame->info, &ksig->info);
|
|
|
|
__put_user_error(0, &frame->sig.uc.uc_flags, err);
|
|
__put_user_error(NULL, &frame->sig.uc.uc_link, err);
|
|
|
|
err |= __save_altstack(&frame->sig.uc.uc_stack, regs->ARM_sp);
|
|
err |= setup_sigframe(&frame->sig, regs, set);
|
|
if (err == 0)
|
|
err = setup_return(regs, ksig, frame->sig.retcode, frame);
|
|
|
|
if (err == 0) {
|
|
/*
|
|
* For realtime signals we must also set the second and third
|
|
* arguments for the signal handler.
|
|
* -- Peter Maydell <pmaydell@chiark.greenend.org.uk> 2000-12-06
|
|
*/
|
|
regs->ARM_r1 = (unsigned long)&frame->info;
|
|
regs->ARM_r2 = (unsigned long)&frame->sig.uc;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* OK, we're invoking a handler
|
|
*/
|
|
static void handle_signal(struct ksignal *ksig, struct pt_regs *regs)
|
|
{
|
|
sigset_t *oldset = sigmask_to_save();
|
|
int ret;
|
|
|
|
/*
|
|
* Set up the stack frame
|
|
*/
|
|
if (ksig->ka.sa.sa_flags & SA_SIGINFO)
|
|
ret = setup_rt_frame(ksig, oldset, regs);
|
|
else
|
|
ret = setup_frame(ksig, oldset, regs);
|
|
|
|
/*
|
|
* Check that the resulting registers are actually sane.
|
|
*/
|
|
ret |= !valid_user_regs(regs);
|
|
|
|
signal_setup_done(ret, ksig, 0);
|
|
}
|
|
|
|
/*
|
|
* Note that 'init' is a special process: it doesn't get signals it doesn't
|
|
* want to handle. Thus you cannot kill init even with a SIGKILL even by
|
|
* mistake.
|
|
*
|
|
* Note that we go through the signals twice: once to check the signals that
|
|
* the kernel can handle, and then we build all the user-level signal handling
|
|
* stack-frames in one go after that.
|
|
*/
|
|
static int do_signal(struct pt_regs *regs, int syscall)
|
|
{
|
|
unsigned int retval = 0, continue_addr = 0, restart_addr = 0;
|
|
struct ksignal ksig;
|
|
int restart = 0;
|
|
|
|
/*
|
|
* If we were from a system call, check for system call restarting...
|
|
*/
|
|
if (syscall) {
|
|
continue_addr = regs->ARM_pc;
|
|
restart_addr = continue_addr - (thumb_mode(regs) ? 2 : 4);
|
|
retval = regs->ARM_r0;
|
|
|
|
/*
|
|
* Prepare for system call restart. We do this here so that a
|
|
* debugger will see the already changed PSW.
|
|
*/
|
|
switch (retval) {
|
|
case -ERESTART_RESTARTBLOCK:
|
|
restart -= 2;
|
|
case -ERESTARTNOHAND:
|
|
case -ERESTARTSYS:
|
|
case -ERESTARTNOINTR:
|
|
restart++;
|
|
regs->ARM_r0 = regs->ARM_ORIG_r0;
|
|
regs->ARM_pc = restart_addr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the signal to deliver. When running under ptrace, at this
|
|
* point the debugger may change all our registers ...
|
|
*/
|
|
/*
|
|
* Depending on the signal settings we may need to revert the
|
|
* decision to restart the system call. But skip this if a
|
|
* debugger has chosen to restart at a different PC.
|
|
*/
|
|
if (get_signal(&ksig)) {
|
|
/* handler */
|
|
if (unlikely(restart) && regs->ARM_pc == restart_addr) {
|
|
if (retval == -ERESTARTNOHAND ||
|
|
retval == -ERESTART_RESTARTBLOCK
|
|
|| (retval == -ERESTARTSYS
|
|
&& !(ksig.ka.sa.sa_flags & SA_RESTART))) {
|
|
regs->ARM_r0 = -EINTR;
|
|
regs->ARM_pc = continue_addr;
|
|
}
|
|
}
|
|
handle_signal(&ksig, regs);
|
|
} else {
|
|
/* no handler */
|
|
restore_saved_sigmask();
|
|
if (unlikely(restart) && regs->ARM_pc == restart_addr) {
|
|
regs->ARM_pc = continue_addr;
|
|
return restart;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage int
|
|
do_work_pending(struct pt_regs *regs, unsigned int thread_flags, int syscall)
|
|
{
|
|
do {
|
|
if (likely(thread_flags & _TIF_NEED_RESCHED)) {
|
|
schedule();
|
|
} else {
|
|
if (unlikely(!user_mode(regs)))
|
|
return 0;
|
|
local_irq_enable();
|
|
if (thread_flags & _TIF_SIGPENDING) {
|
|
int restart = do_signal(regs, syscall);
|
|
if (unlikely(restart)) {
|
|
/*
|
|
* Restart without handlers.
|
|
* Deal with it without leaving
|
|
* the kernel space.
|
|
*/
|
|
return restart;
|
|
}
|
|
syscall = 0;
|
|
} else if (thread_flags & _TIF_UPROBE) {
|
|
uprobe_notify_resume(regs);
|
|
} else {
|
|
clear_thread_flag(TIF_NOTIFY_RESUME);
|
|
tracehook_notify_resume(regs);
|
|
}
|
|
}
|
|
local_irq_disable();
|
|
thread_flags = current_thread_info()->flags;
|
|
} while (thread_flags & _TIF_WORK_MASK);
|
|
return 0;
|
|
}
|
|
|
|
struct page *get_signal_page(void)
|
|
{
|
|
unsigned long ptr;
|
|
unsigned offset;
|
|
struct page *page;
|
|
void *addr;
|
|
|
|
page = alloc_pages(GFP_KERNEL, 0);
|
|
|
|
if (!page)
|
|
return NULL;
|
|
|
|
addr = page_address(page);
|
|
|
|
/* Give the signal return code some randomness */
|
|
offset = 0x200 + (get_random_int() & 0x7fc);
|
|
signal_return_offset = offset;
|
|
|
|
/*
|
|
* Copy signal return handlers into the vector page, and
|
|
* set sigreturn to be a pointer to these.
|
|
*/
|
|
memcpy(addr + offset, sigreturn_codes, sizeof(sigreturn_codes));
|
|
|
|
ptr = (unsigned long)addr + offset;
|
|
flush_icache_range(ptr, ptr + sizeof(sigreturn_codes));
|
|
|
|
return page;
|
|
}
|