mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-18 09:44:18 +08:00
dc51f25752
Refactor the core rc4 handling so we can move most users to a library interface, permitting us to drop the cipher interface entirely in a future patch. This is part of an effort to simplify the crypto API and improve its robustness against incorrect use. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1936 lines
55 KiB
Plaintext
1936 lines
55 KiB
Plaintext
# SPDX-License-Identifier: GPL-2.0
|
|
#
|
|
# Generic algorithms support
|
|
#
|
|
config XOR_BLOCKS
|
|
tristate
|
|
|
|
#
|
|
# async_tx api: hardware offloaded memory transfer/transform support
|
|
#
|
|
source "crypto/async_tx/Kconfig"
|
|
|
|
#
|
|
# Cryptographic API Configuration
|
|
#
|
|
menuconfig CRYPTO
|
|
tristate "Cryptographic API"
|
|
help
|
|
This option provides the core Cryptographic API.
|
|
|
|
if CRYPTO
|
|
|
|
comment "Crypto core or helper"
|
|
|
|
config CRYPTO_FIPS
|
|
bool "FIPS 200 compliance"
|
|
depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
|
|
depends on (MODULE_SIG || !MODULES)
|
|
help
|
|
This option enables the fips boot option which is
|
|
required if you want the system to operate in a FIPS 200
|
|
certification. You should say no unless you know what
|
|
this is.
|
|
|
|
config CRYPTO_ALGAPI
|
|
tristate
|
|
select CRYPTO_ALGAPI2
|
|
help
|
|
This option provides the API for cryptographic algorithms.
|
|
|
|
config CRYPTO_ALGAPI2
|
|
tristate
|
|
|
|
config CRYPTO_AEAD
|
|
tristate
|
|
select CRYPTO_AEAD2
|
|
select CRYPTO_ALGAPI
|
|
|
|
config CRYPTO_AEAD2
|
|
tristate
|
|
select CRYPTO_ALGAPI2
|
|
select CRYPTO_NULL2
|
|
select CRYPTO_RNG2
|
|
|
|
config CRYPTO_BLKCIPHER
|
|
tristate
|
|
select CRYPTO_BLKCIPHER2
|
|
select CRYPTO_ALGAPI
|
|
|
|
config CRYPTO_BLKCIPHER2
|
|
tristate
|
|
select CRYPTO_ALGAPI2
|
|
select CRYPTO_RNG2
|
|
|
|
config CRYPTO_HASH
|
|
tristate
|
|
select CRYPTO_HASH2
|
|
select CRYPTO_ALGAPI
|
|
|
|
config CRYPTO_HASH2
|
|
tristate
|
|
select CRYPTO_ALGAPI2
|
|
|
|
config CRYPTO_RNG
|
|
tristate
|
|
select CRYPTO_RNG2
|
|
select CRYPTO_ALGAPI
|
|
|
|
config CRYPTO_RNG2
|
|
tristate
|
|
select CRYPTO_ALGAPI2
|
|
|
|
config CRYPTO_RNG_DEFAULT
|
|
tristate
|
|
select CRYPTO_DRBG_MENU
|
|
|
|
config CRYPTO_AKCIPHER2
|
|
tristate
|
|
select CRYPTO_ALGAPI2
|
|
|
|
config CRYPTO_AKCIPHER
|
|
tristate
|
|
select CRYPTO_AKCIPHER2
|
|
select CRYPTO_ALGAPI
|
|
|
|
config CRYPTO_KPP2
|
|
tristate
|
|
select CRYPTO_ALGAPI2
|
|
|
|
config CRYPTO_KPP
|
|
tristate
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_KPP2
|
|
|
|
config CRYPTO_ACOMP2
|
|
tristate
|
|
select CRYPTO_ALGAPI2
|
|
select SGL_ALLOC
|
|
|
|
config CRYPTO_ACOMP
|
|
tristate
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_ACOMP2
|
|
|
|
config CRYPTO_MANAGER
|
|
tristate "Cryptographic algorithm manager"
|
|
select CRYPTO_MANAGER2
|
|
help
|
|
Create default cryptographic template instantiations such as
|
|
cbc(aes).
|
|
|
|
config CRYPTO_MANAGER2
|
|
def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
|
|
select CRYPTO_AEAD2
|
|
select CRYPTO_HASH2
|
|
select CRYPTO_BLKCIPHER2
|
|
select CRYPTO_AKCIPHER2
|
|
select CRYPTO_KPP2
|
|
select CRYPTO_ACOMP2
|
|
|
|
config CRYPTO_USER
|
|
tristate "Userspace cryptographic algorithm configuration"
|
|
depends on NET
|
|
select CRYPTO_MANAGER
|
|
help
|
|
Userspace configuration for cryptographic instantiations such as
|
|
cbc(aes).
|
|
|
|
if CRYPTO_MANAGER2
|
|
|
|
config CRYPTO_MANAGER_DISABLE_TESTS
|
|
bool "Disable run-time self tests"
|
|
default y
|
|
help
|
|
Disable run-time self tests that normally take place at
|
|
algorithm registration.
|
|
|
|
config CRYPTO_MANAGER_EXTRA_TESTS
|
|
bool "Enable extra run-time crypto self tests"
|
|
depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
|
|
help
|
|
Enable extra run-time self tests of registered crypto algorithms,
|
|
including randomized fuzz tests.
|
|
|
|
This is intended for developer use only, as these tests take much
|
|
longer to run than the normal self tests.
|
|
|
|
endif # if CRYPTO_MANAGER2
|
|
|
|
config CRYPTO_GF128MUL
|
|
tristate
|
|
|
|
config CRYPTO_NULL
|
|
tristate "Null algorithms"
|
|
select CRYPTO_NULL2
|
|
help
|
|
These are 'Null' algorithms, used by IPsec, which do nothing.
|
|
|
|
config CRYPTO_NULL2
|
|
tristate
|
|
select CRYPTO_ALGAPI2
|
|
select CRYPTO_BLKCIPHER2
|
|
select CRYPTO_HASH2
|
|
|
|
config CRYPTO_PCRYPT
|
|
tristate "Parallel crypto engine"
|
|
depends on SMP
|
|
select PADATA
|
|
select CRYPTO_MANAGER
|
|
select CRYPTO_AEAD
|
|
help
|
|
This converts an arbitrary crypto algorithm into a parallel
|
|
algorithm that executes in kernel threads.
|
|
|
|
config CRYPTO_CRYPTD
|
|
tristate "Software async crypto daemon"
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_HASH
|
|
select CRYPTO_MANAGER
|
|
help
|
|
This is a generic software asynchronous crypto daemon that
|
|
converts an arbitrary synchronous software crypto algorithm
|
|
into an asynchronous algorithm that executes in a kernel thread.
|
|
|
|
config CRYPTO_AUTHENC
|
|
tristate "Authenc support"
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_MANAGER
|
|
select CRYPTO_HASH
|
|
select CRYPTO_NULL
|
|
help
|
|
Authenc: Combined mode wrapper for IPsec.
|
|
This is required for IPSec.
|
|
|
|
config CRYPTO_TEST
|
|
tristate "Testing module"
|
|
depends on m
|
|
select CRYPTO_MANAGER
|
|
help
|
|
Quick & dirty crypto test module.
|
|
|
|
config CRYPTO_SIMD
|
|
tristate
|
|
select CRYPTO_CRYPTD
|
|
|
|
config CRYPTO_GLUE_HELPER_X86
|
|
tristate
|
|
depends on X86
|
|
select CRYPTO_BLKCIPHER
|
|
|
|
config CRYPTO_ENGINE
|
|
tristate
|
|
|
|
comment "Public-key cryptography"
|
|
|
|
config CRYPTO_RSA
|
|
tristate "RSA algorithm"
|
|
select CRYPTO_AKCIPHER
|
|
select CRYPTO_MANAGER
|
|
select MPILIB
|
|
select ASN1
|
|
help
|
|
Generic implementation of the RSA public key algorithm.
|
|
|
|
config CRYPTO_DH
|
|
tristate "Diffie-Hellman algorithm"
|
|
select CRYPTO_KPP
|
|
select MPILIB
|
|
help
|
|
Generic implementation of the Diffie-Hellman algorithm.
|
|
|
|
config CRYPTO_ECC
|
|
tristate
|
|
|
|
config CRYPTO_ECDH
|
|
tristate "ECDH algorithm"
|
|
select CRYPTO_ECC
|
|
select CRYPTO_KPP
|
|
select CRYPTO_RNG_DEFAULT
|
|
help
|
|
Generic implementation of the ECDH algorithm
|
|
|
|
config CRYPTO_ECRDSA
|
|
tristate "EC-RDSA (GOST 34.10) algorithm"
|
|
select CRYPTO_ECC
|
|
select CRYPTO_AKCIPHER
|
|
select CRYPTO_STREEBOG
|
|
select OID_REGISTRY
|
|
select ASN1
|
|
help
|
|
Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
|
|
RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
|
|
standard algorithms (called GOST algorithms). Only signature verification
|
|
is implemented.
|
|
|
|
comment "Authenticated Encryption with Associated Data"
|
|
|
|
config CRYPTO_CCM
|
|
tristate "CCM support"
|
|
select CRYPTO_CTR
|
|
select CRYPTO_HASH
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_MANAGER
|
|
help
|
|
Support for Counter with CBC MAC. Required for IPsec.
|
|
|
|
config CRYPTO_GCM
|
|
tristate "GCM/GMAC support"
|
|
select CRYPTO_CTR
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_GHASH
|
|
select CRYPTO_NULL
|
|
select CRYPTO_MANAGER
|
|
help
|
|
Support for Galois/Counter Mode (GCM) and Galois Message
|
|
Authentication Code (GMAC). Required for IPSec.
|
|
|
|
config CRYPTO_CHACHA20POLY1305
|
|
tristate "ChaCha20-Poly1305 AEAD support"
|
|
select CRYPTO_CHACHA20
|
|
select CRYPTO_POLY1305
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_MANAGER
|
|
help
|
|
ChaCha20-Poly1305 AEAD support, RFC7539.
|
|
|
|
Support for the AEAD wrapper using the ChaCha20 stream cipher combined
|
|
with the Poly1305 authenticator. It is defined in RFC7539 for use in
|
|
IETF protocols.
|
|
|
|
config CRYPTO_AEGIS128
|
|
tristate "AEGIS-128 AEAD algorithm"
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_AES # for AES S-box tables
|
|
help
|
|
Support for the AEGIS-128 dedicated AEAD algorithm.
|
|
|
|
config CRYPTO_AEGIS128L
|
|
tristate "AEGIS-128L AEAD algorithm"
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_AES # for AES S-box tables
|
|
help
|
|
Support for the AEGIS-128L dedicated AEAD algorithm.
|
|
|
|
config CRYPTO_AEGIS256
|
|
tristate "AEGIS-256 AEAD algorithm"
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_AES # for AES S-box tables
|
|
help
|
|
Support for the AEGIS-256 dedicated AEAD algorithm.
|
|
|
|
config CRYPTO_AEGIS128_AESNI_SSE2
|
|
tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_SIMD
|
|
help
|
|
AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
|
|
|
|
config CRYPTO_AEGIS128L_AESNI_SSE2
|
|
tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_SIMD
|
|
help
|
|
AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm.
|
|
|
|
config CRYPTO_AEGIS256_AESNI_SSE2
|
|
tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_SIMD
|
|
help
|
|
AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm.
|
|
|
|
config CRYPTO_MORUS640
|
|
tristate "MORUS-640 AEAD algorithm"
|
|
select CRYPTO_AEAD
|
|
help
|
|
Support for the MORUS-640 dedicated AEAD algorithm.
|
|
|
|
config CRYPTO_MORUS640_GLUE
|
|
tristate
|
|
depends on X86
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_SIMD
|
|
help
|
|
Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
|
|
algorithm.
|
|
|
|
config CRYPTO_MORUS640_SSE2
|
|
tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_MORUS640_GLUE
|
|
help
|
|
SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
|
|
|
|
config CRYPTO_MORUS1280
|
|
tristate "MORUS-1280 AEAD algorithm"
|
|
select CRYPTO_AEAD
|
|
help
|
|
Support for the MORUS-1280 dedicated AEAD algorithm.
|
|
|
|
config CRYPTO_MORUS1280_GLUE
|
|
tristate
|
|
depends on X86
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_SIMD
|
|
help
|
|
Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
|
|
algorithm.
|
|
|
|
config CRYPTO_MORUS1280_SSE2
|
|
tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_MORUS1280_GLUE
|
|
help
|
|
SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
|
|
algorithm.
|
|
|
|
config CRYPTO_MORUS1280_AVX2
|
|
tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_MORUS1280_GLUE
|
|
help
|
|
AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
|
|
algorithm.
|
|
|
|
config CRYPTO_SEQIV
|
|
tristate "Sequence Number IV Generator"
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_NULL
|
|
select CRYPTO_RNG_DEFAULT
|
|
select CRYPTO_MANAGER
|
|
help
|
|
This IV generator generates an IV based on a sequence number by
|
|
xoring it with a salt. This algorithm is mainly useful for CTR
|
|
|
|
config CRYPTO_ECHAINIV
|
|
tristate "Encrypted Chain IV Generator"
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_NULL
|
|
select CRYPTO_RNG_DEFAULT
|
|
select CRYPTO_MANAGER
|
|
help
|
|
This IV generator generates an IV based on the encryption of
|
|
a sequence number xored with a salt. This is the default
|
|
algorithm for CBC.
|
|
|
|
comment "Block modes"
|
|
|
|
config CRYPTO_CBC
|
|
tristate "CBC support"
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_MANAGER
|
|
help
|
|
CBC: Cipher Block Chaining mode
|
|
This block cipher algorithm is required for IPSec.
|
|
|
|
config CRYPTO_CFB
|
|
tristate "CFB support"
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_MANAGER
|
|
help
|
|
CFB: Cipher FeedBack mode
|
|
This block cipher algorithm is required for TPM2 Cryptography.
|
|
|
|
config CRYPTO_CTR
|
|
tristate "CTR support"
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_SEQIV
|
|
select CRYPTO_MANAGER
|
|
help
|
|
CTR: Counter mode
|
|
This block cipher algorithm is required for IPSec.
|
|
|
|
config CRYPTO_CTS
|
|
tristate "CTS support"
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_MANAGER
|
|
help
|
|
CTS: Cipher Text Stealing
|
|
This is the Cipher Text Stealing mode as described by
|
|
Section 8 of rfc2040 and referenced by rfc3962
|
|
(rfc3962 includes errata information in its Appendix A) or
|
|
CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
|
|
This mode is required for Kerberos gss mechanism support
|
|
for AES encryption.
|
|
|
|
See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
|
|
|
|
config CRYPTO_ECB
|
|
tristate "ECB support"
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_MANAGER
|
|
help
|
|
ECB: Electronic CodeBook mode
|
|
This is the simplest block cipher algorithm. It simply encrypts
|
|
the input block by block.
|
|
|
|
config CRYPTO_LRW
|
|
tristate "LRW support"
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_MANAGER
|
|
select CRYPTO_GF128MUL
|
|
help
|
|
LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
|
|
narrow block cipher mode for dm-crypt. Use it with cipher
|
|
specification string aes-lrw-benbi, the key must be 256, 320 or 384.
|
|
The first 128, 192 or 256 bits in the key are used for AES and the
|
|
rest is used to tie each cipher block to its logical position.
|
|
|
|
config CRYPTO_OFB
|
|
tristate "OFB support"
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_MANAGER
|
|
help
|
|
OFB: the Output Feedback mode makes a block cipher into a synchronous
|
|
stream cipher. It generates keystream blocks, which are then XORed
|
|
with the plaintext blocks to get the ciphertext. Flipping a bit in the
|
|
ciphertext produces a flipped bit in the plaintext at the same
|
|
location. This property allows many error correcting codes to function
|
|
normally even when applied before encryption.
|
|
|
|
config CRYPTO_PCBC
|
|
tristate "PCBC support"
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_MANAGER
|
|
help
|
|
PCBC: Propagating Cipher Block Chaining mode
|
|
This block cipher algorithm is required for RxRPC.
|
|
|
|
config CRYPTO_XTS
|
|
tristate "XTS support"
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_MANAGER
|
|
select CRYPTO_ECB
|
|
help
|
|
XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
|
|
key size 256, 384 or 512 bits. This implementation currently
|
|
can't handle a sectorsize which is not a multiple of 16 bytes.
|
|
|
|
config CRYPTO_KEYWRAP
|
|
tristate "Key wrapping support"
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_MANAGER
|
|
help
|
|
Support for key wrapping (NIST SP800-38F / RFC3394) without
|
|
padding.
|
|
|
|
config CRYPTO_NHPOLY1305
|
|
tristate
|
|
select CRYPTO_HASH
|
|
select CRYPTO_POLY1305
|
|
|
|
config CRYPTO_NHPOLY1305_SSE2
|
|
tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_NHPOLY1305
|
|
help
|
|
SSE2 optimized implementation of the hash function used by the
|
|
Adiantum encryption mode.
|
|
|
|
config CRYPTO_NHPOLY1305_AVX2
|
|
tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_NHPOLY1305
|
|
help
|
|
AVX2 optimized implementation of the hash function used by the
|
|
Adiantum encryption mode.
|
|
|
|
config CRYPTO_ADIANTUM
|
|
tristate "Adiantum support"
|
|
select CRYPTO_CHACHA20
|
|
select CRYPTO_POLY1305
|
|
select CRYPTO_NHPOLY1305
|
|
select CRYPTO_MANAGER
|
|
help
|
|
Adiantum is a tweakable, length-preserving encryption mode
|
|
designed for fast and secure disk encryption, especially on
|
|
CPUs without dedicated crypto instructions. It encrypts
|
|
each sector using the XChaCha12 stream cipher, two passes of
|
|
an ε-almost-∆-universal hash function, and an invocation of
|
|
the AES-256 block cipher on a single 16-byte block. On CPUs
|
|
without AES instructions, Adiantum is much faster than
|
|
AES-XTS.
|
|
|
|
Adiantum's security is provably reducible to that of its
|
|
underlying stream and block ciphers, subject to a security
|
|
bound. Unlike XTS, Adiantum is a true wide-block encryption
|
|
mode, so it actually provides an even stronger notion of
|
|
security than XTS, subject to the security bound.
|
|
|
|
If unsure, say N.
|
|
|
|
comment "Hash modes"
|
|
|
|
config CRYPTO_CMAC
|
|
tristate "CMAC support"
|
|
select CRYPTO_HASH
|
|
select CRYPTO_MANAGER
|
|
help
|
|
Cipher-based Message Authentication Code (CMAC) specified by
|
|
The National Institute of Standards and Technology (NIST).
|
|
|
|
https://tools.ietf.org/html/rfc4493
|
|
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
|
|
|
|
config CRYPTO_HMAC
|
|
tristate "HMAC support"
|
|
select CRYPTO_HASH
|
|
select CRYPTO_MANAGER
|
|
help
|
|
HMAC: Keyed-Hashing for Message Authentication (RFC2104).
|
|
This is required for IPSec.
|
|
|
|
config CRYPTO_XCBC
|
|
tristate "XCBC support"
|
|
select CRYPTO_HASH
|
|
select CRYPTO_MANAGER
|
|
help
|
|
XCBC: Keyed-Hashing with encryption algorithm
|
|
http://www.ietf.org/rfc/rfc3566.txt
|
|
http://csrc.nist.gov/encryption/modes/proposedmodes/
|
|
xcbc-mac/xcbc-mac-spec.pdf
|
|
|
|
config CRYPTO_VMAC
|
|
tristate "VMAC support"
|
|
select CRYPTO_HASH
|
|
select CRYPTO_MANAGER
|
|
help
|
|
VMAC is a message authentication algorithm designed for
|
|
very high speed on 64-bit architectures.
|
|
|
|
See also:
|
|
<http://fastcrypto.org/vmac>
|
|
|
|
comment "Digest"
|
|
|
|
config CRYPTO_CRC32C
|
|
tristate "CRC32c CRC algorithm"
|
|
select CRYPTO_HASH
|
|
select CRC32
|
|
help
|
|
Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
|
|
by iSCSI for header and data digests and by others.
|
|
See Castagnoli93. Module will be crc32c.
|
|
|
|
config CRYPTO_CRC32C_INTEL
|
|
tristate "CRC32c INTEL hardware acceleration"
|
|
depends on X86
|
|
select CRYPTO_HASH
|
|
help
|
|
In Intel processor with SSE4.2 supported, the processor will
|
|
support CRC32C implementation using hardware accelerated CRC32
|
|
instruction. This option will create 'crc32c-intel' module,
|
|
which will enable any routine to use the CRC32 instruction to
|
|
gain performance compared with software implementation.
|
|
Module will be crc32c-intel.
|
|
|
|
config CRYPTO_CRC32C_VPMSUM
|
|
tristate "CRC32c CRC algorithm (powerpc64)"
|
|
depends on PPC64 && ALTIVEC
|
|
select CRYPTO_HASH
|
|
select CRC32
|
|
help
|
|
CRC32c algorithm implemented using vector polynomial multiply-sum
|
|
(vpmsum) instructions, introduced in POWER8. Enable on POWER8
|
|
and newer processors for improved performance.
|
|
|
|
|
|
config CRYPTO_CRC32C_SPARC64
|
|
tristate "CRC32c CRC algorithm (SPARC64)"
|
|
depends on SPARC64
|
|
select CRYPTO_HASH
|
|
select CRC32
|
|
help
|
|
CRC32c CRC algorithm implemented using sparc64 crypto instructions,
|
|
when available.
|
|
|
|
config CRYPTO_CRC32
|
|
tristate "CRC32 CRC algorithm"
|
|
select CRYPTO_HASH
|
|
select CRC32
|
|
help
|
|
CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
|
|
Shash crypto api wrappers to crc32_le function.
|
|
|
|
config CRYPTO_CRC32_PCLMUL
|
|
tristate "CRC32 PCLMULQDQ hardware acceleration"
|
|
depends on X86
|
|
select CRYPTO_HASH
|
|
select CRC32
|
|
help
|
|
From Intel Westmere and AMD Bulldozer processor with SSE4.2
|
|
and PCLMULQDQ supported, the processor will support
|
|
CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
|
|
instruction. This option will create 'crc32-pclmul' module,
|
|
which will enable any routine to use the CRC-32-IEEE 802.3 checksum
|
|
and gain better performance as compared with the table implementation.
|
|
|
|
config CRYPTO_CRC32_MIPS
|
|
tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
|
|
depends on MIPS_CRC_SUPPORT
|
|
select CRYPTO_HASH
|
|
help
|
|
CRC32c and CRC32 CRC algorithms implemented using mips crypto
|
|
instructions, when available.
|
|
|
|
|
|
config CRYPTO_XXHASH
|
|
tristate "xxHash hash algorithm"
|
|
select CRYPTO_HASH
|
|
select XXHASH
|
|
help
|
|
xxHash non-cryptographic hash algorithm. Extremely fast, working at
|
|
speeds close to RAM limits.
|
|
|
|
config CRYPTO_CRCT10DIF
|
|
tristate "CRCT10DIF algorithm"
|
|
select CRYPTO_HASH
|
|
help
|
|
CRC T10 Data Integrity Field computation is being cast as
|
|
a crypto transform. This allows for faster crc t10 diff
|
|
transforms to be used if they are available.
|
|
|
|
config CRYPTO_CRCT10DIF_PCLMUL
|
|
tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
|
|
depends on X86 && 64BIT && CRC_T10DIF
|
|
select CRYPTO_HASH
|
|
help
|
|
For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
|
|
CRC T10 DIF PCLMULQDQ computation can be hardware
|
|
accelerated PCLMULQDQ instruction. This option will create
|
|
'crct10dif-pclmul' module, which is faster when computing the
|
|
crct10dif checksum as compared with the generic table implementation.
|
|
|
|
config CRYPTO_CRCT10DIF_VPMSUM
|
|
tristate "CRC32T10DIF powerpc64 hardware acceleration"
|
|
depends on PPC64 && ALTIVEC && CRC_T10DIF
|
|
select CRYPTO_HASH
|
|
help
|
|
CRC10T10DIF algorithm implemented using vector polynomial
|
|
multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
|
|
POWER8 and newer processors for improved performance.
|
|
|
|
config CRYPTO_VPMSUM_TESTER
|
|
tristate "Powerpc64 vpmsum hardware acceleration tester"
|
|
depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
|
|
help
|
|
Stress test for CRC32c and CRC-T10DIF algorithms implemented with
|
|
POWER8 vpmsum instructions.
|
|
Unless you are testing these algorithms, you don't need this.
|
|
|
|
config CRYPTO_GHASH
|
|
tristate "GHASH digest algorithm"
|
|
select CRYPTO_GF128MUL
|
|
select CRYPTO_HASH
|
|
help
|
|
GHASH is message digest algorithm for GCM (Galois/Counter Mode).
|
|
|
|
config CRYPTO_POLY1305
|
|
tristate "Poly1305 authenticator algorithm"
|
|
select CRYPTO_HASH
|
|
help
|
|
Poly1305 authenticator algorithm, RFC7539.
|
|
|
|
Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
|
|
It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
|
|
in IETF protocols. This is the portable C implementation of Poly1305.
|
|
|
|
config CRYPTO_POLY1305_X86_64
|
|
tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_POLY1305
|
|
help
|
|
Poly1305 authenticator algorithm, RFC7539.
|
|
|
|
Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
|
|
It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
|
|
in IETF protocols. This is the x86_64 assembler implementation using SIMD
|
|
instructions.
|
|
|
|
config CRYPTO_MD4
|
|
tristate "MD4 digest algorithm"
|
|
select CRYPTO_HASH
|
|
help
|
|
MD4 message digest algorithm (RFC1320).
|
|
|
|
config CRYPTO_MD5
|
|
tristate "MD5 digest algorithm"
|
|
select CRYPTO_HASH
|
|
help
|
|
MD5 message digest algorithm (RFC1321).
|
|
|
|
config CRYPTO_MD5_OCTEON
|
|
tristate "MD5 digest algorithm (OCTEON)"
|
|
depends on CPU_CAVIUM_OCTEON
|
|
select CRYPTO_MD5
|
|
select CRYPTO_HASH
|
|
help
|
|
MD5 message digest algorithm (RFC1321) implemented
|
|
using OCTEON crypto instructions, when available.
|
|
|
|
config CRYPTO_MD5_PPC
|
|
tristate "MD5 digest algorithm (PPC)"
|
|
depends on PPC
|
|
select CRYPTO_HASH
|
|
help
|
|
MD5 message digest algorithm (RFC1321) implemented
|
|
in PPC assembler.
|
|
|
|
config CRYPTO_MD5_SPARC64
|
|
tristate "MD5 digest algorithm (SPARC64)"
|
|
depends on SPARC64
|
|
select CRYPTO_MD5
|
|
select CRYPTO_HASH
|
|
help
|
|
MD5 message digest algorithm (RFC1321) implemented
|
|
using sparc64 crypto instructions, when available.
|
|
|
|
config CRYPTO_MICHAEL_MIC
|
|
tristate "Michael MIC keyed digest algorithm"
|
|
select CRYPTO_HASH
|
|
help
|
|
Michael MIC is used for message integrity protection in TKIP
|
|
(IEEE 802.11i). This algorithm is required for TKIP, but it
|
|
should not be used for other purposes because of the weakness
|
|
of the algorithm.
|
|
|
|
config CRYPTO_RMD128
|
|
tristate "RIPEMD-128 digest algorithm"
|
|
select CRYPTO_HASH
|
|
help
|
|
RIPEMD-128 (ISO/IEC 10118-3:2004).
|
|
|
|
RIPEMD-128 is a 128-bit cryptographic hash function. It should only
|
|
be used as a secure replacement for RIPEMD. For other use cases,
|
|
RIPEMD-160 should be used.
|
|
|
|
Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
|
|
See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
|
|
|
|
config CRYPTO_RMD160
|
|
tristate "RIPEMD-160 digest algorithm"
|
|
select CRYPTO_HASH
|
|
help
|
|
RIPEMD-160 (ISO/IEC 10118-3:2004).
|
|
|
|
RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
|
|
to be used as a secure replacement for the 128-bit hash functions
|
|
MD4, MD5 and it's predecessor RIPEMD
|
|
(not to be confused with RIPEMD-128).
|
|
|
|
It's speed is comparable to SHA1 and there are no known attacks
|
|
against RIPEMD-160.
|
|
|
|
Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
|
|
See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
|
|
|
|
config CRYPTO_RMD256
|
|
tristate "RIPEMD-256 digest algorithm"
|
|
select CRYPTO_HASH
|
|
help
|
|
RIPEMD-256 is an optional extension of RIPEMD-128 with a
|
|
256 bit hash. It is intended for applications that require
|
|
longer hash-results, without needing a larger security level
|
|
(than RIPEMD-128).
|
|
|
|
Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
|
|
See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
|
|
|
|
config CRYPTO_RMD320
|
|
tristate "RIPEMD-320 digest algorithm"
|
|
select CRYPTO_HASH
|
|
help
|
|
RIPEMD-320 is an optional extension of RIPEMD-160 with a
|
|
320 bit hash. It is intended for applications that require
|
|
longer hash-results, without needing a larger security level
|
|
(than RIPEMD-160).
|
|
|
|
Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
|
|
See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
|
|
|
|
config CRYPTO_SHA1
|
|
tristate "SHA1 digest algorithm"
|
|
select CRYPTO_HASH
|
|
help
|
|
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
|
|
|
|
config CRYPTO_SHA1_SSSE3
|
|
tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_SHA1
|
|
select CRYPTO_HASH
|
|
help
|
|
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
|
|
using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
|
|
Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
|
|
when available.
|
|
|
|
config CRYPTO_SHA256_SSSE3
|
|
tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_SHA256
|
|
select CRYPTO_HASH
|
|
help
|
|
SHA-256 secure hash standard (DFIPS 180-2) implemented
|
|
using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
|
|
Extensions version 1 (AVX1), or Advanced Vector Extensions
|
|
version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
|
|
Instructions) when available.
|
|
|
|
config CRYPTO_SHA512_SSSE3
|
|
tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_SHA512
|
|
select CRYPTO_HASH
|
|
help
|
|
SHA-512 secure hash standard (DFIPS 180-2) implemented
|
|
using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
|
|
Extensions version 1 (AVX1), or Advanced Vector Extensions
|
|
version 2 (AVX2) instructions, when available.
|
|
|
|
config CRYPTO_SHA1_OCTEON
|
|
tristate "SHA1 digest algorithm (OCTEON)"
|
|
depends on CPU_CAVIUM_OCTEON
|
|
select CRYPTO_SHA1
|
|
select CRYPTO_HASH
|
|
help
|
|
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
|
|
using OCTEON crypto instructions, when available.
|
|
|
|
config CRYPTO_SHA1_SPARC64
|
|
tristate "SHA1 digest algorithm (SPARC64)"
|
|
depends on SPARC64
|
|
select CRYPTO_SHA1
|
|
select CRYPTO_HASH
|
|
help
|
|
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
|
|
using sparc64 crypto instructions, when available.
|
|
|
|
config CRYPTO_SHA1_PPC
|
|
tristate "SHA1 digest algorithm (powerpc)"
|
|
depends on PPC
|
|
help
|
|
This is the powerpc hardware accelerated implementation of the
|
|
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
|
|
|
|
config CRYPTO_SHA1_PPC_SPE
|
|
tristate "SHA1 digest algorithm (PPC SPE)"
|
|
depends on PPC && SPE
|
|
help
|
|
SHA-1 secure hash standard (DFIPS 180-4) implemented
|
|
using powerpc SPE SIMD instruction set.
|
|
|
|
config CRYPTO_SHA256
|
|
tristate "SHA224 and SHA256 digest algorithm"
|
|
select CRYPTO_HASH
|
|
help
|
|
SHA256 secure hash standard (DFIPS 180-2).
|
|
|
|
This version of SHA implements a 256 bit hash with 128 bits of
|
|
security against collision attacks.
|
|
|
|
This code also includes SHA-224, a 224 bit hash with 112 bits
|
|
of security against collision attacks.
|
|
|
|
config CRYPTO_SHA256_PPC_SPE
|
|
tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
|
|
depends on PPC && SPE
|
|
select CRYPTO_SHA256
|
|
select CRYPTO_HASH
|
|
help
|
|
SHA224 and SHA256 secure hash standard (DFIPS 180-2)
|
|
implemented using powerpc SPE SIMD instruction set.
|
|
|
|
config CRYPTO_SHA256_OCTEON
|
|
tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
|
|
depends on CPU_CAVIUM_OCTEON
|
|
select CRYPTO_SHA256
|
|
select CRYPTO_HASH
|
|
help
|
|
SHA-256 secure hash standard (DFIPS 180-2) implemented
|
|
using OCTEON crypto instructions, when available.
|
|
|
|
config CRYPTO_SHA256_SPARC64
|
|
tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
|
|
depends on SPARC64
|
|
select CRYPTO_SHA256
|
|
select CRYPTO_HASH
|
|
help
|
|
SHA-256 secure hash standard (DFIPS 180-2) implemented
|
|
using sparc64 crypto instructions, when available.
|
|
|
|
config CRYPTO_SHA512
|
|
tristate "SHA384 and SHA512 digest algorithms"
|
|
select CRYPTO_HASH
|
|
help
|
|
SHA512 secure hash standard (DFIPS 180-2).
|
|
|
|
This version of SHA implements a 512 bit hash with 256 bits of
|
|
security against collision attacks.
|
|
|
|
This code also includes SHA-384, a 384 bit hash with 192 bits
|
|
of security against collision attacks.
|
|
|
|
config CRYPTO_SHA512_OCTEON
|
|
tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
|
|
depends on CPU_CAVIUM_OCTEON
|
|
select CRYPTO_SHA512
|
|
select CRYPTO_HASH
|
|
help
|
|
SHA-512 secure hash standard (DFIPS 180-2) implemented
|
|
using OCTEON crypto instructions, when available.
|
|
|
|
config CRYPTO_SHA512_SPARC64
|
|
tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
|
|
depends on SPARC64
|
|
select CRYPTO_SHA512
|
|
select CRYPTO_HASH
|
|
help
|
|
SHA-512 secure hash standard (DFIPS 180-2) implemented
|
|
using sparc64 crypto instructions, when available.
|
|
|
|
config CRYPTO_SHA3
|
|
tristate "SHA3 digest algorithm"
|
|
select CRYPTO_HASH
|
|
help
|
|
SHA-3 secure hash standard (DFIPS 202). It's based on
|
|
cryptographic sponge function family called Keccak.
|
|
|
|
References:
|
|
http://keccak.noekeon.org/
|
|
|
|
config CRYPTO_SM3
|
|
tristate "SM3 digest algorithm"
|
|
select CRYPTO_HASH
|
|
help
|
|
SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
|
|
It is part of the Chinese Commercial Cryptography suite.
|
|
|
|
References:
|
|
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
|
|
https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
|
|
|
|
config CRYPTO_STREEBOG
|
|
tristate "Streebog Hash Function"
|
|
select CRYPTO_HASH
|
|
help
|
|
Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
|
|
cryptographic standard algorithms (called GOST algorithms).
|
|
This setting enables two hash algorithms with 256 and 512 bits output.
|
|
|
|
References:
|
|
https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
|
|
https://tools.ietf.org/html/rfc6986
|
|
|
|
config CRYPTO_TGR192
|
|
tristate "Tiger digest algorithms"
|
|
select CRYPTO_HASH
|
|
help
|
|
Tiger hash algorithm 192, 160 and 128-bit hashes
|
|
|
|
Tiger is a hash function optimized for 64-bit processors while
|
|
still having decent performance on 32-bit processors.
|
|
Tiger was developed by Ross Anderson and Eli Biham.
|
|
|
|
See also:
|
|
<http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
|
|
|
|
config CRYPTO_WP512
|
|
tristate "Whirlpool digest algorithms"
|
|
select CRYPTO_HASH
|
|
help
|
|
Whirlpool hash algorithm 512, 384 and 256-bit hashes
|
|
|
|
Whirlpool-512 is part of the NESSIE cryptographic primitives.
|
|
Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
|
|
|
|
See also:
|
|
<http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
|
|
|
|
config CRYPTO_GHASH_CLMUL_NI_INTEL
|
|
tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_CRYPTD
|
|
help
|
|
GHASH is message digest algorithm for GCM (Galois/Counter Mode).
|
|
The implementation is accelerated by CLMUL-NI of Intel.
|
|
|
|
comment "Ciphers"
|
|
|
|
config CRYPTO_AES
|
|
tristate "AES cipher algorithms"
|
|
select CRYPTO_ALGAPI
|
|
help
|
|
AES cipher algorithms (FIPS-197). AES uses the Rijndael
|
|
algorithm.
|
|
|
|
Rijndael appears to be consistently a very good performer in
|
|
both hardware and software across a wide range of computing
|
|
environments regardless of its use in feedback or non-feedback
|
|
modes. Its key setup time is excellent, and its key agility is
|
|
good. Rijndael's very low memory requirements make it very well
|
|
suited for restricted-space environments, in which it also
|
|
demonstrates excellent performance. Rijndael's operations are
|
|
among the easiest to defend against power and timing attacks.
|
|
|
|
The AES specifies three key sizes: 128, 192 and 256 bits
|
|
|
|
See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
|
|
|
|
config CRYPTO_AES_TI
|
|
tristate "Fixed time AES cipher"
|
|
select CRYPTO_ALGAPI
|
|
help
|
|
This is a generic implementation of AES that attempts to eliminate
|
|
data dependent latencies as much as possible without affecting
|
|
performance too much. It is intended for use by the generic CCM
|
|
and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
|
|
solely on encryption (although decryption is supported as well, but
|
|
with a more dramatic performance hit)
|
|
|
|
Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
|
|
8 for decryption), this implementation only uses just two S-boxes of
|
|
256 bytes each, and attempts to eliminate data dependent latencies by
|
|
prefetching the entire table into the cache at the start of each
|
|
block. Interrupts are also disabled to avoid races where cachelines
|
|
are evicted when the CPU is interrupted to do something else.
|
|
|
|
config CRYPTO_AES_586
|
|
tristate "AES cipher algorithms (i586)"
|
|
depends on (X86 || UML_X86) && !64BIT
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_AES
|
|
help
|
|
AES cipher algorithms (FIPS-197). AES uses the Rijndael
|
|
algorithm.
|
|
|
|
Rijndael appears to be consistently a very good performer in
|
|
both hardware and software across a wide range of computing
|
|
environments regardless of its use in feedback or non-feedback
|
|
modes. Its key setup time is excellent, and its key agility is
|
|
good. Rijndael's very low memory requirements make it very well
|
|
suited for restricted-space environments, in which it also
|
|
demonstrates excellent performance. Rijndael's operations are
|
|
among the easiest to defend against power and timing attacks.
|
|
|
|
The AES specifies three key sizes: 128, 192 and 256 bits
|
|
|
|
See <http://csrc.nist.gov/encryption/aes/> for more information.
|
|
|
|
config CRYPTO_AES_X86_64
|
|
tristate "AES cipher algorithms (x86_64)"
|
|
depends on (X86 || UML_X86) && 64BIT
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_AES
|
|
help
|
|
AES cipher algorithms (FIPS-197). AES uses the Rijndael
|
|
algorithm.
|
|
|
|
Rijndael appears to be consistently a very good performer in
|
|
both hardware and software across a wide range of computing
|
|
environments regardless of its use in feedback or non-feedback
|
|
modes. Its key setup time is excellent, and its key agility is
|
|
good. Rijndael's very low memory requirements make it very well
|
|
suited for restricted-space environments, in which it also
|
|
demonstrates excellent performance. Rijndael's operations are
|
|
among the easiest to defend against power and timing attacks.
|
|
|
|
The AES specifies three key sizes: 128, 192 and 256 bits
|
|
|
|
See <http://csrc.nist.gov/encryption/aes/> for more information.
|
|
|
|
config CRYPTO_AES_NI_INTEL
|
|
tristate "AES cipher algorithms (AES-NI)"
|
|
depends on X86
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_AES_X86_64 if 64BIT
|
|
select CRYPTO_AES_586 if !64BIT
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_GLUE_HELPER_X86 if 64BIT
|
|
select CRYPTO_SIMD
|
|
help
|
|
Use Intel AES-NI instructions for AES algorithm.
|
|
|
|
AES cipher algorithms (FIPS-197). AES uses the Rijndael
|
|
algorithm.
|
|
|
|
Rijndael appears to be consistently a very good performer in
|
|
both hardware and software across a wide range of computing
|
|
environments regardless of its use in feedback or non-feedback
|
|
modes. Its key setup time is excellent, and its key agility is
|
|
good. Rijndael's very low memory requirements make it very well
|
|
suited for restricted-space environments, in which it also
|
|
demonstrates excellent performance. Rijndael's operations are
|
|
among the easiest to defend against power and timing attacks.
|
|
|
|
The AES specifies three key sizes: 128, 192 and 256 bits
|
|
|
|
See <http://csrc.nist.gov/encryption/aes/> for more information.
|
|
|
|
In addition to AES cipher algorithm support, the acceleration
|
|
for some popular block cipher mode is supported too, including
|
|
ECB, CBC, LRW, XTS. The 64 bit version has additional
|
|
acceleration for CTR.
|
|
|
|
config CRYPTO_AES_SPARC64
|
|
tristate "AES cipher algorithms (SPARC64)"
|
|
depends on SPARC64
|
|
select CRYPTO_CRYPTD
|
|
select CRYPTO_ALGAPI
|
|
help
|
|
Use SPARC64 crypto opcodes for AES algorithm.
|
|
|
|
AES cipher algorithms (FIPS-197). AES uses the Rijndael
|
|
algorithm.
|
|
|
|
Rijndael appears to be consistently a very good performer in
|
|
both hardware and software across a wide range of computing
|
|
environments regardless of its use in feedback or non-feedback
|
|
modes. Its key setup time is excellent, and its key agility is
|
|
good. Rijndael's very low memory requirements make it very well
|
|
suited for restricted-space environments, in which it also
|
|
demonstrates excellent performance. Rijndael's operations are
|
|
among the easiest to defend against power and timing attacks.
|
|
|
|
The AES specifies three key sizes: 128, 192 and 256 bits
|
|
|
|
See <http://csrc.nist.gov/encryption/aes/> for more information.
|
|
|
|
In addition to AES cipher algorithm support, the acceleration
|
|
for some popular block cipher mode is supported too, including
|
|
ECB and CBC.
|
|
|
|
config CRYPTO_AES_PPC_SPE
|
|
tristate "AES cipher algorithms (PPC SPE)"
|
|
depends on PPC && SPE
|
|
help
|
|
AES cipher algorithms (FIPS-197). Additionally the acceleration
|
|
for popular block cipher modes ECB, CBC, CTR and XTS is supported.
|
|
This module should only be used for low power (router) devices
|
|
without hardware AES acceleration (e.g. caam crypto). It reduces the
|
|
size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
|
|
timining attacks. Nevertheless it might be not as secure as other
|
|
architecture specific assembler implementations that work on 1KB
|
|
tables or 256 bytes S-boxes.
|
|
|
|
config CRYPTO_ANUBIS
|
|
tristate "Anubis cipher algorithm"
|
|
select CRYPTO_ALGAPI
|
|
help
|
|
Anubis cipher algorithm.
|
|
|
|
Anubis is a variable key length cipher which can use keys from
|
|
128 bits to 320 bits in length. It was evaluated as a entrant
|
|
in the NESSIE competition.
|
|
|
|
See also:
|
|
<https://www.cosic.esat.kuleuven.be/nessie/reports/>
|
|
<http://www.larc.usp.br/~pbarreto/AnubisPage.html>
|
|
|
|
config CRYPTO_LIB_ARC4
|
|
tristate
|
|
|
|
config CRYPTO_ARC4
|
|
tristate "ARC4 cipher algorithm"
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_LIB_ARC4
|
|
help
|
|
ARC4 cipher algorithm.
|
|
|
|
ARC4 is a stream cipher using keys ranging from 8 bits to 2048
|
|
bits in length. This algorithm is required for driver-based
|
|
WEP, but it should not be for other purposes because of the
|
|
weakness of the algorithm.
|
|
|
|
config CRYPTO_BLOWFISH
|
|
tristate "Blowfish cipher algorithm"
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_BLOWFISH_COMMON
|
|
help
|
|
Blowfish cipher algorithm, by Bruce Schneier.
|
|
|
|
This is a variable key length cipher which can use keys from 32
|
|
bits to 448 bits in length. It's fast, simple and specifically
|
|
designed for use on "large microprocessors".
|
|
|
|
See also:
|
|
<http://www.schneier.com/blowfish.html>
|
|
|
|
config CRYPTO_BLOWFISH_COMMON
|
|
tristate
|
|
help
|
|
Common parts of the Blowfish cipher algorithm shared by the
|
|
generic c and the assembler implementations.
|
|
|
|
See also:
|
|
<http://www.schneier.com/blowfish.html>
|
|
|
|
config CRYPTO_BLOWFISH_X86_64
|
|
tristate "Blowfish cipher algorithm (x86_64)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_BLOWFISH_COMMON
|
|
help
|
|
Blowfish cipher algorithm (x86_64), by Bruce Schneier.
|
|
|
|
This is a variable key length cipher which can use keys from 32
|
|
bits to 448 bits in length. It's fast, simple and specifically
|
|
designed for use on "large microprocessors".
|
|
|
|
See also:
|
|
<http://www.schneier.com/blowfish.html>
|
|
|
|
config CRYPTO_CAMELLIA
|
|
tristate "Camellia cipher algorithms"
|
|
depends on CRYPTO
|
|
select CRYPTO_ALGAPI
|
|
help
|
|
Camellia cipher algorithms module.
|
|
|
|
Camellia is a symmetric key block cipher developed jointly
|
|
at NTT and Mitsubishi Electric Corporation.
|
|
|
|
The Camellia specifies three key sizes: 128, 192 and 256 bits.
|
|
|
|
See also:
|
|
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
|
|
|
|
config CRYPTO_CAMELLIA_X86_64
|
|
tristate "Camellia cipher algorithm (x86_64)"
|
|
depends on X86 && 64BIT
|
|
depends on CRYPTO
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_GLUE_HELPER_X86
|
|
help
|
|
Camellia cipher algorithm module (x86_64).
|
|
|
|
Camellia is a symmetric key block cipher developed jointly
|
|
at NTT and Mitsubishi Electric Corporation.
|
|
|
|
The Camellia specifies three key sizes: 128, 192 and 256 bits.
|
|
|
|
See also:
|
|
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
|
|
|
|
config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
|
|
tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
|
|
depends on X86 && 64BIT
|
|
depends on CRYPTO
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_CAMELLIA_X86_64
|
|
select CRYPTO_GLUE_HELPER_X86
|
|
select CRYPTO_SIMD
|
|
select CRYPTO_XTS
|
|
help
|
|
Camellia cipher algorithm module (x86_64/AES-NI/AVX).
|
|
|
|
Camellia is a symmetric key block cipher developed jointly
|
|
at NTT and Mitsubishi Electric Corporation.
|
|
|
|
The Camellia specifies three key sizes: 128, 192 and 256 bits.
|
|
|
|
See also:
|
|
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
|
|
|
|
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
|
|
tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
|
|
depends on X86 && 64BIT
|
|
depends on CRYPTO
|
|
select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
|
|
help
|
|
Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
|
|
|
|
Camellia is a symmetric key block cipher developed jointly
|
|
at NTT and Mitsubishi Electric Corporation.
|
|
|
|
The Camellia specifies three key sizes: 128, 192 and 256 bits.
|
|
|
|
See also:
|
|
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
|
|
|
|
config CRYPTO_CAMELLIA_SPARC64
|
|
tristate "Camellia cipher algorithm (SPARC64)"
|
|
depends on SPARC64
|
|
depends on CRYPTO
|
|
select CRYPTO_ALGAPI
|
|
help
|
|
Camellia cipher algorithm module (SPARC64).
|
|
|
|
Camellia is a symmetric key block cipher developed jointly
|
|
at NTT and Mitsubishi Electric Corporation.
|
|
|
|
The Camellia specifies three key sizes: 128, 192 and 256 bits.
|
|
|
|
See also:
|
|
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
|
|
|
|
config CRYPTO_CAST_COMMON
|
|
tristate
|
|
help
|
|
Common parts of the CAST cipher algorithms shared by the
|
|
generic c and the assembler implementations.
|
|
|
|
config CRYPTO_CAST5
|
|
tristate "CAST5 (CAST-128) cipher algorithm"
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_CAST_COMMON
|
|
help
|
|
The CAST5 encryption algorithm (synonymous with CAST-128) is
|
|
described in RFC2144.
|
|
|
|
config CRYPTO_CAST5_AVX_X86_64
|
|
tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_CAST5
|
|
select CRYPTO_CAST_COMMON
|
|
select CRYPTO_SIMD
|
|
help
|
|
The CAST5 encryption algorithm (synonymous with CAST-128) is
|
|
described in RFC2144.
|
|
|
|
This module provides the Cast5 cipher algorithm that processes
|
|
sixteen blocks parallel using the AVX instruction set.
|
|
|
|
config CRYPTO_CAST6
|
|
tristate "CAST6 (CAST-256) cipher algorithm"
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_CAST_COMMON
|
|
help
|
|
The CAST6 encryption algorithm (synonymous with CAST-256) is
|
|
described in RFC2612.
|
|
|
|
config CRYPTO_CAST6_AVX_X86_64
|
|
tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_CAST6
|
|
select CRYPTO_CAST_COMMON
|
|
select CRYPTO_GLUE_HELPER_X86
|
|
select CRYPTO_SIMD
|
|
select CRYPTO_XTS
|
|
help
|
|
The CAST6 encryption algorithm (synonymous with CAST-256) is
|
|
described in RFC2612.
|
|
|
|
This module provides the Cast6 cipher algorithm that processes
|
|
eight blocks parallel using the AVX instruction set.
|
|
|
|
config CRYPTO_DES
|
|
tristate "DES and Triple DES EDE cipher algorithms"
|
|
select CRYPTO_ALGAPI
|
|
help
|
|
DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
|
|
|
|
config CRYPTO_DES_SPARC64
|
|
tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
|
|
depends on SPARC64
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_DES
|
|
help
|
|
DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
|
|
optimized using SPARC64 crypto opcodes.
|
|
|
|
config CRYPTO_DES3_EDE_X86_64
|
|
tristate "Triple DES EDE cipher algorithm (x86-64)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_DES
|
|
help
|
|
Triple DES EDE (FIPS 46-3) algorithm.
|
|
|
|
This module provides implementation of the Triple DES EDE cipher
|
|
algorithm that is optimized for x86-64 processors. Two versions of
|
|
algorithm are provided; regular processing one input block and
|
|
one that processes three blocks parallel.
|
|
|
|
config CRYPTO_FCRYPT
|
|
tristate "FCrypt cipher algorithm"
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
FCrypt algorithm used by RxRPC.
|
|
|
|
config CRYPTO_KHAZAD
|
|
tristate "Khazad cipher algorithm"
|
|
select CRYPTO_ALGAPI
|
|
help
|
|
Khazad cipher algorithm.
|
|
|
|
Khazad was a finalist in the initial NESSIE competition. It is
|
|
an algorithm optimized for 64-bit processors with good performance
|
|
on 32-bit processors. Khazad uses an 128 bit key size.
|
|
|
|
See also:
|
|
<http://www.larc.usp.br/~pbarreto/KhazadPage.html>
|
|
|
|
config CRYPTO_SALSA20
|
|
tristate "Salsa20 stream cipher algorithm"
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
Salsa20 stream cipher algorithm.
|
|
|
|
Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
|
|
Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
|
|
|
|
The Salsa20 stream cipher algorithm is designed by Daniel J.
|
|
Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
|
|
|
|
config CRYPTO_CHACHA20
|
|
tristate "ChaCha stream cipher algorithms"
|
|
select CRYPTO_BLKCIPHER
|
|
help
|
|
The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
|
|
|
|
ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
|
|
Bernstein and further specified in RFC7539 for use in IETF protocols.
|
|
This is the portable C implementation of ChaCha20. See also:
|
|
<http://cr.yp.to/chacha/chacha-20080128.pdf>
|
|
|
|
XChaCha20 is the application of the XSalsa20 construction to ChaCha20
|
|
rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
|
|
from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
|
|
while provably retaining ChaCha20's security. See also:
|
|
<https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
|
|
|
|
XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
|
|
reduced security margin but increased performance. It can be needed
|
|
in some performance-sensitive scenarios.
|
|
|
|
config CRYPTO_CHACHA20_X86_64
|
|
tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_CHACHA20
|
|
help
|
|
SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
|
|
XChaCha20, and XChaCha12 stream ciphers.
|
|
|
|
config CRYPTO_SEED
|
|
tristate "SEED cipher algorithm"
|
|
select CRYPTO_ALGAPI
|
|
help
|
|
SEED cipher algorithm (RFC4269).
|
|
|
|
SEED is a 128-bit symmetric key block cipher that has been
|
|
developed by KISA (Korea Information Security Agency) as a
|
|
national standard encryption algorithm of the Republic of Korea.
|
|
It is a 16 round block cipher with the key size of 128 bit.
|
|
|
|
See also:
|
|
<http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
|
|
|
|
config CRYPTO_SERPENT
|
|
tristate "Serpent cipher algorithm"
|
|
select CRYPTO_ALGAPI
|
|
help
|
|
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
|
|
|
|
Keys are allowed to be from 0 to 256 bits in length, in steps
|
|
of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
|
|
variant of Serpent for compatibility with old kerneli.org code.
|
|
|
|
See also:
|
|
<http://www.cl.cam.ac.uk/~rja14/serpent.html>
|
|
|
|
config CRYPTO_SERPENT_SSE2_X86_64
|
|
tristate "Serpent cipher algorithm (x86_64/SSE2)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_GLUE_HELPER_X86
|
|
select CRYPTO_SERPENT
|
|
select CRYPTO_SIMD
|
|
help
|
|
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
|
|
|
|
Keys are allowed to be from 0 to 256 bits in length, in steps
|
|
of 8 bits.
|
|
|
|
This module provides Serpent cipher algorithm that processes eight
|
|
blocks parallel using SSE2 instruction set.
|
|
|
|
See also:
|
|
<http://www.cl.cam.ac.uk/~rja14/serpent.html>
|
|
|
|
config CRYPTO_SERPENT_SSE2_586
|
|
tristate "Serpent cipher algorithm (i586/SSE2)"
|
|
depends on X86 && !64BIT
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_GLUE_HELPER_X86
|
|
select CRYPTO_SERPENT
|
|
select CRYPTO_SIMD
|
|
help
|
|
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
|
|
|
|
Keys are allowed to be from 0 to 256 bits in length, in steps
|
|
of 8 bits.
|
|
|
|
This module provides Serpent cipher algorithm that processes four
|
|
blocks parallel using SSE2 instruction set.
|
|
|
|
See also:
|
|
<http://www.cl.cam.ac.uk/~rja14/serpent.html>
|
|
|
|
config CRYPTO_SERPENT_AVX_X86_64
|
|
tristate "Serpent cipher algorithm (x86_64/AVX)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_GLUE_HELPER_X86
|
|
select CRYPTO_SERPENT
|
|
select CRYPTO_SIMD
|
|
select CRYPTO_XTS
|
|
help
|
|
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
|
|
|
|
Keys are allowed to be from 0 to 256 bits in length, in steps
|
|
of 8 bits.
|
|
|
|
This module provides the Serpent cipher algorithm that processes
|
|
eight blocks parallel using the AVX instruction set.
|
|
|
|
See also:
|
|
<http://www.cl.cam.ac.uk/~rja14/serpent.html>
|
|
|
|
config CRYPTO_SERPENT_AVX2_X86_64
|
|
tristate "Serpent cipher algorithm (x86_64/AVX2)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_SERPENT_AVX_X86_64
|
|
help
|
|
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
|
|
|
|
Keys are allowed to be from 0 to 256 bits in length, in steps
|
|
of 8 bits.
|
|
|
|
This module provides Serpent cipher algorithm that processes 16
|
|
blocks parallel using AVX2 instruction set.
|
|
|
|
See also:
|
|
<http://www.cl.cam.ac.uk/~rja14/serpent.html>
|
|
|
|
config CRYPTO_SM4
|
|
tristate "SM4 cipher algorithm"
|
|
select CRYPTO_ALGAPI
|
|
help
|
|
SM4 cipher algorithms (OSCCA GB/T 32907-2016).
|
|
|
|
SM4 (GBT.32907-2016) is a cryptographic standard issued by the
|
|
Organization of State Commercial Administration of China (OSCCA)
|
|
as an authorized cryptographic algorithms for the use within China.
|
|
|
|
SMS4 was originally created for use in protecting wireless
|
|
networks, and is mandated in the Chinese National Standard for
|
|
Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
|
|
(GB.15629.11-2003).
|
|
|
|
The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
|
|
standardized through TC 260 of the Standardization Administration
|
|
of the People's Republic of China (SAC).
|
|
|
|
The input, output, and key of SMS4 are each 128 bits.
|
|
|
|
See also: <https://eprint.iacr.org/2008/329.pdf>
|
|
|
|
If unsure, say N.
|
|
|
|
config CRYPTO_TEA
|
|
tristate "TEA, XTEA and XETA cipher algorithms"
|
|
select CRYPTO_ALGAPI
|
|
help
|
|
TEA cipher algorithm.
|
|
|
|
Tiny Encryption Algorithm is a simple cipher that uses
|
|
many rounds for security. It is very fast and uses
|
|
little memory.
|
|
|
|
Xtendend Tiny Encryption Algorithm is a modification to
|
|
the TEA algorithm to address a potential key weakness
|
|
in the TEA algorithm.
|
|
|
|
Xtendend Encryption Tiny Algorithm is a mis-implementation
|
|
of the XTEA algorithm for compatibility purposes.
|
|
|
|
config CRYPTO_TWOFISH
|
|
tristate "Twofish cipher algorithm"
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_TWOFISH_COMMON
|
|
help
|
|
Twofish cipher algorithm.
|
|
|
|
Twofish was submitted as an AES (Advanced Encryption Standard)
|
|
candidate cipher by researchers at CounterPane Systems. It is a
|
|
16 round block cipher supporting key sizes of 128, 192, and 256
|
|
bits.
|
|
|
|
See also:
|
|
<http://www.schneier.com/twofish.html>
|
|
|
|
config CRYPTO_TWOFISH_COMMON
|
|
tristate
|
|
help
|
|
Common parts of the Twofish cipher algorithm shared by the
|
|
generic c and the assembler implementations.
|
|
|
|
config CRYPTO_TWOFISH_586
|
|
tristate "Twofish cipher algorithms (i586)"
|
|
depends on (X86 || UML_X86) && !64BIT
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_TWOFISH_COMMON
|
|
help
|
|
Twofish cipher algorithm.
|
|
|
|
Twofish was submitted as an AES (Advanced Encryption Standard)
|
|
candidate cipher by researchers at CounterPane Systems. It is a
|
|
16 round block cipher supporting key sizes of 128, 192, and 256
|
|
bits.
|
|
|
|
See also:
|
|
<http://www.schneier.com/twofish.html>
|
|
|
|
config CRYPTO_TWOFISH_X86_64
|
|
tristate "Twofish cipher algorithm (x86_64)"
|
|
depends on (X86 || UML_X86) && 64BIT
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_TWOFISH_COMMON
|
|
help
|
|
Twofish cipher algorithm (x86_64).
|
|
|
|
Twofish was submitted as an AES (Advanced Encryption Standard)
|
|
candidate cipher by researchers at CounterPane Systems. It is a
|
|
16 round block cipher supporting key sizes of 128, 192, and 256
|
|
bits.
|
|
|
|
See also:
|
|
<http://www.schneier.com/twofish.html>
|
|
|
|
config CRYPTO_TWOFISH_X86_64_3WAY
|
|
tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_TWOFISH_COMMON
|
|
select CRYPTO_TWOFISH_X86_64
|
|
select CRYPTO_GLUE_HELPER_X86
|
|
help
|
|
Twofish cipher algorithm (x86_64, 3-way parallel).
|
|
|
|
Twofish was submitted as an AES (Advanced Encryption Standard)
|
|
candidate cipher by researchers at CounterPane Systems. It is a
|
|
16 round block cipher supporting key sizes of 128, 192, and 256
|
|
bits.
|
|
|
|
This module provides Twofish cipher algorithm that processes three
|
|
blocks parallel, utilizing resources of out-of-order CPUs better.
|
|
|
|
See also:
|
|
<http://www.schneier.com/twofish.html>
|
|
|
|
config CRYPTO_TWOFISH_AVX_X86_64
|
|
tristate "Twofish cipher algorithm (x86_64/AVX)"
|
|
depends on X86 && 64BIT
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_GLUE_HELPER_X86
|
|
select CRYPTO_SIMD
|
|
select CRYPTO_TWOFISH_COMMON
|
|
select CRYPTO_TWOFISH_X86_64
|
|
select CRYPTO_TWOFISH_X86_64_3WAY
|
|
help
|
|
Twofish cipher algorithm (x86_64/AVX).
|
|
|
|
Twofish was submitted as an AES (Advanced Encryption Standard)
|
|
candidate cipher by researchers at CounterPane Systems. It is a
|
|
16 round block cipher supporting key sizes of 128, 192, and 256
|
|
bits.
|
|
|
|
This module provides the Twofish cipher algorithm that processes
|
|
eight blocks parallel using the AVX Instruction Set.
|
|
|
|
See also:
|
|
<http://www.schneier.com/twofish.html>
|
|
|
|
comment "Compression"
|
|
|
|
config CRYPTO_DEFLATE
|
|
tristate "Deflate compression algorithm"
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_ACOMP2
|
|
select ZLIB_INFLATE
|
|
select ZLIB_DEFLATE
|
|
help
|
|
This is the Deflate algorithm (RFC1951), specified for use in
|
|
IPSec with the IPCOMP protocol (RFC3173, RFC2394).
|
|
|
|
You will most probably want this if using IPSec.
|
|
|
|
config CRYPTO_LZO
|
|
tristate "LZO compression algorithm"
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_ACOMP2
|
|
select LZO_COMPRESS
|
|
select LZO_DECOMPRESS
|
|
help
|
|
This is the LZO algorithm.
|
|
|
|
config CRYPTO_842
|
|
tristate "842 compression algorithm"
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_ACOMP2
|
|
select 842_COMPRESS
|
|
select 842_DECOMPRESS
|
|
help
|
|
This is the 842 algorithm.
|
|
|
|
config CRYPTO_LZ4
|
|
tristate "LZ4 compression algorithm"
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_ACOMP2
|
|
select LZ4_COMPRESS
|
|
select LZ4_DECOMPRESS
|
|
help
|
|
This is the LZ4 algorithm.
|
|
|
|
config CRYPTO_LZ4HC
|
|
tristate "LZ4HC compression algorithm"
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_ACOMP2
|
|
select LZ4HC_COMPRESS
|
|
select LZ4_DECOMPRESS
|
|
help
|
|
This is the LZ4 high compression mode algorithm.
|
|
|
|
config CRYPTO_ZSTD
|
|
tristate "Zstd compression algorithm"
|
|
select CRYPTO_ALGAPI
|
|
select CRYPTO_ACOMP2
|
|
select ZSTD_COMPRESS
|
|
select ZSTD_DECOMPRESS
|
|
help
|
|
This is the zstd algorithm.
|
|
|
|
comment "Random Number Generation"
|
|
|
|
config CRYPTO_ANSI_CPRNG
|
|
tristate "Pseudo Random Number Generation for Cryptographic modules"
|
|
select CRYPTO_AES
|
|
select CRYPTO_RNG
|
|
help
|
|
This option enables the generic pseudo random number generator
|
|
for cryptographic modules. Uses the Algorithm specified in
|
|
ANSI X9.31 A.2.4. Note that this option must be enabled if
|
|
CRYPTO_FIPS is selected
|
|
|
|
menuconfig CRYPTO_DRBG_MENU
|
|
tristate "NIST SP800-90A DRBG"
|
|
help
|
|
NIST SP800-90A compliant DRBG. In the following submenu, one or
|
|
more of the DRBG types must be selected.
|
|
|
|
if CRYPTO_DRBG_MENU
|
|
|
|
config CRYPTO_DRBG_HMAC
|
|
bool
|
|
default y
|
|
select CRYPTO_HMAC
|
|
select CRYPTO_SHA256
|
|
|
|
config CRYPTO_DRBG_HASH
|
|
bool "Enable Hash DRBG"
|
|
select CRYPTO_SHA256
|
|
help
|
|
Enable the Hash DRBG variant as defined in NIST SP800-90A.
|
|
|
|
config CRYPTO_DRBG_CTR
|
|
bool "Enable CTR DRBG"
|
|
select CRYPTO_AES
|
|
depends on CRYPTO_CTR
|
|
help
|
|
Enable the CTR DRBG variant as defined in NIST SP800-90A.
|
|
|
|
config CRYPTO_DRBG
|
|
tristate
|
|
default CRYPTO_DRBG_MENU
|
|
select CRYPTO_RNG
|
|
select CRYPTO_JITTERENTROPY
|
|
|
|
endif # if CRYPTO_DRBG_MENU
|
|
|
|
config CRYPTO_JITTERENTROPY
|
|
tristate "Jitterentropy Non-Deterministic Random Number Generator"
|
|
select CRYPTO_RNG
|
|
help
|
|
The Jitterentropy RNG is a noise that is intended
|
|
to provide seed to another RNG. The RNG does not
|
|
perform any cryptographic whitening of the generated
|
|
random numbers. This Jitterentropy RNG registers with
|
|
the kernel crypto API and can be used by any caller.
|
|
|
|
config CRYPTO_USER_API
|
|
tristate
|
|
|
|
config CRYPTO_USER_API_HASH
|
|
tristate "User-space interface for hash algorithms"
|
|
depends on NET
|
|
select CRYPTO_HASH
|
|
select CRYPTO_USER_API
|
|
help
|
|
This option enables the user-spaces interface for hash
|
|
algorithms.
|
|
|
|
config CRYPTO_USER_API_SKCIPHER
|
|
tristate "User-space interface for symmetric key cipher algorithms"
|
|
depends on NET
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_USER_API
|
|
help
|
|
This option enables the user-spaces interface for symmetric
|
|
key cipher algorithms.
|
|
|
|
config CRYPTO_USER_API_RNG
|
|
tristate "User-space interface for random number generator algorithms"
|
|
depends on NET
|
|
select CRYPTO_RNG
|
|
select CRYPTO_USER_API
|
|
help
|
|
This option enables the user-spaces interface for random
|
|
number generator algorithms.
|
|
|
|
config CRYPTO_USER_API_AEAD
|
|
tristate "User-space interface for AEAD cipher algorithms"
|
|
depends on NET
|
|
select CRYPTO_AEAD
|
|
select CRYPTO_BLKCIPHER
|
|
select CRYPTO_NULL
|
|
select CRYPTO_USER_API
|
|
help
|
|
This option enables the user-spaces interface for AEAD
|
|
cipher algorithms.
|
|
|
|
config CRYPTO_STATS
|
|
bool "Crypto usage statistics for User-space"
|
|
depends on CRYPTO_USER
|
|
help
|
|
This option enables the gathering of crypto stats.
|
|
This will collect:
|
|
- encrypt/decrypt size and numbers of symmeric operations
|
|
- compress/decompress size and numbers of compress operations
|
|
- size and numbers of hash operations
|
|
- encrypt/decrypt/sign/verify numbers for asymmetric operations
|
|
- generate/seed numbers for rng operations
|
|
|
|
config CRYPTO_HASH_INFO
|
|
bool
|
|
|
|
source "drivers/crypto/Kconfig"
|
|
source "crypto/asymmetric_keys/Kconfig"
|
|
source "certs/Kconfig"
|
|
|
|
endif # if CRYPTO
|