mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-17 16:14:25 +08:00
e28f7faf05
Implement 4-level pagetables for ppc64 This patch implements full four-level page tables for ppc64, thereby extending the usable user address range to 44 bits (16T). The patch uses a full page for the tables at the bottom and top level, and a quarter page for the intermediate levels. It uses full 64-bit pointers at every level, thus also increasing the addressable range of physical memory. This patch also tweaks the VSID allocation to allow matching range for user addresses (this halves the number of available contexts) and adds some #if and BUILD_BUG sanity checks. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
636 lines
15 KiB
C
636 lines
15 KiB
C
/*
|
|
* PPC64 (POWER4) Huge TLB Page Support for Kernel.
|
|
*
|
|
* Copyright (C) 2003 David Gibson, IBM Corporation.
|
|
*
|
|
* Based on the IA-32 version:
|
|
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/err.h>
|
|
#include <linux/sysctl.h>
|
|
#include <asm/mman.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/tlb.h>
|
|
|
|
#include <linux/sysctl.h>
|
|
|
|
/* Modelled after find_linux_pte() */
|
|
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pg;
|
|
pud_t *pu;
|
|
pmd_t *pm;
|
|
pte_t *pt;
|
|
|
|
BUG_ON(! in_hugepage_area(mm->context, addr));
|
|
|
|
addr &= HPAGE_MASK;
|
|
|
|
pg = pgd_offset(mm, addr);
|
|
if (!pgd_none(*pg)) {
|
|
pu = pud_offset(pg, addr);
|
|
if (!pud_none(*pu)) {
|
|
pm = pmd_offset(pu, addr);
|
|
pt = (pte_t *)pm;
|
|
BUG_ON(!pmd_none(*pm)
|
|
&& !(pte_present(*pt) && pte_huge(*pt)));
|
|
return pt;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pg;
|
|
pud_t *pu;
|
|
pmd_t *pm;
|
|
pte_t *pt;
|
|
|
|
BUG_ON(! in_hugepage_area(mm->context, addr));
|
|
|
|
addr &= HPAGE_MASK;
|
|
|
|
pg = pgd_offset(mm, addr);
|
|
pu = pud_alloc(mm, pg, addr);
|
|
|
|
if (pu) {
|
|
pm = pmd_alloc(mm, pu, addr);
|
|
if (pm) {
|
|
pt = (pte_t *)pm;
|
|
BUG_ON(!pmd_none(*pm)
|
|
&& !(pte_present(*pt) && pte_huge(*pt)));
|
|
return pt;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#define HUGEPTE_BATCH_SIZE (HPAGE_SIZE / PMD_SIZE)
|
|
|
|
void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, pte_t pte)
|
|
{
|
|
int i;
|
|
|
|
if (pte_present(*ptep)) {
|
|
pte_clear(mm, addr, ptep);
|
|
flush_tlb_pending();
|
|
}
|
|
|
|
for (i = 0; i < HUGEPTE_BATCH_SIZE; i++) {
|
|
*ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
|
|
ptep++;
|
|
}
|
|
}
|
|
|
|
pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
unsigned long old = pte_update(ptep, ~0UL);
|
|
int i;
|
|
|
|
if (old & _PAGE_HASHPTE)
|
|
hpte_update(mm, addr, old, 0);
|
|
|
|
for (i = 1; i < HUGEPTE_BATCH_SIZE; i++)
|
|
ptep[i] = __pte(0);
|
|
|
|
return __pte(old);
|
|
}
|
|
|
|
/*
|
|
* This function checks for proper alignment of input addr and len parameters.
|
|
*/
|
|
int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
|
|
{
|
|
if (len & ~HPAGE_MASK)
|
|
return -EINVAL;
|
|
if (addr & ~HPAGE_MASK)
|
|
return -EINVAL;
|
|
if (! (within_hugepage_low_range(addr, len)
|
|
|| within_hugepage_high_range(addr, len)) )
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static void flush_segments(void *parm)
|
|
{
|
|
u16 segs = (unsigned long) parm;
|
|
unsigned long i;
|
|
|
|
asm volatile("isync" : : : "memory");
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
if (! (segs & (1U << i)))
|
|
continue;
|
|
asm volatile("slbie %0" : : "r" (i << SID_SHIFT));
|
|
}
|
|
|
|
asm volatile("isync" : : : "memory");
|
|
}
|
|
|
|
static int prepare_low_seg_for_htlb(struct mm_struct *mm, unsigned long seg)
|
|
{
|
|
unsigned long start = seg << SID_SHIFT;
|
|
unsigned long end = (seg+1) << SID_SHIFT;
|
|
struct vm_area_struct *vma;
|
|
|
|
BUG_ON(seg >= 16);
|
|
|
|
/* Check no VMAs are in the region */
|
|
vma = find_vma(mm, start);
|
|
if (vma && (vma->vm_start < end))
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int open_low_hpage_segs(struct mm_struct *mm, u16 newsegs)
|
|
{
|
|
unsigned long i;
|
|
|
|
newsegs &= ~(mm->context.htlb_segs);
|
|
if (! newsegs)
|
|
return 0; /* The segments we want are already open */
|
|
|
|
for (i = 0; i < 16; i++)
|
|
if ((1 << i) & newsegs)
|
|
if (prepare_low_seg_for_htlb(mm, i) != 0)
|
|
return -EBUSY;
|
|
|
|
mm->context.htlb_segs |= newsegs;
|
|
|
|
/* update the paca copy of the context struct */
|
|
get_paca()->context = mm->context;
|
|
|
|
/* the context change must make it to memory before the flush,
|
|
* so that further SLB misses do the right thing. */
|
|
mb();
|
|
on_each_cpu(flush_segments, (void *)(unsigned long)newsegs, 0, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int prepare_hugepage_range(unsigned long addr, unsigned long len)
|
|
{
|
|
if (within_hugepage_high_range(addr, len))
|
|
return 0;
|
|
else if ((addr < 0x100000000UL) && ((addr+len) < 0x100000000UL)) {
|
|
int err;
|
|
/* Yes, we need both tests, in case addr+len overflows
|
|
* 64-bit arithmetic */
|
|
err = open_low_hpage_segs(current->mm,
|
|
LOW_ESID_MASK(addr, len));
|
|
if (err)
|
|
printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
|
|
" failed (segs: 0x%04hx)\n", addr, len,
|
|
LOW_ESID_MASK(addr, len));
|
|
return err;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
struct page *
|
|
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
|
|
{
|
|
pte_t *ptep;
|
|
struct page *page;
|
|
|
|
if (! in_hugepage_area(mm->context, address))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
ptep = huge_pte_offset(mm, address);
|
|
page = pte_page(*ptep);
|
|
if (page)
|
|
page += (address % HPAGE_SIZE) / PAGE_SIZE;
|
|
|
|
return page;
|
|
}
|
|
|
|
int pmd_huge(pmd_t pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct page *
|
|
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
|
|
pmd_t *pmd, int write)
|
|
{
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
/* Because we have an exclusive hugepage region which lies within the
|
|
* normal user address space, we have to take special measures to make
|
|
* non-huge mmap()s evade the hugepage reserved regions. */
|
|
unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
unsigned long start_addr;
|
|
|
|
if (len > TASK_SIZE)
|
|
return -ENOMEM;
|
|
|
|
if (addr) {
|
|
addr = PAGE_ALIGN(addr);
|
|
vma = find_vma(mm, addr);
|
|
if (((TASK_SIZE - len) >= addr)
|
|
&& (!vma || (addr+len) <= vma->vm_start)
|
|
&& !is_hugepage_only_range(mm, addr,len))
|
|
return addr;
|
|
}
|
|
if (len > mm->cached_hole_size) {
|
|
start_addr = addr = mm->free_area_cache;
|
|
} else {
|
|
start_addr = addr = TASK_UNMAPPED_BASE;
|
|
mm->cached_hole_size = 0;
|
|
}
|
|
|
|
full_search:
|
|
vma = find_vma(mm, addr);
|
|
while (TASK_SIZE - len >= addr) {
|
|
BUG_ON(vma && (addr >= vma->vm_end));
|
|
|
|
if (touches_hugepage_low_range(mm, addr, len)) {
|
|
addr = ALIGN(addr+1, 1<<SID_SHIFT);
|
|
vma = find_vma(mm, addr);
|
|
continue;
|
|
}
|
|
if (touches_hugepage_high_range(addr, len)) {
|
|
addr = TASK_HPAGE_END;
|
|
vma = find_vma(mm, addr);
|
|
continue;
|
|
}
|
|
if (!vma || addr + len <= vma->vm_start) {
|
|
/*
|
|
* Remember the place where we stopped the search:
|
|
*/
|
|
mm->free_area_cache = addr + len;
|
|
return addr;
|
|
}
|
|
if (addr + mm->cached_hole_size < vma->vm_start)
|
|
mm->cached_hole_size = vma->vm_start - addr;
|
|
addr = vma->vm_end;
|
|
vma = vma->vm_next;
|
|
}
|
|
|
|
/* Make sure we didn't miss any holes */
|
|
if (start_addr != TASK_UNMAPPED_BASE) {
|
|
start_addr = addr = TASK_UNMAPPED_BASE;
|
|
mm->cached_hole_size = 0;
|
|
goto full_search;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* This mmap-allocator allocates new areas top-down from below the
|
|
* stack's low limit (the base):
|
|
*
|
|
* Because we have an exclusive hugepage region which lies within the
|
|
* normal user address space, we have to take special measures to make
|
|
* non-huge mmap()s evade the hugepage reserved regions.
|
|
*/
|
|
unsigned long
|
|
arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
|
|
const unsigned long len, const unsigned long pgoff,
|
|
const unsigned long flags)
|
|
{
|
|
struct vm_area_struct *vma, *prev_vma;
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long base = mm->mmap_base, addr = addr0;
|
|
unsigned long largest_hole = mm->cached_hole_size;
|
|
int first_time = 1;
|
|
|
|
/* requested length too big for entire address space */
|
|
if (len > TASK_SIZE)
|
|
return -ENOMEM;
|
|
|
|
/* dont allow allocations above current base */
|
|
if (mm->free_area_cache > base)
|
|
mm->free_area_cache = base;
|
|
|
|
/* requesting a specific address */
|
|
if (addr) {
|
|
addr = PAGE_ALIGN(addr);
|
|
vma = find_vma(mm, addr);
|
|
if (TASK_SIZE - len >= addr &&
|
|
(!vma || addr + len <= vma->vm_start)
|
|
&& !is_hugepage_only_range(mm, addr,len))
|
|
return addr;
|
|
}
|
|
|
|
if (len <= largest_hole) {
|
|
largest_hole = 0;
|
|
mm->free_area_cache = base;
|
|
}
|
|
try_again:
|
|
/* make sure it can fit in the remaining address space */
|
|
if (mm->free_area_cache < len)
|
|
goto fail;
|
|
|
|
/* either no address requested or cant fit in requested address hole */
|
|
addr = (mm->free_area_cache - len) & PAGE_MASK;
|
|
do {
|
|
hugepage_recheck:
|
|
if (touches_hugepage_low_range(mm, addr, len)) {
|
|
addr = (addr & ((~0) << SID_SHIFT)) - len;
|
|
goto hugepage_recheck;
|
|
} else if (touches_hugepage_high_range(addr, len)) {
|
|
addr = TASK_HPAGE_BASE - len;
|
|
}
|
|
|
|
/*
|
|
* Lookup failure means no vma is above this address,
|
|
* i.e. return with success:
|
|
*/
|
|
if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
|
|
return addr;
|
|
|
|
/*
|
|
* new region fits between prev_vma->vm_end and
|
|
* vma->vm_start, use it:
|
|
*/
|
|
if (addr+len <= vma->vm_start &&
|
|
(!prev_vma || (addr >= prev_vma->vm_end))) {
|
|
/* remember the address as a hint for next time */
|
|
mm->cached_hole_size = largest_hole;
|
|
return (mm->free_area_cache = addr);
|
|
} else {
|
|
/* pull free_area_cache down to the first hole */
|
|
if (mm->free_area_cache == vma->vm_end) {
|
|
mm->free_area_cache = vma->vm_start;
|
|
mm->cached_hole_size = largest_hole;
|
|
}
|
|
}
|
|
|
|
/* remember the largest hole we saw so far */
|
|
if (addr + largest_hole < vma->vm_start)
|
|
largest_hole = vma->vm_start - addr;
|
|
|
|
/* try just below the current vma->vm_start */
|
|
addr = vma->vm_start-len;
|
|
} while (len <= vma->vm_start);
|
|
|
|
fail:
|
|
/*
|
|
* if hint left us with no space for the requested
|
|
* mapping then try again:
|
|
*/
|
|
if (first_time) {
|
|
mm->free_area_cache = base;
|
|
largest_hole = 0;
|
|
first_time = 0;
|
|
goto try_again;
|
|
}
|
|
/*
|
|
* A failed mmap() very likely causes application failure,
|
|
* so fall back to the bottom-up function here. This scenario
|
|
* can happen with large stack limits and large mmap()
|
|
* allocations.
|
|
*/
|
|
mm->free_area_cache = TASK_UNMAPPED_BASE;
|
|
mm->cached_hole_size = ~0UL;
|
|
addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
|
|
/*
|
|
* Restore the topdown base:
|
|
*/
|
|
mm->free_area_cache = base;
|
|
mm->cached_hole_size = ~0UL;
|
|
|
|
return addr;
|
|
}
|
|
|
|
static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
|
|
{
|
|
unsigned long addr = 0;
|
|
struct vm_area_struct *vma;
|
|
|
|
vma = find_vma(current->mm, addr);
|
|
while (addr + len <= 0x100000000UL) {
|
|
BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
|
|
|
|
if (! __within_hugepage_low_range(addr, len, segmask)) {
|
|
addr = ALIGN(addr+1, 1<<SID_SHIFT);
|
|
vma = find_vma(current->mm, addr);
|
|
continue;
|
|
}
|
|
|
|
if (!vma || (addr + len) <= vma->vm_start)
|
|
return addr;
|
|
addr = ALIGN(vma->vm_end, HPAGE_SIZE);
|
|
/* Depending on segmask this might not be a confirmed
|
|
* hugepage region, so the ALIGN could have skipped
|
|
* some VMAs */
|
|
vma = find_vma(current->mm, addr);
|
|
}
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static unsigned long htlb_get_high_area(unsigned long len)
|
|
{
|
|
unsigned long addr = TASK_HPAGE_BASE;
|
|
struct vm_area_struct *vma;
|
|
|
|
vma = find_vma(current->mm, addr);
|
|
for (vma = find_vma(current->mm, addr);
|
|
addr + len <= TASK_HPAGE_END;
|
|
vma = vma->vm_next) {
|
|
BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
|
|
BUG_ON(! within_hugepage_high_range(addr, len));
|
|
|
|
if (!vma || (addr + len) <= vma->vm_start)
|
|
return addr;
|
|
addr = ALIGN(vma->vm_end, HPAGE_SIZE);
|
|
/* Because we're in a hugepage region, this alignment
|
|
* should not skip us over any VMAs */
|
|
}
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
if (len & ~HPAGE_MASK)
|
|
return -EINVAL;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_16M_PAGE))
|
|
return -EINVAL;
|
|
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
int lastshift = 0;
|
|
u16 segmask, cursegs = current->mm->context.htlb_segs;
|
|
|
|
/* First see if we can do the mapping in the existing
|
|
* low hpage segments */
|
|
addr = htlb_get_low_area(len, cursegs);
|
|
if (addr != -ENOMEM)
|
|
return addr;
|
|
|
|
for (segmask = LOW_ESID_MASK(0x100000000UL-len, len);
|
|
! lastshift; segmask >>=1) {
|
|
if (segmask & 1)
|
|
lastshift = 1;
|
|
|
|
addr = htlb_get_low_area(len, cursegs | segmask);
|
|
if ((addr != -ENOMEM)
|
|
&& open_low_hpage_segs(current->mm, segmask) == 0)
|
|
return addr;
|
|
}
|
|
printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
|
|
" enough segments\n");
|
|
return -ENOMEM;
|
|
} else {
|
|
return htlb_get_high_area(len);
|
|
}
|
|
}
|
|
|
|
int hash_huge_page(struct mm_struct *mm, unsigned long access,
|
|
unsigned long ea, unsigned long vsid, int local)
|
|
{
|
|
pte_t *ptep;
|
|
unsigned long va, vpn;
|
|
pte_t old_pte, new_pte;
|
|
unsigned long rflags, prpn;
|
|
long slot;
|
|
int err = 1;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
|
|
ptep = huge_pte_offset(mm, ea);
|
|
|
|
/* Search the Linux page table for a match with va */
|
|
va = (vsid << 28) | (ea & 0x0fffffff);
|
|
vpn = va >> HPAGE_SHIFT;
|
|
|
|
/*
|
|
* If no pte found or not present, send the problem up to
|
|
* do_page_fault
|
|
*/
|
|
if (unlikely(!ptep || pte_none(*ptep)))
|
|
goto out;
|
|
|
|
/* BUG_ON(pte_bad(*ptep)); */
|
|
|
|
/*
|
|
* Check the user's access rights to the page. If access should be
|
|
* prevented then send the problem up to do_page_fault.
|
|
*/
|
|
if (unlikely(access & ~pte_val(*ptep)))
|
|
goto out;
|
|
/*
|
|
* At this point, we have a pte (old_pte) which can be used to build
|
|
* or update an HPTE. There are 2 cases:
|
|
*
|
|
* 1. There is a valid (present) pte with no associated HPTE (this is
|
|
* the most common case)
|
|
* 2. There is a valid (present) pte with an associated HPTE. The
|
|
* current values of the pp bits in the HPTE prevent access
|
|
* because we are doing software DIRTY bit management and the
|
|
* page is currently not DIRTY.
|
|
*/
|
|
|
|
|
|
old_pte = *ptep;
|
|
new_pte = old_pte;
|
|
|
|
rflags = 0x2 | (! (pte_val(new_pte) & _PAGE_RW));
|
|
/* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
|
|
rflags |= ((pte_val(new_pte) & _PAGE_EXEC) ? 0 : HW_NO_EXEC);
|
|
|
|
/* Check if pte already has an hpte (case 2) */
|
|
if (unlikely(pte_val(old_pte) & _PAGE_HASHPTE)) {
|
|
/* There MIGHT be an HPTE for this pte */
|
|
unsigned long hash, slot;
|
|
|
|
hash = hpt_hash(vpn, 1);
|
|
if (pte_val(old_pte) & _PAGE_SECONDARY)
|
|
hash = ~hash;
|
|
slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
|
|
slot += (pte_val(old_pte) & _PAGE_GROUP_IX) >> 12;
|
|
|
|
if (ppc_md.hpte_updatepp(slot, rflags, va, 1, local) == -1)
|
|
pte_val(old_pte) &= ~_PAGE_HPTEFLAGS;
|
|
}
|
|
|
|
if (likely(!(pte_val(old_pte) & _PAGE_HASHPTE))) {
|
|
unsigned long hash = hpt_hash(vpn, 1);
|
|
unsigned long hpte_group;
|
|
|
|
prpn = pte_pfn(old_pte);
|
|
|
|
repeat:
|
|
hpte_group = ((hash & htab_hash_mask) *
|
|
HPTES_PER_GROUP) & ~0x7UL;
|
|
|
|
/* Update the linux pte with the HPTE slot */
|
|
pte_val(new_pte) &= ~_PAGE_HPTEFLAGS;
|
|
pte_val(new_pte) |= _PAGE_HASHPTE;
|
|
|
|
/* Add in WIMG bits */
|
|
/* XXX We should store these in the pte */
|
|
rflags |= _PAGE_COHERENT;
|
|
|
|
slot = ppc_md.hpte_insert(hpte_group, va, prpn,
|
|
HPTE_V_LARGE, rflags);
|
|
|
|
/* Primary is full, try the secondary */
|
|
if (unlikely(slot == -1)) {
|
|
pte_val(new_pte) |= _PAGE_SECONDARY;
|
|
hpte_group = ((~hash & htab_hash_mask) *
|
|
HPTES_PER_GROUP) & ~0x7UL;
|
|
slot = ppc_md.hpte_insert(hpte_group, va, prpn,
|
|
HPTE_V_LARGE, rflags);
|
|
if (slot == -1) {
|
|
if (mftb() & 0x1)
|
|
hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;
|
|
|
|
ppc_md.hpte_remove(hpte_group);
|
|
goto repeat;
|
|
}
|
|
}
|
|
|
|
if (unlikely(slot == -2))
|
|
panic("hash_huge_page: pte_insert failed\n");
|
|
|
|
pte_val(new_pte) |= (slot<<12) & _PAGE_GROUP_IX;
|
|
|
|
/*
|
|
* No need to use ldarx/stdcx here because all who
|
|
* might be updating the pte will hold the
|
|
* page_table_lock
|
|
*/
|
|
*ptep = new_pte;
|
|
}
|
|
|
|
err = 0;
|
|
|
|
out:
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
return err;
|
|
}
|