linux/arch/arm64/kvm/pmu-emul.c
Marc Zyngier 9a0a75d3cc KVM: arm64: vgic: Make kvm_vgic_inject_irq() take a vcpu pointer
Passing a vcpu_id to kvm_vgic_inject_irq() is silly for two reasons:

- we often confuse vcpu_id and vcpu_idx
- we eventually have to convert it back to a vcpu
- we can't count

Instead, pass a vcpu pointer, which is unambiguous. A NULL vcpu
is also allowed for interrupts that are not private to a vcpu
(such as SPIs).

Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230927090911.3355209-2-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-09-30 18:15:43 +00:00

1075 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Linaro Ltd.
* Author: Shannon Zhao <shannon.zhao@linaro.org>
*/
#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/list.h>
#include <linux/perf_event.h>
#include <linux/perf/arm_pmu.h>
#include <linux/uaccess.h>
#include <asm/kvm_emulate.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_vgic.h>
#include <asm/arm_pmuv3.h>
#define PERF_ATTR_CFG1_COUNTER_64BIT BIT(0)
DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
static LIST_HEAD(arm_pmus);
static DEFINE_MUTEX(arm_pmus_lock);
static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
{
return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
}
static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
{
return &vcpu->arch.pmu.pmc[cnt_idx];
}
static u32 __kvm_pmu_event_mask(unsigned int pmuver)
{
switch (pmuver) {
case ID_AA64DFR0_EL1_PMUVer_IMP:
return GENMASK(9, 0);
case ID_AA64DFR0_EL1_PMUVer_V3P1:
case ID_AA64DFR0_EL1_PMUVer_V3P4:
case ID_AA64DFR0_EL1_PMUVer_V3P5:
case ID_AA64DFR0_EL1_PMUVer_V3P7:
return GENMASK(15, 0);
default: /* Shouldn't be here, just for sanity */
WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
return 0;
}
}
static u32 kvm_pmu_event_mask(struct kvm *kvm)
{
u64 dfr0 = IDREG(kvm, SYS_ID_AA64DFR0_EL1);
u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
return __kvm_pmu_event_mask(pmuver);
}
/**
* kvm_pmc_is_64bit - determine if counter is 64bit
* @pmc: counter context
*/
static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
{
return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
kvm_pmu_is_3p5(kvm_pmc_to_vcpu(pmc)));
}
static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
{
u64 val = __vcpu_sys_reg(kvm_pmc_to_vcpu(pmc), PMCR_EL0);
return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
(pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
}
static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
{
return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
!kvm_pmc_has_64bit_overflow(pmc));
}
static u32 counter_index_to_reg(u64 idx)
{
return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
}
static u32 counter_index_to_evtreg(u64 idx)
{
return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
}
static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
{
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
u64 counter, reg, enabled, running;
reg = counter_index_to_reg(pmc->idx);
counter = __vcpu_sys_reg(vcpu, reg);
/*
* The real counter value is equal to the value of counter register plus
* the value perf event counts.
*/
if (pmc->perf_event)
counter += perf_event_read_value(pmc->perf_event, &enabled,
&running);
if (!kvm_pmc_is_64bit(pmc))
counter = lower_32_bits(counter);
return counter;
}
/**
* kvm_pmu_get_counter_value - get PMU counter value
* @vcpu: The vcpu pointer
* @select_idx: The counter index
*/
u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
{
if (!kvm_vcpu_has_pmu(vcpu))
return 0;
return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
}
static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
{
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
u64 reg;
kvm_pmu_release_perf_event(pmc);
reg = counter_index_to_reg(pmc->idx);
if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
!force) {
/*
* Even with PMUv3p5, AArch32 cannot write to the top
* 32bit of the counters. The only possible course of
* action is to use PMCR.P, which will reset them to
* 0 (the only use of the 'force' parameter).
*/
val = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
val |= lower_32_bits(val);
}
__vcpu_sys_reg(vcpu, reg) = val;
/* Recreate the perf event to reflect the updated sample_period */
kvm_pmu_create_perf_event(pmc);
}
/**
* kvm_pmu_set_counter_value - set PMU counter value
* @vcpu: The vcpu pointer
* @select_idx: The counter index
* @val: The counter value
*/
void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
{
if (!kvm_vcpu_has_pmu(vcpu))
return;
kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
}
/**
* kvm_pmu_release_perf_event - remove the perf event
* @pmc: The PMU counter pointer
*/
static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
{
if (pmc->perf_event) {
perf_event_disable(pmc->perf_event);
perf_event_release_kernel(pmc->perf_event);
pmc->perf_event = NULL;
}
}
/**
* kvm_pmu_stop_counter - stop PMU counter
* @pmc: The PMU counter pointer
*
* If this counter has been configured to monitor some event, release it here.
*/
static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
{
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
u64 reg, val;
if (!pmc->perf_event)
return;
val = kvm_pmu_get_pmc_value(pmc);
reg = counter_index_to_reg(pmc->idx);
__vcpu_sys_reg(vcpu, reg) = val;
kvm_pmu_release_perf_event(pmc);
}
/**
* kvm_pmu_vcpu_init - assign pmu counter idx for cpu
* @vcpu: The vcpu pointer
*
*/
void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
{
int i;
struct kvm_pmu *pmu = &vcpu->arch.pmu;
for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
pmu->pmc[i].idx = i;
}
/**
* kvm_pmu_vcpu_reset - reset pmu state for cpu
* @vcpu: The vcpu pointer
*
*/
void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
{
unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
int i;
for_each_set_bit(i, &mask, 32)
kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i));
}
/**
* kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
* @vcpu: The vcpu pointer
*
*/
void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
{
int i;
for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
irq_work_sync(&vcpu->arch.pmu.overflow_work);
}
u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
{
u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
val &= ARMV8_PMU_PMCR_N_MASK;
if (val == 0)
return BIT(ARMV8_PMU_CYCLE_IDX);
else
return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
}
/**
* kvm_pmu_enable_counter_mask - enable selected PMU counters
* @vcpu: The vcpu pointer
* @val: the value guest writes to PMCNTENSET register
*
* Call perf_event_enable to start counting the perf event
*/
void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
{
int i;
if (!kvm_vcpu_has_pmu(vcpu))
return;
if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
return;
for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
struct kvm_pmc *pmc;
if (!(val & BIT(i)))
continue;
pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
if (!pmc->perf_event) {
kvm_pmu_create_perf_event(pmc);
} else {
perf_event_enable(pmc->perf_event);
if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
kvm_debug("fail to enable perf event\n");
}
}
}
/**
* kvm_pmu_disable_counter_mask - disable selected PMU counters
* @vcpu: The vcpu pointer
* @val: the value guest writes to PMCNTENCLR register
*
* Call perf_event_disable to stop counting the perf event
*/
void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
{
int i;
if (!kvm_vcpu_has_pmu(vcpu) || !val)
return;
for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
struct kvm_pmc *pmc;
if (!(val & BIT(i)))
continue;
pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
if (pmc->perf_event)
perf_event_disable(pmc->perf_event);
}
}
static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
{
u64 reg = 0;
if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
}
return reg;
}
static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
{
struct kvm_pmu *pmu = &vcpu->arch.pmu;
bool overflow;
if (!kvm_vcpu_has_pmu(vcpu))
return;
overflow = !!kvm_pmu_overflow_status(vcpu);
if (pmu->irq_level == overflow)
return;
pmu->irq_level = overflow;
if (likely(irqchip_in_kernel(vcpu->kvm))) {
int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
pmu->irq_num, overflow, pmu);
WARN_ON(ret);
}
}
bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
{
struct kvm_pmu *pmu = &vcpu->arch.pmu;
struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
if (likely(irqchip_in_kernel(vcpu->kvm)))
return false;
return pmu->irq_level != run_level;
}
/*
* Reflect the PMU overflow interrupt output level into the kvm_run structure
*/
void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
{
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
/* Populate the timer bitmap for user space */
regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
if (vcpu->arch.pmu.irq_level)
regs->device_irq_level |= KVM_ARM_DEV_PMU;
}
/**
* kvm_pmu_flush_hwstate - flush pmu state to cpu
* @vcpu: The vcpu pointer
*
* Check if the PMU has overflowed while we were running in the host, and inject
* an interrupt if that was the case.
*/
void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
{
kvm_pmu_update_state(vcpu);
}
/**
* kvm_pmu_sync_hwstate - sync pmu state from cpu
* @vcpu: The vcpu pointer
*
* Check if the PMU has overflowed while we were running in the guest, and
* inject an interrupt if that was the case.
*/
void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
{
kvm_pmu_update_state(vcpu);
}
/**
* When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
* to the event.
* This is why we need a callback to do it once outside of the NMI context.
*/
static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
{
struct kvm_vcpu *vcpu;
vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
kvm_vcpu_kick(vcpu);
}
/*
* Perform an increment on any of the counters described in @mask,
* generating the overflow if required, and propagate it as a chained
* event if possible.
*/
static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
unsigned long mask, u32 event)
{
int i;
if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E))
return;
/* Weed out disabled counters */
mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
u64 type, reg;
/* Filter on event type */
type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
type &= kvm_pmu_event_mask(vcpu->kvm);
if (type != event)
continue;
/* Increment this counter */
reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
if (!kvm_pmc_is_64bit(pmc))
reg = lower_32_bits(reg);
__vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg;
/* No overflow? move on */
if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
continue;
/* Mark overflow */
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
if (kvm_pmu_counter_can_chain(pmc))
kvm_pmu_counter_increment(vcpu, BIT(i + 1),
ARMV8_PMUV3_PERFCTR_CHAIN);
}
}
/* Compute the sample period for a given counter value */
static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
{
u64 val;
if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
val = (-counter) & GENMASK(63, 0);
else
val = (-counter) & GENMASK(31, 0);
return val;
}
/**
* When the perf event overflows, set the overflow status and inform the vcpu.
*/
static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
struct perf_sample_data *data,
struct pt_regs *regs)
{
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
int idx = pmc->idx;
u64 period;
cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
/*
* Reset the sample period to the architectural limit,
* i.e. the point where the counter overflows.
*/
period = compute_period(pmc, local64_read(&perf_event->count));
local64_set(&perf_event->hw.period_left, 0);
perf_event->attr.sample_period = period;
perf_event->hw.sample_period = period;
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
if (kvm_pmu_counter_can_chain(pmc))
kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
ARMV8_PMUV3_PERFCTR_CHAIN);
if (kvm_pmu_overflow_status(vcpu)) {
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
if (!in_nmi())
kvm_vcpu_kick(vcpu);
else
irq_work_queue(&vcpu->arch.pmu.overflow_work);
}
cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
}
/**
* kvm_pmu_software_increment - do software increment
* @vcpu: The vcpu pointer
* @val: the value guest writes to PMSWINC register
*/
void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
{
kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
}
/**
* kvm_pmu_handle_pmcr - handle PMCR register
* @vcpu: The vcpu pointer
* @val: the value guest writes to PMCR register
*/
void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
{
int i;
if (!kvm_vcpu_has_pmu(vcpu))
return;
/* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
if (!kvm_pmu_is_3p5(vcpu))
val &= ~ARMV8_PMU_PMCR_LP;
/* The reset bits don't indicate any state, and shouldn't be saved. */
__vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P);
if (val & ARMV8_PMU_PMCR_E) {
kvm_pmu_enable_counter_mask(vcpu,
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
} else {
kvm_pmu_disable_counter_mask(vcpu,
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
}
if (val & ARMV8_PMU_PMCR_C)
kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
if (val & ARMV8_PMU_PMCR_P) {
unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
for_each_set_bit(i, &mask, 32)
kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
}
kvm_vcpu_pmu_restore_guest(vcpu);
}
static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
{
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
(__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx));
}
/**
* kvm_pmu_create_perf_event - create a perf event for a counter
* @pmc: Counter context
*/
static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
{
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
struct perf_event *event;
struct perf_event_attr attr;
u64 eventsel, reg, data;
reg = counter_index_to_evtreg(pmc->idx);
data = __vcpu_sys_reg(vcpu, reg);
kvm_pmu_stop_counter(pmc);
if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
else
eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
/*
* Neither SW increment nor chained events need to be backed
* by a perf event.
*/
if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
return;
/*
* If we have a filter in place and that the event isn't allowed, do
* not install a perf event either.
*/
if (vcpu->kvm->arch.pmu_filter &&
!test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
return;
memset(&attr, 0, sizeof(struct perf_event_attr));
attr.type = arm_pmu->pmu.type;
attr.size = sizeof(attr);
attr.pinned = 1;
attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
attr.exclude_hv = 1; /* Don't count EL2 events */
attr.exclude_host = 1; /* Don't count host events */
attr.config = eventsel;
/*
* If counting with a 64bit counter, advertise it to the perf
* code, carefully dealing with the initial sample period
* which also depends on the overflow.
*/
if (kvm_pmc_is_64bit(pmc))
attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
event = perf_event_create_kernel_counter(&attr, -1, current,
kvm_pmu_perf_overflow, pmc);
if (IS_ERR(event)) {
pr_err_once("kvm: pmu event creation failed %ld\n",
PTR_ERR(event));
return;
}
pmc->perf_event = event;
}
/**
* kvm_pmu_set_counter_event_type - set selected counter to monitor some event
* @vcpu: The vcpu pointer
* @data: The data guest writes to PMXEVTYPER_EL0
* @select_idx: The number of selected counter
*
* When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
* event with given hardware event number. Here we call perf_event API to
* emulate this action and create a kernel perf event for it.
*/
void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
u64 select_idx)
{
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
u64 reg, mask;
if (!kvm_vcpu_has_pmu(vcpu))
return;
mask = ARMV8_PMU_EVTYPE_MASK;
mask &= ~ARMV8_PMU_EVTYPE_EVENT;
mask |= kvm_pmu_event_mask(vcpu->kvm);
reg = counter_index_to_evtreg(pmc->idx);
__vcpu_sys_reg(vcpu, reg) = data & mask;
kvm_pmu_create_perf_event(pmc);
}
void kvm_host_pmu_init(struct arm_pmu *pmu)
{
struct arm_pmu_entry *entry;
/*
* Check the sanitised PMU version for the system, as KVM does not
* support implementations where PMUv3 exists on a subset of CPUs.
*/
if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
return;
mutex_lock(&arm_pmus_lock);
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
goto out_unlock;
entry->arm_pmu = pmu;
list_add_tail(&entry->entry, &arm_pmus);
if (list_is_singular(&arm_pmus))
static_branch_enable(&kvm_arm_pmu_available);
out_unlock:
mutex_unlock(&arm_pmus_lock);
}
static struct arm_pmu *kvm_pmu_probe_armpmu(void)
{
struct arm_pmu *tmp, *pmu = NULL;
struct arm_pmu_entry *entry;
int cpu;
mutex_lock(&arm_pmus_lock);
/*
* It is safe to use a stale cpu to iterate the list of PMUs so long as
* the same value is used for the entirety of the loop. Given this, and
* the fact that no percpu data is used for the lookup there is no need
* to disable preemption.
*
* It is still necessary to get a valid cpu, though, to probe for the
* default PMU instance as userspace is not required to specify a PMU
* type. In order to uphold the preexisting behavior KVM selects the
* PMU instance for the core where the first call to the
* KVM_ARM_VCPU_PMU_V3_CTRL attribute group occurs. A dependent use case
* would be a user with disdain of all things big.LITTLE that affines
* the VMM to a particular cluster of cores.
*
* In any case, userspace should just do the sane thing and use the UAPI
* to select a PMU type directly. But, be wary of the baggage being
* carried here.
*/
cpu = raw_smp_processor_id();
list_for_each_entry(entry, &arm_pmus, entry) {
tmp = entry->arm_pmu;
if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) {
pmu = tmp;
break;
}
}
mutex_unlock(&arm_pmus_lock);
return pmu;
}
u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
{
unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
u64 val, mask = 0;
int base, i, nr_events;
if (!kvm_vcpu_has_pmu(vcpu))
return 0;
if (!pmceid1) {
val = read_sysreg(pmceid0_el0);
/* always support CHAIN */
val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
base = 0;
} else {
val = read_sysreg(pmceid1_el0);
/*
* Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled
* as RAZ
*/
val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
base = 32;
}
if (!bmap)
return val;
nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
for (i = 0; i < 32; i += 8) {
u64 byte;
byte = bitmap_get_value8(bmap, base + i);
mask |= byte << i;
if (nr_events >= (0x4000 + base + 32)) {
byte = bitmap_get_value8(bmap, 0x4000 + base + i);
mask |= byte << (32 + i);
}
}
return val & mask;
}
int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
{
if (!kvm_vcpu_has_pmu(vcpu))
return 0;
if (!vcpu->arch.pmu.created)
return -EINVAL;
/*
* A valid interrupt configuration for the PMU is either to have a
* properly configured interrupt number and using an in-kernel
* irqchip, or to not have an in-kernel GIC and not set an IRQ.
*/
if (irqchip_in_kernel(vcpu->kvm)) {
int irq = vcpu->arch.pmu.irq_num;
/*
* If we are using an in-kernel vgic, at this point we know
* the vgic will be initialized, so we can check the PMU irq
* number against the dimensions of the vgic and make sure
* it's valid.
*/
if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
return -EINVAL;
} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
return -EINVAL;
}
/* One-off reload of the PMU on first run */
kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
return 0;
}
static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
{
if (irqchip_in_kernel(vcpu->kvm)) {
int ret;
/*
* If using the PMU with an in-kernel virtual GIC
* implementation, we require the GIC to be already
* initialized when initializing the PMU.
*/
if (!vgic_initialized(vcpu->kvm))
return -ENODEV;
if (!kvm_arm_pmu_irq_initialized(vcpu))
return -ENXIO;
ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
&vcpu->arch.pmu);
if (ret)
return ret;
}
init_irq_work(&vcpu->arch.pmu.overflow_work,
kvm_pmu_perf_overflow_notify_vcpu);
vcpu->arch.pmu.created = true;
return 0;
}
/*
* For one VM the interrupt type must be same for each vcpu.
* As a PPI, the interrupt number is the same for all vcpus,
* while as an SPI it must be a separate number per vcpu.
*/
static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
{
unsigned long i;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (!kvm_arm_pmu_irq_initialized(vcpu))
continue;
if (irq_is_ppi(irq)) {
if (vcpu->arch.pmu.irq_num != irq)
return false;
} else {
if (vcpu->arch.pmu.irq_num == irq)
return false;
}
}
return true;
}
static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
{
struct kvm *kvm = vcpu->kvm;
struct arm_pmu_entry *entry;
struct arm_pmu *arm_pmu;
int ret = -ENXIO;
lockdep_assert_held(&kvm->arch.config_lock);
mutex_lock(&arm_pmus_lock);
list_for_each_entry(entry, &arm_pmus, entry) {
arm_pmu = entry->arm_pmu;
if (arm_pmu->pmu.type == pmu_id) {
if (kvm_vm_has_ran_once(kvm) ||
(kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
ret = -EBUSY;
break;
}
kvm->arch.arm_pmu = arm_pmu;
cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
ret = 0;
break;
}
}
mutex_unlock(&arm_pmus_lock);
return ret;
}
int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
struct kvm *kvm = vcpu->kvm;
lockdep_assert_held(&kvm->arch.config_lock);
if (!kvm_vcpu_has_pmu(vcpu))
return -ENODEV;
if (vcpu->arch.pmu.created)
return -EBUSY;
if (!kvm->arch.arm_pmu) {
/*
* No PMU set, get the default one.
*
* The observant among you will notice that the supported_cpus
* mask does not get updated for the default PMU even though it
* is quite possible the selected instance supports only a
* subset of cores in the system. This is intentional, and
* upholds the preexisting behavior on heterogeneous systems
* where vCPUs can be scheduled on any core but the guest
* counters could stop working.
*/
kvm->arch.arm_pmu = kvm_pmu_probe_armpmu();
if (!kvm->arch.arm_pmu)
return -ENODEV;
}
switch (attr->attr) {
case KVM_ARM_VCPU_PMU_V3_IRQ: {
int __user *uaddr = (int __user *)(long)attr->addr;
int irq;
if (!irqchip_in_kernel(kvm))
return -EINVAL;
if (get_user(irq, uaddr))
return -EFAULT;
/* The PMU overflow interrupt can be a PPI or a valid SPI. */
if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
return -EINVAL;
if (!pmu_irq_is_valid(kvm, irq))
return -EINVAL;
if (kvm_arm_pmu_irq_initialized(vcpu))
return -EBUSY;
kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
vcpu->arch.pmu.irq_num = irq;
return 0;
}
case KVM_ARM_VCPU_PMU_V3_FILTER: {
u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
struct kvm_pmu_event_filter __user *uaddr;
struct kvm_pmu_event_filter filter;
int nr_events;
/*
* Allow userspace to specify an event filter for the entire
* event range supported by PMUVer of the hardware, rather
* than the guest's PMUVer for KVM backward compatibility.
*/
nr_events = __kvm_pmu_event_mask(pmuver) + 1;
uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
if (copy_from_user(&filter, uaddr, sizeof(filter)))
return -EFAULT;
if (((u32)filter.base_event + filter.nevents) > nr_events ||
(filter.action != KVM_PMU_EVENT_ALLOW &&
filter.action != KVM_PMU_EVENT_DENY))
return -EINVAL;
if (kvm_vm_has_ran_once(kvm))
return -EBUSY;
if (!kvm->arch.pmu_filter) {
kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
if (!kvm->arch.pmu_filter)
return -ENOMEM;
/*
* The default depends on the first applied filter.
* If it allows events, the default is to deny.
* Conversely, if the first filter denies a set of
* events, the default is to allow.
*/
if (filter.action == KVM_PMU_EVENT_ALLOW)
bitmap_zero(kvm->arch.pmu_filter, nr_events);
else
bitmap_fill(kvm->arch.pmu_filter, nr_events);
}
if (filter.action == KVM_PMU_EVENT_ALLOW)
bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
else
bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
return 0;
}
case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
int __user *uaddr = (int __user *)(long)attr->addr;
int pmu_id;
if (get_user(pmu_id, uaddr))
return -EFAULT;
return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
}
case KVM_ARM_VCPU_PMU_V3_INIT:
return kvm_arm_pmu_v3_init(vcpu);
}
return -ENXIO;
}
int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
switch (attr->attr) {
case KVM_ARM_VCPU_PMU_V3_IRQ: {
int __user *uaddr = (int __user *)(long)attr->addr;
int irq;
if (!irqchip_in_kernel(vcpu->kvm))
return -EINVAL;
if (!kvm_vcpu_has_pmu(vcpu))
return -ENODEV;
if (!kvm_arm_pmu_irq_initialized(vcpu))
return -ENXIO;
irq = vcpu->arch.pmu.irq_num;
return put_user(irq, uaddr);
}
}
return -ENXIO;
}
int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
switch (attr->attr) {
case KVM_ARM_VCPU_PMU_V3_IRQ:
case KVM_ARM_VCPU_PMU_V3_INIT:
case KVM_ARM_VCPU_PMU_V3_FILTER:
case KVM_ARM_VCPU_PMU_V3_SET_PMU:
if (kvm_vcpu_has_pmu(vcpu))
return 0;
}
return -ENXIO;
}
u8 kvm_arm_pmu_get_pmuver_limit(void)
{
u64 tmp;
tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
tmp = cpuid_feature_cap_perfmon_field(tmp,
ID_AA64DFR0_EL1_PMUVer_SHIFT,
ID_AA64DFR0_EL1_PMUVer_V3P5);
return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp);
}