mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-25 21:24:08 +08:00
ac39cf8cb8
FILE_MAPPED per memcg of migrated file cache is not properly updated, because our hook in page_add_file_rmap() can't know to which memcg FILE_MAPPED should be counted. Basically, this patch is for fixing the bug but includes some big changes to fix up other messes. Now, at migrating mapped file, events happen in following sequence. 1. allocate a new page. 2. get memcg of an old page. 3. charge ageinst a new page before migration. But at this point, no changes to new page's page_cgroup, no commit for the charge. (IOW, PCG_USED bit is not set.) 4. page migration replaces radix-tree, old-page and new-page. 5. page migration remaps the new page if the old page was mapped. 6. Here, the new page is unlocked. 7. memcg commits the charge for newpage, Mark the new page's page_cgroup as PCG_USED. Because "commit" happens after page-remap, we can count FILE_MAPPED at "5", because we should avoid to trust page_cgroup->mem_cgroup. if PCG_USED bit is unset. (Note: memcg's LRU removal code does that but LRU-isolation logic is used for helping it. When we overwrite page_cgroup->mem_cgroup, page_cgroup is not on LRU or page_cgroup->mem_cgroup is NULL.) We can lose file_mapped accounting information at 5 because FILE_MAPPED is updated only when mapcount changes 0->1. So we should catch it. BTW, historically, above implemntation comes from migration-failure of anonymous page. Because we charge both of old page and new page with mapcount=0, we can't catch - the page is really freed before remap. - migration fails but it's freed before remap or .....corner cases. New migration sequence with memcg is: 1. allocate a new page. 2. mark PageCgroupMigration to the old page. 3. charge against a new page onto the old page's memcg. (here, new page's pc is marked as PageCgroupUsed.) 4. page migration replaces radix-tree, page table, etc... 5. At remapping, new page's page_cgroup is now makrked as "USED" We can catch 0->1 event and FILE_MAPPED will be properly updated. And we can catch SWAPOUT event after unlock this and freeing this page by unmap() can be caught. 7. Clear PageCgroupMigration of the old page. So, FILE_MAPPED will be correctly updated. Then, for what MIGRATION flag is ? Without it, at migration failure, we may have to charge old page again because it may be fully unmapped. "charge" means that we have to dive into memory reclaim or something complated. So, it's better to avoid charge it again. Before this patch, __commit_charge() was working for both of the old/new page and fixed up all. But this technique has some racy condtion around FILE_MAPPED and SWAPOUT etc... Now, the kernel use MIGRATION flag and don't uncharge old page until the end of migration. I hope this change will make memcg's page migration much simpler. This page migration has caused several troubles. Worth to add a flag for simplification. Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1159 lines
27 KiB
C
1159 lines
27 KiB
C
/*
|
|
* Memory Migration functionality - linux/mm/migration.c
|
|
*
|
|
* Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
|
|
*
|
|
* Page migration was first developed in the context of the memory hotplug
|
|
* project. The main authors of the migration code are:
|
|
*
|
|
* IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
|
|
* Hirokazu Takahashi <taka@valinux.co.jp>
|
|
* Dave Hansen <haveblue@us.ibm.com>
|
|
* Christoph Lameter
|
|
*/
|
|
|
|
#include <linux/migrate.h>
|
|
#include <linux/module.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/ksm.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/security.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/gfp.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
|
|
|
|
/*
|
|
* migrate_prep() needs to be called before we start compiling a list of pages
|
|
* to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
|
|
* undesirable, use migrate_prep_local()
|
|
*/
|
|
int migrate_prep(void)
|
|
{
|
|
/*
|
|
* Clear the LRU lists so pages can be isolated.
|
|
* Note that pages may be moved off the LRU after we have
|
|
* drained them. Those pages will fail to migrate like other
|
|
* pages that may be busy.
|
|
*/
|
|
lru_add_drain_all();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
|
|
int migrate_prep_local(void)
|
|
{
|
|
lru_add_drain();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add isolated pages on the list back to the LRU under page lock
|
|
* to avoid leaking evictable pages back onto unevictable list.
|
|
*/
|
|
void putback_lru_pages(struct list_head *l)
|
|
{
|
|
struct page *page;
|
|
struct page *page2;
|
|
|
|
list_for_each_entry_safe(page, page2, l, lru) {
|
|
list_del(&page->lru);
|
|
dec_zone_page_state(page, NR_ISOLATED_ANON +
|
|
page_is_file_cache(page));
|
|
putback_lru_page(page);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restore a potential migration pte to a working pte entry
|
|
*/
|
|
static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
|
|
unsigned long addr, void *old)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
swp_entry_t entry;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *ptep, pte;
|
|
spinlock_t *ptl;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
if (!pgd_present(*pgd))
|
|
goto out;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
if (!pud_present(*pud))
|
|
goto out;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (!pmd_present(*pmd))
|
|
goto out;
|
|
|
|
ptep = pte_offset_map(pmd, addr);
|
|
|
|
if (!is_swap_pte(*ptep)) {
|
|
pte_unmap(ptep);
|
|
goto out;
|
|
}
|
|
|
|
ptl = pte_lockptr(mm, pmd);
|
|
spin_lock(ptl);
|
|
pte = *ptep;
|
|
if (!is_swap_pte(pte))
|
|
goto unlock;
|
|
|
|
entry = pte_to_swp_entry(pte);
|
|
|
|
if (!is_migration_entry(entry) ||
|
|
migration_entry_to_page(entry) != old)
|
|
goto unlock;
|
|
|
|
get_page(new);
|
|
pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
|
|
if (is_write_migration_entry(entry))
|
|
pte = pte_mkwrite(pte);
|
|
flush_cache_page(vma, addr, pte_pfn(pte));
|
|
set_pte_at(mm, addr, ptep, pte);
|
|
|
|
if (PageAnon(new))
|
|
page_add_anon_rmap(new, vma, addr);
|
|
else
|
|
page_add_file_rmap(new);
|
|
|
|
/* No need to invalidate - it was non-present before */
|
|
update_mmu_cache(vma, addr, ptep);
|
|
unlock:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
out:
|
|
return SWAP_AGAIN;
|
|
}
|
|
|
|
/*
|
|
* Get rid of all migration entries and replace them by
|
|
* references to the indicated page.
|
|
*/
|
|
static void remove_migration_ptes(struct page *old, struct page *new)
|
|
{
|
|
rmap_walk(new, remove_migration_pte, old);
|
|
}
|
|
|
|
/*
|
|
* Something used the pte of a page under migration. We need to
|
|
* get to the page and wait until migration is finished.
|
|
* When we return from this function the fault will be retried.
|
|
*
|
|
* This function is called from do_swap_page().
|
|
*/
|
|
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
|
|
unsigned long address)
|
|
{
|
|
pte_t *ptep, pte;
|
|
spinlock_t *ptl;
|
|
swp_entry_t entry;
|
|
struct page *page;
|
|
|
|
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
pte = *ptep;
|
|
if (!is_swap_pte(pte))
|
|
goto out;
|
|
|
|
entry = pte_to_swp_entry(pte);
|
|
if (!is_migration_entry(entry))
|
|
goto out;
|
|
|
|
page = migration_entry_to_page(entry);
|
|
|
|
/*
|
|
* Once radix-tree replacement of page migration started, page_count
|
|
* *must* be zero. And, we don't want to call wait_on_page_locked()
|
|
* against a page without get_page().
|
|
* So, we use get_page_unless_zero(), here. Even failed, page fault
|
|
* will occur again.
|
|
*/
|
|
if (!get_page_unless_zero(page))
|
|
goto out;
|
|
pte_unmap_unlock(ptep, ptl);
|
|
wait_on_page_locked(page);
|
|
put_page(page);
|
|
return;
|
|
out:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
}
|
|
|
|
/*
|
|
* Replace the page in the mapping.
|
|
*
|
|
* The number of remaining references must be:
|
|
* 1 for anonymous pages without a mapping
|
|
* 2 for pages with a mapping
|
|
* 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
|
|
*/
|
|
static int migrate_page_move_mapping(struct address_space *mapping,
|
|
struct page *newpage, struct page *page)
|
|
{
|
|
int expected_count;
|
|
void **pslot;
|
|
|
|
if (!mapping) {
|
|
/* Anonymous page without mapping */
|
|
if (page_count(page) != 1)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
|
|
spin_lock_irq(&mapping->tree_lock);
|
|
|
|
pslot = radix_tree_lookup_slot(&mapping->page_tree,
|
|
page_index(page));
|
|
|
|
expected_count = 2 + page_has_private(page);
|
|
if (page_count(page) != expected_count ||
|
|
(struct page *)radix_tree_deref_slot(pslot) != page) {
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (!page_freeze_refs(page, expected_count)) {
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Now we know that no one else is looking at the page.
|
|
*/
|
|
get_page(newpage); /* add cache reference */
|
|
if (PageSwapCache(page)) {
|
|
SetPageSwapCache(newpage);
|
|
set_page_private(newpage, page_private(page));
|
|
}
|
|
|
|
radix_tree_replace_slot(pslot, newpage);
|
|
|
|
page_unfreeze_refs(page, expected_count);
|
|
/*
|
|
* Drop cache reference from old page.
|
|
* We know this isn't the last reference.
|
|
*/
|
|
__put_page(page);
|
|
|
|
/*
|
|
* If moved to a different zone then also account
|
|
* the page for that zone. Other VM counters will be
|
|
* taken care of when we establish references to the
|
|
* new page and drop references to the old page.
|
|
*
|
|
* Note that anonymous pages are accounted for
|
|
* via NR_FILE_PAGES and NR_ANON_PAGES if they
|
|
* are mapped to swap space.
|
|
*/
|
|
__dec_zone_page_state(page, NR_FILE_PAGES);
|
|
__inc_zone_page_state(newpage, NR_FILE_PAGES);
|
|
if (PageSwapBacked(page)) {
|
|
__dec_zone_page_state(page, NR_SHMEM);
|
|
__inc_zone_page_state(newpage, NR_SHMEM);
|
|
}
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy the page to its new location
|
|
*/
|
|
static void migrate_page_copy(struct page *newpage, struct page *page)
|
|
{
|
|
copy_highpage(newpage, page);
|
|
|
|
if (PageError(page))
|
|
SetPageError(newpage);
|
|
if (PageReferenced(page))
|
|
SetPageReferenced(newpage);
|
|
if (PageUptodate(page))
|
|
SetPageUptodate(newpage);
|
|
if (TestClearPageActive(page)) {
|
|
VM_BUG_ON(PageUnevictable(page));
|
|
SetPageActive(newpage);
|
|
} else if (TestClearPageUnevictable(page))
|
|
SetPageUnevictable(newpage);
|
|
if (PageChecked(page))
|
|
SetPageChecked(newpage);
|
|
if (PageMappedToDisk(page))
|
|
SetPageMappedToDisk(newpage);
|
|
|
|
if (PageDirty(page)) {
|
|
clear_page_dirty_for_io(page);
|
|
/*
|
|
* Want to mark the page and the radix tree as dirty, and
|
|
* redo the accounting that clear_page_dirty_for_io undid,
|
|
* but we can't use set_page_dirty because that function
|
|
* is actually a signal that all of the page has become dirty.
|
|
* Wheras only part of our page may be dirty.
|
|
*/
|
|
__set_page_dirty_nobuffers(newpage);
|
|
}
|
|
|
|
mlock_migrate_page(newpage, page);
|
|
ksm_migrate_page(newpage, page);
|
|
|
|
ClearPageSwapCache(page);
|
|
ClearPagePrivate(page);
|
|
set_page_private(page, 0);
|
|
page->mapping = NULL;
|
|
|
|
/*
|
|
* If any waiters have accumulated on the new page then
|
|
* wake them up.
|
|
*/
|
|
if (PageWriteback(newpage))
|
|
end_page_writeback(newpage);
|
|
}
|
|
|
|
/************************************************************
|
|
* Migration functions
|
|
***********************************************************/
|
|
|
|
/* Always fail migration. Used for mappings that are not movable */
|
|
int fail_migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page)
|
|
{
|
|
return -EIO;
|
|
}
|
|
EXPORT_SYMBOL(fail_migrate_page);
|
|
|
|
/*
|
|
* Common logic to directly migrate a single page suitable for
|
|
* pages that do not use PagePrivate/PagePrivate2.
|
|
*
|
|
* Pages are locked upon entry and exit.
|
|
*/
|
|
int migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page)
|
|
{
|
|
int rc;
|
|
|
|
BUG_ON(PageWriteback(page)); /* Writeback must be complete */
|
|
|
|
rc = migrate_page_move_mapping(mapping, newpage, page);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
migrate_page_copy(newpage, page);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(migrate_page);
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
/*
|
|
* Migration function for pages with buffers. This function can only be used
|
|
* if the underlying filesystem guarantees that no other references to "page"
|
|
* exist.
|
|
*/
|
|
int buffer_migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page)
|
|
{
|
|
struct buffer_head *bh, *head;
|
|
int rc;
|
|
|
|
if (!page_has_buffers(page))
|
|
return migrate_page(mapping, newpage, page);
|
|
|
|
head = page_buffers(page);
|
|
|
|
rc = migrate_page_move_mapping(mapping, newpage, page);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
bh = head;
|
|
do {
|
|
get_bh(bh);
|
|
lock_buffer(bh);
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
ClearPagePrivate(page);
|
|
set_page_private(newpage, page_private(page));
|
|
set_page_private(page, 0);
|
|
put_page(page);
|
|
get_page(newpage);
|
|
|
|
bh = head;
|
|
do {
|
|
set_bh_page(bh, newpage, bh_offset(bh));
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
SetPagePrivate(newpage);
|
|
|
|
migrate_page_copy(newpage, page);
|
|
|
|
bh = head;
|
|
do {
|
|
unlock_buffer(bh);
|
|
put_bh(bh);
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(buffer_migrate_page);
|
|
#endif
|
|
|
|
/*
|
|
* Writeback a page to clean the dirty state
|
|
*/
|
|
static int writeout(struct address_space *mapping, struct page *page)
|
|
{
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_NONE,
|
|
.nr_to_write = 1,
|
|
.range_start = 0,
|
|
.range_end = LLONG_MAX,
|
|
.nonblocking = 1,
|
|
.for_reclaim = 1
|
|
};
|
|
int rc;
|
|
|
|
if (!mapping->a_ops->writepage)
|
|
/* No write method for the address space */
|
|
return -EINVAL;
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
/* Someone else already triggered a write */
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* A dirty page may imply that the underlying filesystem has
|
|
* the page on some queue. So the page must be clean for
|
|
* migration. Writeout may mean we loose the lock and the
|
|
* page state is no longer what we checked for earlier.
|
|
* At this point we know that the migration attempt cannot
|
|
* be successful.
|
|
*/
|
|
remove_migration_ptes(page, page);
|
|
|
|
rc = mapping->a_ops->writepage(page, &wbc);
|
|
|
|
if (rc != AOP_WRITEPAGE_ACTIVATE)
|
|
/* unlocked. Relock */
|
|
lock_page(page);
|
|
|
|
return (rc < 0) ? -EIO : -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Default handling if a filesystem does not provide a migration function.
|
|
*/
|
|
static int fallback_migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page)
|
|
{
|
|
if (PageDirty(page))
|
|
return writeout(mapping, page);
|
|
|
|
/*
|
|
* Buffers may be managed in a filesystem specific way.
|
|
* We must have no buffers or drop them.
|
|
*/
|
|
if (page_has_private(page) &&
|
|
!try_to_release_page(page, GFP_KERNEL))
|
|
return -EAGAIN;
|
|
|
|
return migrate_page(mapping, newpage, page);
|
|
}
|
|
|
|
/*
|
|
* Move a page to a newly allocated page
|
|
* The page is locked and all ptes have been successfully removed.
|
|
*
|
|
* The new page will have replaced the old page if this function
|
|
* is successful.
|
|
*
|
|
* Return value:
|
|
* < 0 - error code
|
|
* == 0 - success
|
|
*/
|
|
static int move_to_new_page(struct page *newpage, struct page *page,
|
|
int remap_swapcache)
|
|
{
|
|
struct address_space *mapping;
|
|
int rc;
|
|
|
|
/*
|
|
* Block others from accessing the page when we get around to
|
|
* establishing additional references. We are the only one
|
|
* holding a reference to the new page at this point.
|
|
*/
|
|
if (!trylock_page(newpage))
|
|
BUG();
|
|
|
|
/* Prepare mapping for the new page.*/
|
|
newpage->index = page->index;
|
|
newpage->mapping = page->mapping;
|
|
if (PageSwapBacked(page))
|
|
SetPageSwapBacked(newpage);
|
|
|
|
mapping = page_mapping(page);
|
|
if (!mapping)
|
|
rc = migrate_page(mapping, newpage, page);
|
|
else if (mapping->a_ops->migratepage)
|
|
/*
|
|
* Most pages have a mapping and most filesystems
|
|
* should provide a migration function. Anonymous
|
|
* pages are part of swap space which also has its
|
|
* own migration function. This is the most common
|
|
* path for page migration.
|
|
*/
|
|
rc = mapping->a_ops->migratepage(mapping,
|
|
newpage, page);
|
|
else
|
|
rc = fallback_migrate_page(mapping, newpage, page);
|
|
|
|
if (rc) {
|
|
newpage->mapping = NULL;
|
|
} else {
|
|
if (remap_swapcache)
|
|
remove_migration_ptes(page, newpage);
|
|
}
|
|
|
|
unlock_page(newpage);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Obtain the lock on page, remove all ptes and migrate the page
|
|
* to the newly allocated page in newpage.
|
|
*/
|
|
static int unmap_and_move(new_page_t get_new_page, unsigned long private,
|
|
struct page *page, int force, int offlining)
|
|
{
|
|
int rc = 0;
|
|
int *result = NULL;
|
|
struct page *newpage = get_new_page(page, private, &result);
|
|
int remap_swapcache = 1;
|
|
int rcu_locked = 0;
|
|
int charge = 0;
|
|
struct mem_cgroup *mem = NULL;
|
|
struct anon_vma *anon_vma = NULL;
|
|
|
|
if (!newpage)
|
|
return -ENOMEM;
|
|
|
|
if (page_count(page) == 1) {
|
|
/* page was freed from under us. So we are done. */
|
|
goto move_newpage;
|
|
}
|
|
|
|
/* prepare cgroup just returns 0 or -ENOMEM */
|
|
rc = -EAGAIN;
|
|
|
|
if (!trylock_page(page)) {
|
|
if (!force)
|
|
goto move_newpage;
|
|
lock_page(page);
|
|
}
|
|
|
|
/*
|
|
* Only memory hotplug's offline_pages() caller has locked out KSM,
|
|
* and can safely migrate a KSM page. The other cases have skipped
|
|
* PageKsm along with PageReserved - but it is only now when we have
|
|
* the page lock that we can be certain it will not go KSM beneath us
|
|
* (KSM will not upgrade a page from PageAnon to PageKsm when it sees
|
|
* its pagecount raised, but only here do we take the page lock which
|
|
* serializes that).
|
|
*/
|
|
if (PageKsm(page) && !offlining) {
|
|
rc = -EBUSY;
|
|
goto unlock;
|
|
}
|
|
|
|
/* charge against new page */
|
|
charge = mem_cgroup_prepare_migration(page, newpage, &mem);
|
|
if (charge == -ENOMEM) {
|
|
rc = -ENOMEM;
|
|
goto unlock;
|
|
}
|
|
BUG_ON(charge);
|
|
|
|
if (PageWriteback(page)) {
|
|
if (!force)
|
|
goto uncharge;
|
|
wait_on_page_writeback(page);
|
|
}
|
|
/*
|
|
* By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
|
|
* we cannot notice that anon_vma is freed while we migrates a page.
|
|
* This rcu_read_lock() delays freeing anon_vma pointer until the end
|
|
* of migration. File cache pages are no problem because of page_lock()
|
|
* File Caches may use write_page() or lock_page() in migration, then,
|
|
* just care Anon page here.
|
|
*/
|
|
if (PageAnon(page)) {
|
|
rcu_read_lock();
|
|
rcu_locked = 1;
|
|
|
|
/* Determine how to safely use anon_vma */
|
|
if (!page_mapped(page)) {
|
|
if (!PageSwapCache(page))
|
|
goto rcu_unlock;
|
|
|
|
/*
|
|
* We cannot be sure that the anon_vma of an unmapped
|
|
* swapcache page is safe to use because we don't
|
|
* know in advance if the VMA that this page belonged
|
|
* to still exists. If the VMA and others sharing the
|
|
* data have been freed, then the anon_vma could
|
|
* already be invalid.
|
|
*
|
|
* To avoid this possibility, swapcache pages get
|
|
* migrated but are not remapped when migration
|
|
* completes
|
|
*/
|
|
remap_swapcache = 0;
|
|
} else {
|
|
/*
|
|
* Take a reference count on the anon_vma if the
|
|
* page is mapped so that it is guaranteed to
|
|
* exist when the page is remapped later
|
|
*/
|
|
anon_vma = page_anon_vma(page);
|
|
atomic_inc(&anon_vma->external_refcount);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Corner case handling:
|
|
* 1. When a new swap-cache page is read into, it is added to the LRU
|
|
* and treated as swapcache but it has no rmap yet.
|
|
* Calling try_to_unmap() against a page->mapping==NULL page will
|
|
* trigger a BUG. So handle it here.
|
|
* 2. An orphaned page (see truncate_complete_page) might have
|
|
* fs-private metadata. The page can be picked up due to memory
|
|
* offlining. Everywhere else except page reclaim, the page is
|
|
* invisible to the vm, so the page can not be migrated. So try to
|
|
* free the metadata, so the page can be freed.
|
|
*/
|
|
if (!page->mapping) {
|
|
if (!PageAnon(page) && page_has_private(page)) {
|
|
/*
|
|
* Go direct to try_to_free_buffers() here because
|
|
* a) that's what try_to_release_page() would do anyway
|
|
* b) we may be under rcu_read_lock() here, so we can't
|
|
* use GFP_KERNEL which is what try_to_release_page()
|
|
* needs to be effective.
|
|
*/
|
|
try_to_free_buffers(page);
|
|
goto rcu_unlock;
|
|
}
|
|
goto skip_unmap;
|
|
}
|
|
|
|
/* Establish migration ptes or remove ptes */
|
|
try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
|
|
|
|
skip_unmap:
|
|
if (!page_mapped(page))
|
|
rc = move_to_new_page(newpage, page, remap_swapcache);
|
|
|
|
if (rc && remap_swapcache)
|
|
remove_migration_ptes(page, page);
|
|
rcu_unlock:
|
|
|
|
/* Drop an anon_vma reference if we took one */
|
|
if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->lock)) {
|
|
int empty = list_empty(&anon_vma->head);
|
|
spin_unlock(&anon_vma->lock);
|
|
if (empty)
|
|
anon_vma_free(anon_vma);
|
|
}
|
|
|
|
if (rcu_locked)
|
|
rcu_read_unlock();
|
|
uncharge:
|
|
if (!charge)
|
|
mem_cgroup_end_migration(mem, page, newpage);
|
|
unlock:
|
|
unlock_page(page);
|
|
|
|
if (rc != -EAGAIN) {
|
|
/*
|
|
* A page that has been migrated has all references
|
|
* removed and will be freed. A page that has not been
|
|
* migrated will have kepts its references and be
|
|
* restored.
|
|
*/
|
|
list_del(&page->lru);
|
|
dec_zone_page_state(page, NR_ISOLATED_ANON +
|
|
page_is_file_cache(page));
|
|
putback_lru_page(page);
|
|
}
|
|
|
|
move_newpage:
|
|
|
|
/*
|
|
* Move the new page to the LRU. If migration was not successful
|
|
* then this will free the page.
|
|
*/
|
|
putback_lru_page(newpage);
|
|
|
|
if (result) {
|
|
if (rc)
|
|
*result = rc;
|
|
else
|
|
*result = page_to_nid(newpage);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* migrate_pages
|
|
*
|
|
* The function takes one list of pages to migrate and a function
|
|
* that determines from the page to be migrated and the private data
|
|
* the target of the move and allocates the page.
|
|
*
|
|
* The function returns after 10 attempts or if no pages
|
|
* are movable anymore because to has become empty
|
|
* or no retryable pages exist anymore. All pages will be
|
|
* returned to the LRU or freed.
|
|
*
|
|
* Return: Number of pages not migrated or error code.
|
|
*/
|
|
int migrate_pages(struct list_head *from,
|
|
new_page_t get_new_page, unsigned long private, int offlining)
|
|
{
|
|
int retry = 1;
|
|
int nr_failed = 0;
|
|
int pass = 0;
|
|
struct page *page;
|
|
struct page *page2;
|
|
int swapwrite = current->flags & PF_SWAPWRITE;
|
|
int rc;
|
|
|
|
if (!swapwrite)
|
|
current->flags |= PF_SWAPWRITE;
|
|
|
|
for(pass = 0; pass < 10 && retry; pass++) {
|
|
retry = 0;
|
|
|
|
list_for_each_entry_safe(page, page2, from, lru) {
|
|
cond_resched();
|
|
|
|
rc = unmap_and_move(get_new_page, private,
|
|
page, pass > 2, offlining);
|
|
|
|
switch(rc) {
|
|
case -ENOMEM:
|
|
goto out;
|
|
case -EAGAIN:
|
|
retry++;
|
|
break;
|
|
case 0:
|
|
break;
|
|
default:
|
|
/* Permanent failure */
|
|
nr_failed++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
rc = 0;
|
|
out:
|
|
if (!swapwrite)
|
|
current->flags &= ~PF_SWAPWRITE;
|
|
|
|
putback_lru_pages(from);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
return nr_failed + retry;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Move a list of individual pages
|
|
*/
|
|
struct page_to_node {
|
|
unsigned long addr;
|
|
struct page *page;
|
|
int node;
|
|
int status;
|
|
};
|
|
|
|
static struct page *new_page_node(struct page *p, unsigned long private,
|
|
int **result)
|
|
{
|
|
struct page_to_node *pm = (struct page_to_node *)private;
|
|
|
|
while (pm->node != MAX_NUMNODES && pm->page != p)
|
|
pm++;
|
|
|
|
if (pm->node == MAX_NUMNODES)
|
|
return NULL;
|
|
|
|
*result = &pm->status;
|
|
|
|
return alloc_pages_exact_node(pm->node,
|
|
GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
|
|
}
|
|
|
|
/*
|
|
* Move a set of pages as indicated in the pm array. The addr
|
|
* field must be set to the virtual address of the page to be moved
|
|
* and the node number must contain a valid target node.
|
|
* The pm array ends with node = MAX_NUMNODES.
|
|
*/
|
|
static int do_move_page_to_node_array(struct mm_struct *mm,
|
|
struct page_to_node *pm,
|
|
int migrate_all)
|
|
{
|
|
int err;
|
|
struct page_to_node *pp;
|
|
LIST_HEAD(pagelist);
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
/*
|
|
* Build a list of pages to migrate
|
|
*/
|
|
for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
|
|
struct vm_area_struct *vma;
|
|
struct page *page;
|
|
|
|
err = -EFAULT;
|
|
vma = find_vma(mm, pp->addr);
|
|
if (!vma || !vma_migratable(vma))
|
|
goto set_status;
|
|
|
|
page = follow_page(vma, pp->addr, FOLL_GET);
|
|
|
|
err = PTR_ERR(page);
|
|
if (IS_ERR(page))
|
|
goto set_status;
|
|
|
|
err = -ENOENT;
|
|
if (!page)
|
|
goto set_status;
|
|
|
|
/* Use PageReserved to check for zero page */
|
|
if (PageReserved(page) || PageKsm(page))
|
|
goto put_and_set;
|
|
|
|
pp->page = page;
|
|
err = page_to_nid(page);
|
|
|
|
if (err == pp->node)
|
|
/*
|
|
* Node already in the right place
|
|
*/
|
|
goto put_and_set;
|
|
|
|
err = -EACCES;
|
|
if (page_mapcount(page) > 1 &&
|
|
!migrate_all)
|
|
goto put_and_set;
|
|
|
|
err = isolate_lru_page(page);
|
|
if (!err) {
|
|
list_add_tail(&page->lru, &pagelist);
|
|
inc_zone_page_state(page, NR_ISOLATED_ANON +
|
|
page_is_file_cache(page));
|
|
}
|
|
put_and_set:
|
|
/*
|
|
* Either remove the duplicate refcount from
|
|
* isolate_lru_page() or drop the page ref if it was
|
|
* not isolated.
|
|
*/
|
|
put_page(page);
|
|
set_status:
|
|
pp->status = err;
|
|
}
|
|
|
|
err = 0;
|
|
if (!list_empty(&pagelist))
|
|
err = migrate_pages(&pagelist, new_page_node,
|
|
(unsigned long)pm, 0);
|
|
|
|
up_read(&mm->mmap_sem);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Migrate an array of page address onto an array of nodes and fill
|
|
* the corresponding array of status.
|
|
*/
|
|
static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
|
|
unsigned long nr_pages,
|
|
const void __user * __user *pages,
|
|
const int __user *nodes,
|
|
int __user *status, int flags)
|
|
{
|
|
struct page_to_node *pm;
|
|
nodemask_t task_nodes;
|
|
unsigned long chunk_nr_pages;
|
|
unsigned long chunk_start;
|
|
int err;
|
|
|
|
task_nodes = cpuset_mems_allowed(task);
|
|
|
|
err = -ENOMEM;
|
|
pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
|
|
if (!pm)
|
|
goto out;
|
|
|
|
migrate_prep();
|
|
|
|
/*
|
|
* Store a chunk of page_to_node array in a page,
|
|
* but keep the last one as a marker
|
|
*/
|
|
chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
|
|
|
|
for (chunk_start = 0;
|
|
chunk_start < nr_pages;
|
|
chunk_start += chunk_nr_pages) {
|
|
int j;
|
|
|
|
if (chunk_start + chunk_nr_pages > nr_pages)
|
|
chunk_nr_pages = nr_pages - chunk_start;
|
|
|
|
/* fill the chunk pm with addrs and nodes from user-space */
|
|
for (j = 0; j < chunk_nr_pages; j++) {
|
|
const void __user *p;
|
|
int node;
|
|
|
|
err = -EFAULT;
|
|
if (get_user(p, pages + j + chunk_start))
|
|
goto out_pm;
|
|
pm[j].addr = (unsigned long) p;
|
|
|
|
if (get_user(node, nodes + j + chunk_start))
|
|
goto out_pm;
|
|
|
|
err = -ENODEV;
|
|
if (node < 0 || node >= MAX_NUMNODES)
|
|
goto out_pm;
|
|
|
|
if (!node_state(node, N_HIGH_MEMORY))
|
|
goto out_pm;
|
|
|
|
err = -EACCES;
|
|
if (!node_isset(node, task_nodes))
|
|
goto out_pm;
|
|
|
|
pm[j].node = node;
|
|
}
|
|
|
|
/* End marker for this chunk */
|
|
pm[chunk_nr_pages].node = MAX_NUMNODES;
|
|
|
|
/* Migrate this chunk */
|
|
err = do_move_page_to_node_array(mm, pm,
|
|
flags & MPOL_MF_MOVE_ALL);
|
|
if (err < 0)
|
|
goto out_pm;
|
|
|
|
/* Return status information */
|
|
for (j = 0; j < chunk_nr_pages; j++)
|
|
if (put_user(pm[j].status, status + j + chunk_start)) {
|
|
err = -EFAULT;
|
|
goto out_pm;
|
|
}
|
|
}
|
|
err = 0;
|
|
|
|
out_pm:
|
|
free_page((unsigned long)pm);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Determine the nodes of an array of pages and store it in an array of status.
|
|
*/
|
|
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
|
|
const void __user **pages, int *status)
|
|
{
|
|
unsigned long i;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
unsigned long addr = (unsigned long)(*pages);
|
|
struct vm_area_struct *vma;
|
|
struct page *page;
|
|
int err = -EFAULT;
|
|
|
|
vma = find_vma(mm, addr);
|
|
if (!vma)
|
|
goto set_status;
|
|
|
|
page = follow_page(vma, addr, 0);
|
|
|
|
err = PTR_ERR(page);
|
|
if (IS_ERR(page))
|
|
goto set_status;
|
|
|
|
err = -ENOENT;
|
|
/* Use PageReserved to check for zero page */
|
|
if (!page || PageReserved(page) || PageKsm(page))
|
|
goto set_status;
|
|
|
|
err = page_to_nid(page);
|
|
set_status:
|
|
*status = err;
|
|
|
|
pages++;
|
|
status++;
|
|
}
|
|
|
|
up_read(&mm->mmap_sem);
|
|
}
|
|
|
|
/*
|
|
* Determine the nodes of a user array of pages and store it in
|
|
* a user array of status.
|
|
*/
|
|
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
|
|
const void __user * __user *pages,
|
|
int __user *status)
|
|
{
|
|
#define DO_PAGES_STAT_CHUNK_NR 16
|
|
const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
|
|
int chunk_status[DO_PAGES_STAT_CHUNK_NR];
|
|
|
|
while (nr_pages) {
|
|
unsigned long chunk_nr;
|
|
|
|
chunk_nr = nr_pages;
|
|
if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
|
|
chunk_nr = DO_PAGES_STAT_CHUNK_NR;
|
|
|
|
if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
|
|
break;
|
|
|
|
do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
|
|
|
|
if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
|
|
break;
|
|
|
|
pages += chunk_nr;
|
|
status += chunk_nr;
|
|
nr_pages -= chunk_nr;
|
|
}
|
|
return nr_pages ? -EFAULT : 0;
|
|
}
|
|
|
|
/*
|
|
* Move a list of pages in the address space of the currently executing
|
|
* process.
|
|
*/
|
|
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
|
|
const void __user * __user *, pages,
|
|
const int __user *, nodes,
|
|
int __user *, status, int, flags)
|
|
{
|
|
const struct cred *cred = current_cred(), *tcred;
|
|
struct task_struct *task;
|
|
struct mm_struct *mm;
|
|
int err;
|
|
|
|
/* Check flags */
|
|
if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
|
|
return -EINVAL;
|
|
|
|
if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
|
|
return -EPERM;
|
|
|
|
/* Find the mm_struct */
|
|
read_lock(&tasklist_lock);
|
|
task = pid ? find_task_by_vpid(pid) : current;
|
|
if (!task) {
|
|
read_unlock(&tasklist_lock);
|
|
return -ESRCH;
|
|
}
|
|
mm = get_task_mm(task);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
if (!mm)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Check if this process has the right to modify the specified
|
|
* process. The right exists if the process has administrative
|
|
* capabilities, superuser privileges or the same
|
|
* userid as the target process.
|
|
*/
|
|
rcu_read_lock();
|
|
tcred = __task_cred(task);
|
|
if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
|
|
cred->uid != tcred->suid && cred->uid != tcred->uid &&
|
|
!capable(CAP_SYS_NICE)) {
|
|
rcu_read_unlock();
|
|
err = -EPERM;
|
|
goto out;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
err = security_task_movememory(task);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (nodes) {
|
|
err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
|
|
flags);
|
|
} else {
|
|
err = do_pages_stat(mm, nr_pages, pages, status);
|
|
}
|
|
|
|
out:
|
|
mmput(mm);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Call migration functions in the vma_ops that may prepare
|
|
* memory in a vm for migration. migration functions may perform
|
|
* the migration for vmas that do not have an underlying page struct.
|
|
*/
|
|
int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
|
|
const nodemask_t *from, unsigned long flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
int err = 0;
|
|
|
|
for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
|
|
if (vma->vm_ops && vma->vm_ops->migrate) {
|
|
err = vma->vm_ops->migrate(vma, to, from, flags);
|
|
if (err)
|
|
break;
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
#endif
|