linux/crypto/aead.c
Herbert Xu 996d98d85c crypto: aead - Add new interface with single SG list
The primary user of AEAD, IPsec includes the IV in the AD in
most cases, except where it is implicitly authenticated by the
underlying algorithm.

The way it is currently implemented is a hack because we pass
the data in piecemeal and the underlying algorithms try to stitch
them back up into one piece.

This is why this patch is adding a new interface that allows a
single SG list to be passed in that contains everything so the
algorithm implementors do not have to stitch.

The new interface accepts a single source SG list and a single
destination SG list.  Both must be laid out as follows:

	AD, skipped data, plain/cipher text, ICV

The ICV is not present from the source during encryption and from
the destination during decryption.

For the top-level IPsec AEAD algorithm the plain/cipher text will
contain the generated (or received) IV.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-05-22 11:25:51 +08:00

556 lines
14 KiB
C

/*
* AEAD: Authenticated Encryption with Associated Data
*
* This file provides API support for AEAD algorithms.
*
* Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/internal/aead.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/rtnetlink.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cryptouser.h>
#include <net/netlink.h>
#include "internal.h"
static int aead_null_givencrypt(struct aead_givcrypt_request *req);
static int aead_null_givdecrypt(struct aead_givcrypt_request *req);
static int setkey_unaligned(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct aead_alg *aead = crypto_aead_alg(tfm);
unsigned long alignmask = crypto_aead_alignmask(tfm);
int ret;
u8 *buffer, *alignbuffer;
unsigned long absize;
absize = keylen + alignmask;
buffer = kmalloc(absize, GFP_ATOMIC);
if (!buffer)
return -ENOMEM;
alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
memcpy(alignbuffer, key, keylen);
ret = aead->setkey(tfm, alignbuffer, keylen);
memset(alignbuffer, 0, keylen);
kfree(buffer);
return ret;
}
int crypto_aead_setkey(struct crypto_aead *tfm,
const u8 *key, unsigned int keylen)
{
struct aead_alg *aead = crypto_aead_alg(tfm);
unsigned long alignmask = crypto_aead_alignmask(tfm);
tfm = tfm->child;
if ((unsigned long)key & alignmask)
return setkey_unaligned(tfm, key, keylen);
return aead->setkey(tfm, key, keylen);
}
EXPORT_SYMBOL_GPL(crypto_aead_setkey);
int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
int err;
if (authsize > crypto_aead_alg(tfm)->maxauthsize)
return -EINVAL;
if (crypto_aead_alg(tfm)->setauthsize) {
err = crypto_aead_alg(tfm)->setauthsize(tfm->child, authsize);
if (err)
return err;
}
tfm->child->authsize = authsize;
tfm->authsize = authsize;
return 0;
}
EXPORT_SYMBOL_GPL(crypto_aead_setauthsize);
struct aead_old_request {
struct scatterlist srcbuf[2];
struct scatterlist dstbuf[2];
struct aead_request subreq;
};
unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
{
return tfm->reqsize + sizeof(struct aead_old_request);
}
EXPORT_SYMBOL_GPL(crypto_aead_reqsize);
static int old_crypt(struct aead_request *req,
int (*crypt)(struct aead_request *req))
{
struct aead_old_request *nreq = aead_request_ctx(req);
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct scatterlist *src, *dst;
if (req->old)
return crypt(req);
src = scatterwalk_ffwd(nreq->srcbuf, req->src,
req->assoclen + req->cryptoff);
dst = scatterwalk_ffwd(nreq->dstbuf, req->dst,
req->assoclen + req->cryptoff);
aead_request_set_tfm(&nreq->subreq, aead);
aead_request_set_callback(&nreq->subreq, aead_request_flags(req),
req->base.complete, req->base.data);
aead_request_set_crypt(&nreq->subreq, src, dst, req->cryptlen,
req->iv);
aead_request_set_assoc(&nreq->subreq, req->src, req->assoclen);
return crypt(&nreq->subreq);
}
static int old_encrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct aead_alg *alg = crypto_aead_alg(aead);
return old_crypt(req, alg->encrypt);
}
static int old_decrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct aead_alg *alg = crypto_aead_alg(aead);
return old_crypt(req, alg->decrypt);
}
static int no_givcrypt(struct aead_givcrypt_request *req)
{
return -ENOSYS;
}
static int crypto_aead_init_tfm(struct crypto_tfm *tfm)
{
struct aead_alg *alg = &tfm->__crt_alg->cra_aead;
struct crypto_aead *crt = __crypto_aead_cast(tfm);
if (max(alg->maxauthsize, alg->ivsize) > PAGE_SIZE / 8)
return -EINVAL;
crt->encrypt = old_encrypt;
crt->decrypt = old_decrypt;
if (alg->ivsize) {
crt->givencrypt = alg->givencrypt ?: no_givcrypt;
crt->givdecrypt = alg->givdecrypt ?: no_givcrypt;
} else {
crt->givencrypt = aead_null_givencrypt;
crt->givdecrypt = aead_null_givdecrypt;
}
crt->child = __crypto_aead_cast(tfm);
crt->ivsize = alg->ivsize;
crt->authsize = alg->maxauthsize;
return 0;
}
#ifdef CONFIG_NET
static int crypto_aead_report(struct sk_buff *skb, struct crypto_alg *alg)
{
struct crypto_report_aead raead;
struct aead_alg *aead = &alg->cra_aead;
strncpy(raead.type, "aead", sizeof(raead.type));
strncpy(raead.geniv, aead->geniv ?: "<built-in>", sizeof(raead.geniv));
raead.blocksize = alg->cra_blocksize;
raead.maxauthsize = aead->maxauthsize;
raead.ivsize = aead->ivsize;
if (nla_put(skb, CRYPTOCFGA_REPORT_AEAD,
sizeof(struct crypto_report_aead), &raead))
goto nla_put_failure;
return 0;
nla_put_failure:
return -EMSGSIZE;
}
#else
static int crypto_aead_report(struct sk_buff *skb, struct crypto_alg *alg)
{
return -ENOSYS;
}
#endif
static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg)
__attribute__ ((unused));
static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg)
{
struct aead_alg *aead = &alg->cra_aead;
seq_printf(m, "type : aead\n");
seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
"yes" : "no");
seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
seq_printf(m, "ivsize : %u\n", aead->ivsize);
seq_printf(m, "maxauthsize : %u\n", aead->maxauthsize);
seq_printf(m, "geniv : %s\n", aead->geniv ?: "<built-in>");
}
const struct crypto_type crypto_aead_type = {
.extsize = crypto_alg_extsize,
.init_tfm = crypto_aead_init_tfm,
#ifdef CONFIG_PROC_FS
.show = crypto_aead_show,
#endif
.report = crypto_aead_report,
.lookup = crypto_lookup_aead,
.maskclear = ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV),
.maskset = CRYPTO_ALG_TYPE_MASK,
.type = CRYPTO_ALG_TYPE_AEAD,
.tfmsize = offsetof(struct crypto_aead, base),
};
EXPORT_SYMBOL_GPL(crypto_aead_type);
static int aead_null_givencrypt(struct aead_givcrypt_request *req)
{
return crypto_aead_encrypt(&req->areq);
}
static int aead_null_givdecrypt(struct aead_givcrypt_request *req)
{
return crypto_aead_decrypt(&req->areq);
}
#ifdef CONFIG_NET
static int crypto_nivaead_report(struct sk_buff *skb, struct crypto_alg *alg)
{
struct crypto_report_aead raead;
struct aead_alg *aead = &alg->cra_aead;
strncpy(raead.type, "nivaead", sizeof(raead.type));
strncpy(raead.geniv, aead->geniv, sizeof(raead.geniv));
raead.blocksize = alg->cra_blocksize;
raead.maxauthsize = aead->maxauthsize;
raead.ivsize = aead->ivsize;
if (nla_put(skb, CRYPTOCFGA_REPORT_AEAD,
sizeof(struct crypto_report_aead), &raead))
goto nla_put_failure;
return 0;
nla_put_failure:
return -EMSGSIZE;
}
#else
static int crypto_nivaead_report(struct sk_buff *skb, struct crypto_alg *alg)
{
return -ENOSYS;
}
#endif
static void crypto_nivaead_show(struct seq_file *m, struct crypto_alg *alg)
__attribute__ ((unused));
static void crypto_nivaead_show(struct seq_file *m, struct crypto_alg *alg)
{
struct aead_alg *aead = &alg->cra_aead;
seq_printf(m, "type : nivaead\n");
seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
"yes" : "no");
seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
seq_printf(m, "ivsize : %u\n", aead->ivsize);
seq_printf(m, "maxauthsize : %u\n", aead->maxauthsize);
seq_printf(m, "geniv : %s\n", aead->geniv);
}
const struct crypto_type crypto_nivaead_type = {
.extsize = crypto_alg_extsize,
.init_tfm = crypto_aead_init_tfm,
#ifdef CONFIG_PROC_FS
.show = crypto_nivaead_show,
#endif
.report = crypto_nivaead_report,
.maskclear = ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV),
.maskset = CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV,
.type = CRYPTO_ALG_TYPE_AEAD,
.tfmsize = offsetof(struct crypto_aead, base),
};
EXPORT_SYMBOL_GPL(crypto_nivaead_type);
static int crypto_grab_nivaead(struct crypto_aead_spawn *spawn,
const char *name, u32 type, u32 mask)
{
spawn->base.frontend = &crypto_nivaead_type;
return crypto_grab_spawn(&spawn->base, name, type, mask);
}
struct crypto_instance *aead_geniv_alloc(struct crypto_template *tmpl,
struct rtattr **tb, u32 type,
u32 mask)
{
const char *name;
struct crypto_aead_spawn *spawn;
struct crypto_attr_type *algt;
struct crypto_instance *inst;
struct crypto_alg *alg;
int err;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return ERR_CAST(algt);
if ((algt->type ^ (CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV)) &
algt->mask)
return ERR_PTR(-EINVAL);
name = crypto_attr_alg_name(tb[1]);
if (IS_ERR(name))
return ERR_CAST(name);
inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
if (!inst)
return ERR_PTR(-ENOMEM);
spawn = crypto_instance_ctx(inst);
/* Ignore async algorithms if necessary. */
mask |= crypto_requires_sync(algt->type, algt->mask);
crypto_set_aead_spawn(spawn, inst);
err = crypto_grab_nivaead(spawn, name, type, mask);
if (err)
goto err_free_inst;
alg = crypto_aead_spawn_alg(spawn);
err = -EINVAL;
if (!alg->cra_aead.ivsize)
goto err_drop_alg;
/*
* This is only true if we're constructing an algorithm with its
* default IV generator. For the default generator we elide the
* template name and double-check the IV generator.
*/
if (algt->mask & CRYPTO_ALG_GENIV) {
if (strcmp(tmpl->name, alg->cra_aead.geniv))
goto err_drop_alg;
memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
memcpy(inst->alg.cra_driver_name, alg->cra_driver_name,
CRYPTO_MAX_ALG_NAME);
} else {
err = -ENAMETOOLONG;
if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME,
"%s(%s)", tmpl->name, alg->cra_name) >=
CRYPTO_MAX_ALG_NAME)
goto err_drop_alg;
if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"%s(%s)", tmpl->name, alg->cra_driver_name) >=
CRYPTO_MAX_ALG_NAME)
goto err_drop_alg;
}
inst->alg.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV;
inst->alg.cra_flags |= alg->cra_flags & CRYPTO_ALG_ASYNC;
inst->alg.cra_priority = alg->cra_priority;
inst->alg.cra_blocksize = alg->cra_blocksize;
inst->alg.cra_alignmask = alg->cra_alignmask;
inst->alg.cra_type = &crypto_aead_type;
inst->alg.cra_aead.ivsize = alg->cra_aead.ivsize;
inst->alg.cra_aead.maxauthsize = alg->cra_aead.maxauthsize;
inst->alg.cra_aead.geniv = alg->cra_aead.geniv;
inst->alg.cra_aead.setkey = alg->cra_aead.setkey;
inst->alg.cra_aead.setauthsize = alg->cra_aead.setauthsize;
inst->alg.cra_aead.encrypt = alg->cra_aead.encrypt;
inst->alg.cra_aead.decrypt = alg->cra_aead.decrypt;
out:
return inst;
err_drop_alg:
crypto_drop_aead(spawn);
err_free_inst:
kfree(inst);
inst = ERR_PTR(err);
goto out;
}
EXPORT_SYMBOL_GPL(aead_geniv_alloc);
void aead_geniv_free(struct crypto_instance *inst)
{
crypto_drop_aead(crypto_instance_ctx(inst));
kfree(inst);
}
EXPORT_SYMBOL_GPL(aead_geniv_free);
int aead_geniv_init(struct crypto_tfm *tfm)
{
struct crypto_instance *inst = (void *)tfm->__crt_alg;
struct crypto_aead *child;
struct crypto_aead *aead;
aead = __crypto_aead_cast(tfm);
child = crypto_spawn_aead(crypto_instance_ctx(inst));
if (IS_ERR(child))
return PTR_ERR(child);
aead->child = child;
aead->reqsize += crypto_aead_reqsize(child);
return 0;
}
EXPORT_SYMBOL_GPL(aead_geniv_init);
void aead_geniv_exit(struct crypto_tfm *tfm)
{
crypto_free_aead(__crypto_aead_cast(tfm)->child);
}
EXPORT_SYMBOL_GPL(aead_geniv_exit);
static int crypto_nivaead_default(struct crypto_alg *alg, u32 type, u32 mask)
{
struct rtattr *tb[3];
struct {
struct rtattr attr;
struct crypto_attr_type data;
} ptype;
struct {
struct rtattr attr;
struct crypto_attr_alg data;
} palg;
struct crypto_template *tmpl;
struct crypto_instance *inst;
struct crypto_alg *larval;
const char *geniv;
int err;
larval = crypto_larval_lookup(alg->cra_driver_name,
CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV,
CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
err = PTR_ERR(larval);
if (IS_ERR(larval))
goto out;
err = -EAGAIN;
if (!crypto_is_larval(larval))
goto drop_larval;
ptype.attr.rta_len = sizeof(ptype);
ptype.attr.rta_type = CRYPTOA_TYPE;
ptype.data.type = type | CRYPTO_ALG_GENIV;
/* GENIV tells the template that we're making a default geniv. */
ptype.data.mask = mask | CRYPTO_ALG_GENIV;
tb[0] = &ptype.attr;
palg.attr.rta_len = sizeof(palg);
palg.attr.rta_type = CRYPTOA_ALG;
/* Must use the exact name to locate ourselves. */
memcpy(palg.data.name, alg->cra_driver_name, CRYPTO_MAX_ALG_NAME);
tb[1] = &palg.attr;
tb[2] = NULL;
geniv = alg->cra_aead.geniv;
tmpl = crypto_lookup_template(geniv);
err = -ENOENT;
if (!tmpl)
goto kill_larval;
inst = tmpl->alloc(tb);
err = PTR_ERR(inst);
if (IS_ERR(inst))
goto put_tmpl;
err = crypto_register_instance(tmpl, inst);
if (err) {
tmpl->free(inst);
goto put_tmpl;
}
/* Redo the lookup to use the instance we just registered. */
err = -EAGAIN;
put_tmpl:
crypto_tmpl_put(tmpl);
kill_larval:
crypto_larval_kill(larval);
drop_larval:
crypto_mod_put(larval);
out:
crypto_mod_put(alg);
return err;
}
struct crypto_alg *crypto_lookup_aead(const char *name, u32 type, u32 mask)
{
struct crypto_alg *alg;
alg = crypto_alg_mod_lookup(name, type, mask);
if (IS_ERR(alg))
return alg;
if (alg->cra_type == &crypto_aead_type)
return alg;
if (!alg->cra_aead.ivsize)
return alg;
crypto_mod_put(alg);
alg = crypto_alg_mod_lookup(name, type | CRYPTO_ALG_TESTED,
mask & ~CRYPTO_ALG_TESTED);
if (IS_ERR(alg))
return alg;
if (alg->cra_type == &crypto_aead_type) {
if (~alg->cra_flags & (type ^ ~mask) & CRYPTO_ALG_TESTED) {
crypto_mod_put(alg);
alg = ERR_PTR(-ENOENT);
}
return alg;
}
BUG_ON(!alg->cra_aead.ivsize);
return ERR_PTR(crypto_nivaead_default(alg, type, mask));
}
EXPORT_SYMBOL_GPL(crypto_lookup_aead);
int crypto_grab_aead(struct crypto_aead_spawn *spawn, const char *name,
u32 type, u32 mask)
{
spawn->base.frontend = &crypto_aead_type;
return crypto_grab_spawn(&spawn->base, name, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_grab_aead);
struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask)
{
return crypto_alloc_tfm(alg_name, &crypto_aead_type, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_alloc_aead);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Authenticated Encryption with Associated Data (AEAD)");