mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-03 00:54:09 +08:00
e3977e0609
This reverts commit dad3fb67ca1cbef87ce700e83a55835e5921ce8a. The commit converted kernfs_idr_lock to an IRQ-safe raw_spinlock because it could be acquired while holding an rq lock through bpf_cgroup_from_id(). However, kernfs_idr_lock is held while doing GPF_NOWAIT allocations which involves acquiring an non-IRQ-safe and non-raw lock leading to the following lockdep warning: ============================= [ BUG: Invalid wait context ] 6.7.0-rc5-kzm9g-00251-g655022a45b1c #578 Not tainted ----------------------------- swapper/0/0 is trying to lock: dfbcd488 (&c->lock){....}-{3:3}, at: local_lock_acquire+0x0/0xa4 other info that might help us debug this: context-{5:5} 2 locks held by swapper/0/0: #0: dfbc9c60 (lock){+.+.}-{3:3}, at: local_lock_acquire+0x0/0xa4 #1: c0c012a8 (kernfs_idr_lock){....}-{2:2}, at: __kernfs_new_node.constprop.0+0x68/0x258 stack backtrace: CPU: 0 PID: 0 Comm: swapper/0 Not tainted 6.7.0-rc5-kzm9g-00251-g655022a45b1c #578 Hardware name: Generic SH73A0 (Flattened Device Tree) unwind_backtrace from show_stack+0x10/0x14 show_stack from dump_stack_lvl+0x68/0x90 dump_stack_lvl from __lock_acquire+0x3cc/0x168c __lock_acquire from lock_acquire+0x274/0x30c lock_acquire from local_lock_acquire+0x28/0xa4 local_lock_acquire from ___slab_alloc+0x234/0x8a8 ___slab_alloc from __slab_alloc.constprop.0+0x30/0x44 __slab_alloc.constprop.0 from kmem_cache_alloc+0x7c/0x148 kmem_cache_alloc from radix_tree_node_alloc.constprop.0+0x44/0xdc radix_tree_node_alloc.constprop.0 from idr_get_free+0x110/0x2b8 idr_get_free from idr_alloc_u32+0x9c/0x108 idr_alloc_u32 from idr_alloc_cyclic+0x50/0xb8 idr_alloc_cyclic from __kernfs_new_node.constprop.0+0x88/0x258 __kernfs_new_node.constprop.0 from kernfs_create_root+0xbc/0x154 kernfs_create_root from sysfs_init+0x18/0x5c sysfs_init from mnt_init+0xc4/0x220 mnt_init from vfs_caches_init+0x6c/0x88 vfs_caches_init from start_kernel+0x474/0x528 start_kernel from 0x0 Let's rever the commit. It's undesirable to spread out raw spinlock usage anyway and the problem can be solved by protecting the lookup path with RCU instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Andrea Righi <andrea.righi@canonical.com> Reported-by: Geert Uytterhoeven <geert@linux-m68k.org> Link: http://lkml.kernel.org/r/CAMuHMdV=AKt+mwY7svEq5gFPx41LoSQZ_USME5_MEdWQze13ww@mail.gmail.com Link: https://lore.kernel.org/r/20240109214828.252092-2-tj@kernel.org Tested-by: Andrea Righi <andrea.righi@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
1879 lines
47 KiB
C
1879 lines
47 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* fs/kernfs/dir.c - kernfs directory implementation
|
|
*
|
|
* Copyright (c) 2001-3 Patrick Mochel
|
|
* Copyright (c) 2007 SUSE Linux Products GmbH
|
|
* Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/security.h>
|
|
#include <linux/hash.h>
|
|
|
|
#include "kernfs-internal.h"
|
|
|
|
static DEFINE_RWLOCK(kernfs_rename_lock); /* kn->parent and ->name */
|
|
/*
|
|
* Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
|
|
* call pr_cont() while holding rename_lock. Because sometimes pr_cont()
|
|
* will perform wakeups when releasing console_sem. Holding rename_lock
|
|
* will introduce deadlock if the scheduler reads the kernfs_name in the
|
|
* wakeup path.
|
|
*/
|
|
static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
|
|
static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */
|
|
static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
|
|
|
|
#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
|
|
|
|
static bool __kernfs_active(struct kernfs_node *kn)
|
|
{
|
|
return atomic_read(&kn->active) >= 0;
|
|
}
|
|
|
|
static bool kernfs_active(struct kernfs_node *kn)
|
|
{
|
|
lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
|
|
return __kernfs_active(kn);
|
|
}
|
|
|
|
static bool kernfs_lockdep(struct kernfs_node *kn)
|
|
{
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
return kn->flags & KERNFS_LOCKDEP;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
|
|
{
|
|
if (!kn)
|
|
return strscpy(buf, "(null)", buflen);
|
|
|
|
return strscpy(buf, kn->parent ? kn->name : "/", buflen);
|
|
}
|
|
|
|
/* kernfs_node_depth - compute depth from @from to @to */
|
|
static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
|
|
{
|
|
size_t depth = 0;
|
|
|
|
while (to->parent && to != from) {
|
|
depth++;
|
|
to = to->parent;
|
|
}
|
|
return depth;
|
|
}
|
|
|
|
static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
|
|
struct kernfs_node *b)
|
|
{
|
|
size_t da, db;
|
|
struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
|
|
|
|
if (ra != rb)
|
|
return NULL;
|
|
|
|
da = kernfs_depth(ra->kn, a);
|
|
db = kernfs_depth(rb->kn, b);
|
|
|
|
while (da > db) {
|
|
a = a->parent;
|
|
da--;
|
|
}
|
|
while (db > da) {
|
|
b = b->parent;
|
|
db--;
|
|
}
|
|
|
|
/* worst case b and a will be the same at root */
|
|
while (b != a) {
|
|
b = b->parent;
|
|
a = a->parent;
|
|
}
|
|
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
|
|
* where kn_from is treated as root of the path.
|
|
* @kn_from: kernfs node which should be treated as root for the path
|
|
* @kn_to: kernfs node to which path is needed
|
|
* @buf: buffer to copy the path into
|
|
* @buflen: size of @buf
|
|
*
|
|
* We need to handle couple of scenarios here:
|
|
* [1] when @kn_from is an ancestor of @kn_to at some level
|
|
* kn_from: /n1/n2/n3
|
|
* kn_to: /n1/n2/n3/n4/n5
|
|
* result: /n4/n5
|
|
*
|
|
* [2] when @kn_from is on a different hierarchy and we need to find common
|
|
* ancestor between @kn_from and @kn_to.
|
|
* kn_from: /n1/n2/n3/n4
|
|
* kn_to: /n1/n2/n5
|
|
* result: /../../n5
|
|
* OR
|
|
* kn_from: /n1/n2/n3/n4/n5 [depth=5]
|
|
* kn_to: /n1/n2/n3 [depth=3]
|
|
* result: /../..
|
|
*
|
|
* [3] when @kn_to is %NULL result will be "(null)"
|
|
*
|
|
* Return: the length of the constructed path. If the path would have been
|
|
* greater than @buflen, @buf contains the truncated path with the trailing
|
|
* '\0'. On error, -errno is returned.
|
|
*/
|
|
static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
|
|
struct kernfs_node *kn_from,
|
|
char *buf, size_t buflen)
|
|
{
|
|
struct kernfs_node *kn, *common;
|
|
const char parent_str[] = "/..";
|
|
size_t depth_from, depth_to, len = 0;
|
|
ssize_t copied;
|
|
int i, j;
|
|
|
|
if (!kn_to)
|
|
return strscpy(buf, "(null)", buflen);
|
|
|
|
if (!kn_from)
|
|
kn_from = kernfs_root(kn_to)->kn;
|
|
|
|
if (kn_from == kn_to)
|
|
return strscpy(buf, "/", buflen);
|
|
|
|
common = kernfs_common_ancestor(kn_from, kn_to);
|
|
if (WARN_ON(!common))
|
|
return -EINVAL;
|
|
|
|
depth_to = kernfs_depth(common, kn_to);
|
|
depth_from = kernfs_depth(common, kn_from);
|
|
|
|
buf[0] = '\0';
|
|
|
|
for (i = 0; i < depth_from; i++) {
|
|
copied = strscpy(buf + len, parent_str, buflen - len);
|
|
if (copied < 0)
|
|
return copied;
|
|
len += copied;
|
|
}
|
|
|
|
/* Calculate how many bytes we need for the rest */
|
|
for (i = depth_to - 1; i >= 0; i--) {
|
|
for (kn = kn_to, j = 0; j < i; j++)
|
|
kn = kn->parent;
|
|
|
|
len += scnprintf(buf + len, buflen - len, "/%s", kn->name);
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/**
|
|
* kernfs_name - obtain the name of a given node
|
|
* @kn: kernfs_node of interest
|
|
* @buf: buffer to copy @kn's name into
|
|
* @buflen: size of @buf
|
|
*
|
|
* Copies the name of @kn into @buf of @buflen bytes. The behavior is
|
|
* similar to strscpy().
|
|
*
|
|
* Fills buffer with "(null)" if @kn is %NULL.
|
|
*
|
|
* Return: the resulting length of @buf. If @buf isn't long enough,
|
|
* it's filled up to @buflen-1 and nul terminated, and returns -E2BIG.
|
|
*
|
|
* This function can be called from any context.
|
|
*/
|
|
int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
read_lock_irqsave(&kernfs_rename_lock, flags);
|
|
ret = kernfs_name_locked(kn, buf, buflen);
|
|
read_unlock_irqrestore(&kernfs_rename_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kernfs_path_from_node - build path of node @to relative to @from.
|
|
* @from: parent kernfs_node relative to which we need to build the path
|
|
* @to: kernfs_node of interest
|
|
* @buf: buffer to copy @to's path into
|
|
* @buflen: size of @buf
|
|
*
|
|
* Builds @to's path relative to @from in @buf. @from and @to must
|
|
* be on the same kernfs-root. If @from is not parent of @to, then a relative
|
|
* path (which includes '..'s) as needed to reach from @from to @to is
|
|
* returned.
|
|
*
|
|
* Return: the length of the constructed path. If the path would have been
|
|
* greater than @buflen, @buf contains the truncated path with the trailing
|
|
* '\0'. On error, -errno is returned.
|
|
*/
|
|
int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
|
|
char *buf, size_t buflen)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
read_lock_irqsave(&kernfs_rename_lock, flags);
|
|
ret = kernfs_path_from_node_locked(to, from, buf, buflen);
|
|
read_unlock_irqrestore(&kernfs_rename_lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kernfs_path_from_node);
|
|
|
|
/**
|
|
* pr_cont_kernfs_name - pr_cont name of a kernfs_node
|
|
* @kn: kernfs_node of interest
|
|
*
|
|
* This function can be called from any context.
|
|
*/
|
|
void pr_cont_kernfs_name(struct kernfs_node *kn)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
|
|
|
|
kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
|
|
pr_cont("%s", kernfs_pr_cont_buf);
|
|
|
|
spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* pr_cont_kernfs_path - pr_cont path of a kernfs_node
|
|
* @kn: kernfs_node of interest
|
|
*
|
|
* This function can be called from any context.
|
|
*/
|
|
void pr_cont_kernfs_path(struct kernfs_node *kn)
|
|
{
|
|
unsigned long flags;
|
|
int sz;
|
|
|
|
spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
|
|
|
|
sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
|
|
sizeof(kernfs_pr_cont_buf));
|
|
if (sz < 0) {
|
|
if (sz == -E2BIG)
|
|
pr_cont("(name too long)");
|
|
else
|
|
pr_cont("(error)");
|
|
goto out;
|
|
}
|
|
|
|
pr_cont("%s", kernfs_pr_cont_buf);
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* kernfs_get_parent - determine the parent node and pin it
|
|
* @kn: kernfs_node of interest
|
|
*
|
|
* Determines @kn's parent, pins and returns it. This function can be
|
|
* called from any context.
|
|
*
|
|
* Return: parent node of @kn
|
|
*/
|
|
struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
|
|
{
|
|
struct kernfs_node *parent;
|
|
unsigned long flags;
|
|
|
|
read_lock_irqsave(&kernfs_rename_lock, flags);
|
|
parent = kn->parent;
|
|
kernfs_get(parent);
|
|
read_unlock_irqrestore(&kernfs_rename_lock, flags);
|
|
|
|
return parent;
|
|
}
|
|
|
|
/**
|
|
* kernfs_name_hash - calculate hash of @ns + @name
|
|
* @name: Null terminated string to hash
|
|
* @ns: Namespace tag to hash
|
|
*
|
|
* Return: 31-bit hash of ns + name (so it fits in an off_t)
|
|
*/
|
|
static unsigned int kernfs_name_hash(const char *name, const void *ns)
|
|
{
|
|
unsigned long hash = init_name_hash(ns);
|
|
unsigned int len = strlen(name);
|
|
while (len--)
|
|
hash = partial_name_hash(*name++, hash);
|
|
hash = end_name_hash(hash);
|
|
hash &= 0x7fffffffU;
|
|
/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
|
|
if (hash < 2)
|
|
hash += 2;
|
|
if (hash >= INT_MAX)
|
|
hash = INT_MAX - 1;
|
|
return hash;
|
|
}
|
|
|
|
static int kernfs_name_compare(unsigned int hash, const char *name,
|
|
const void *ns, const struct kernfs_node *kn)
|
|
{
|
|
if (hash < kn->hash)
|
|
return -1;
|
|
if (hash > kn->hash)
|
|
return 1;
|
|
if (ns < kn->ns)
|
|
return -1;
|
|
if (ns > kn->ns)
|
|
return 1;
|
|
return strcmp(name, kn->name);
|
|
}
|
|
|
|
static int kernfs_sd_compare(const struct kernfs_node *left,
|
|
const struct kernfs_node *right)
|
|
{
|
|
return kernfs_name_compare(left->hash, left->name, left->ns, right);
|
|
}
|
|
|
|
/**
|
|
* kernfs_link_sibling - link kernfs_node into sibling rbtree
|
|
* @kn: kernfs_node of interest
|
|
*
|
|
* Link @kn into its sibling rbtree which starts from
|
|
* @kn->parent->dir.children.
|
|
*
|
|
* Locking:
|
|
* kernfs_rwsem held exclusive
|
|
*
|
|
* Return:
|
|
* %0 on success, -EEXIST on failure.
|
|
*/
|
|
static int kernfs_link_sibling(struct kernfs_node *kn)
|
|
{
|
|
struct rb_node **node = &kn->parent->dir.children.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
|
|
while (*node) {
|
|
struct kernfs_node *pos;
|
|
int result;
|
|
|
|
pos = rb_to_kn(*node);
|
|
parent = *node;
|
|
result = kernfs_sd_compare(kn, pos);
|
|
if (result < 0)
|
|
node = &pos->rb.rb_left;
|
|
else if (result > 0)
|
|
node = &pos->rb.rb_right;
|
|
else
|
|
return -EEXIST;
|
|
}
|
|
|
|
/* add new node and rebalance the tree */
|
|
rb_link_node(&kn->rb, parent, node);
|
|
rb_insert_color(&kn->rb, &kn->parent->dir.children);
|
|
|
|
/* successfully added, account subdir number */
|
|
down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
|
|
if (kernfs_type(kn) == KERNFS_DIR)
|
|
kn->parent->dir.subdirs++;
|
|
kernfs_inc_rev(kn->parent);
|
|
up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
|
|
* @kn: kernfs_node of interest
|
|
*
|
|
* Try to unlink @kn from its sibling rbtree which starts from
|
|
* kn->parent->dir.children.
|
|
*
|
|
* Return: %true if @kn was actually removed,
|
|
* %false if @kn wasn't on the rbtree.
|
|
*
|
|
* Locking:
|
|
* kernfs_rwsem held exclusive
|
|
*/
|
|
static bool kernfs_unlink_sibling(struct kernfs_node *kn)
|
|
{
|
|
if (RB_EMPTY_NODE(&kn->rb))
|
|
return false;
|
|
|
|
down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
|
|
if (kernfs_type(kn) == KERNFS_DIR)
|
|
kn->parent->dir.subdirs--;
|
|
kernfs_inc_rev(kn->parent);
|
|
up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
|
|
|
|
rb_erase(&kn->rb, &kn->parent->dir.children);
|
|
RB_CLEAR_NODE(&kn->rb);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* kernfs_get_active - get an active reference to kernfs_node
|
|
* @kn: kernfs_node to get an active reference to
|
|
*
|
|
* Get an active reference of @kn. This function is noop if @kn
|
|
* is %NULL.
|
|
*
|
|
* Return:
|
|
* Pointer to @kn on success, %NULL on failure.
|
|
*/
|
|
struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
|
|
{
|
|
if (unlikely(!kn))
|
|
return NULL;
|
|
|
|
if (!atomic_inc_unless_negative(&kn->active))
|
|
return NULL;
|
|
|
|
if (kernfs_lockdep(kn))
|
|
rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
|
|
return kn;
|
|
}
|
|
|
|
/**
|
|
* kernfs_put_active - put an active reference to kernfs_node
|
|
* @kn: kernfs_node to put an active reference to
|
|
*
|
|
* Put an active reference to @kn. This function is noop if @kn
|
|
* is %NULL.
|
|
*/
|
|
void kernfs_put_active(struct kernfs_node *kn)
|
|
{
|
|
int v;
|
|
|
|
if (unlikely(!kn))
|
|
return;
|
|
|
|
if (kernfs_lockdep(kn))
|
|
rwsem_release(&kn->dep_map, _RET_IP_);
|
|
v = atomic_dec_return(&kn->active);
|
|
if (likely(v != KN_DEACTIVATED_BIAS))
|
|
return;
|
|
|
|
wake_up_all(&kernfs_root(kn)->deactivate_waitq);
|
|
}
|
|
|
|
/**
|
|
* kernfs_drain - drain kernfs_node
|
|
* @kn: kernfs_node to drain
|
|
*
|
|
* Drain existing usages and nuke all existing mmaps of @kn. Multiple
|
|
* removers may invoke this function concurrently on @kn and all will
|
|
* return after draining is complete.
|
|
*/
|
|
static void kernfs_drain(struct kernfs_node *kn)
|
|
__releases(&kernfs_root(kn)->kernfs_rwsem)
|
|
__acquires(&kernfs_root(kn)->kernfs_rwsem)
|
|
{
|
|
struct kernfs_root *root = kernfs_root(kn);
|
|
|
|
lockdep_assert_held_write(&root->kernfs_rwsem);
|
|
WARN_ON_ONCE(kernfs_active(kn));
|
|
|
|
/*
|
|
* Skip draining if already fully drained. This avoids draining and its
|
|
* lockdep annotations for nodes which have never been activated
|
|
* allowing embedding kernfs_remove() in create error paths without
|
|
* worrying about draining.
|
|
*/
|
|
if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
|
|
!kernfs_should_drain_open_files(kn))
|
|
return;
|
|
|
|
up_write(&root->kernfs_rwsem);
|
|
|
|
if (kernfs_lockdep(kn)) {
|
|
rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
|
|
if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
|
|
lock_contended(&kn->dep_map, _RET_IP_);
|
|
}
|
|
|
|
wait_event(root->deactivate_waitq,
|
|
atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
|
|
|
|
if (kernfs_lockdep(kn)) {
|
|
lock_acquired(&kn->dep_map, _RET_IP_);
|
|
rwsem_release(&kn->dep_map, _RET_IP_);
|
|
}
|
|
|
|
if (kernfs_should_drain_open_files(kn))
|
|
kernfs_drain_open_files(kn);
|
|
|
|
down_write(&root->kernfs_rwsem);
|
|
}
|
|
|
|
/**
|
|
* kernfs_get - get a reference count on a kernfs_node
|
|
* @kn: the target kernfs_node
|
|
*/
|
|
void kernfs_get(struct kernfs_node *kn)
|
|
{
|
|
if (kn) {
|
|
WARN_ON(!atomic_read(&kn->count));
|
|
atomic_inc(&kn->count);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kernfs_get);
|
|
|
|
/**
|
|
* kernfs_put - put a reference count on a kernfs_node
|
|
* @kn: the target kernfs_node
|
|
*
|
|
* Put a reference count of @kn and destroy it if it reached zero.
|
|
*/
|
|
void kernfs_put(struct kernfs_node *kn)
|
|
{
|
|
struct kernfs_node *parent;
|
|
struct kernfs_root *root;
|
|
|
|
if (!kn || !atomic_dec_and_test(&kn->count))
|
|
return;
|
|
root = kernfs_root(kn);
|
|
repeat:
|
|
/*
|
|
* Moving/renaming is always done while holding reference.
|
|
* kn->parent won't change beneath us.
|
|
*/
|
|
parent = kn->parent;
|
|
|
|
WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
|
|
"kernfs_put: %s/%s: released with incorrect active_ref %d\n",
|
|
parent ? parent->name : "", kn->name, atomic_read(&kn->active));
|
|
|
|
if (kernfs_type(kn) == KERNFS_LINK)
|
|
kernfs_put(kn->symlink.target_kn);
|
|
|
|
kfree_const(kn->name);
|
|
|
|
if (kn->iattr) {
|
|
simple_xattrs_free(&kn->iattr->xattrs, NULL);
|
|
kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
|
|
}
|
|
spin_lock(&kernfs_idr_lock);
|
|
idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
|
|
spin_unlock(&kernfs_idr_lock);
|
|
kmem_cache_free(kernfs_node_cache, kn);
|
|
|
|
kn = parent;
|
|
if (kn) {
|
|
if (atomic_dec_and_test(&kn->count))
|
|
goto repeat;
|
|
} else {
|
|
/* just released the root kn, free @root too */
|
|
idr_destroy(&root->ino_idr);
|
|
kfree(root);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kernfs_put);
|
|
|
|
/**
|
|
* kernfs_node_from_dentry - determine kernfs_node associated with a dentry
|
|
* @dentry: the dentry in question
|
|
*
|
|
* Return: the kernfs_node associated with @dentry. If @dentry is not a
|
|
* kernfs one, %NULL is returned.
|
|
*
|
|
* While the returned kernfs_node will stay accessible as long as @dentry
|
|
* is accessible, the returned node can be in any state and the caller is
|
|
* fully responsible for determining what's accessible.
|
|
*/
|
|
struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
|
|
{
|
|
if (dentry->d_sb->s_op == &kernfs_sops)
|
|
return kernfs_dentry_node(dentry);
|
|
return NULL;
|
|
}
|
|
|
|
static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
|
|
struct kernfs_node *parent,
|
|
const char *name, umode_t mode,
|
|
kuid_t uid, kgid_t gid,
|
|
unsigned flags)
|
|
{
|
|
struct kernfs_node *kn;
|
|
u32 id_highbits;
|
|
int ret;
|
|
|
|
name = kstrdup_const(name, GFP_KERNEL);
|
|
if (!name)
|
|
return NULL;
|
|
|
|
kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
|
|
if (!kn)
|
|
goto err_out1;
|
|
|
|
idr_preload(GFP_KERNEL);
|
|
spin_lock(&kernfs_idr_lock);
|
|
ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
|
|
if (ret >= 0 && ret < root->last_id_lowbits)
|
|
root->id_highbits++;
|
|
id_highbits = root->id_highbits;
|
|
root->last_id_lowbits = ret;
|
|
spin_unlock(&kernfs_idr_lock);
|
|
idr_preload_end();
|
|
if (ret < 0)
|
|
goto err_out2;
|
|
|
|
kn->id = (u64)id_highbits << 32 | ret;
|
|
|
|
atomic_set(&kn->count, 1);
|
|
atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
|
|
RB_CLEAR_NODE(&kn->rb);
|
|
|
|
kn->name = name;
|
|
kn->mode = mode;
|
|
kn->flags = flags;
|
|
|
|
if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
|
|
struct iattr iattr = {
|
|
.ia_valid = ATTR_UID | ATTR_GID,
|
|
.ia_uid = uid,
|
|
.ia_gid = gid,
|
|
};
|
|
|
|
ret = __kernfs_setattr(kn, &iattr);
|
|
if (ret < 0)
|
|
goto err_out3;
|
|
}
|
|
|
|
if (parent) {
|
|
ret = security_kernfs_init_security(parent, kn);
|
|
if (ret)
|
|
goto err_out3;
|
|
}
|
|
|
|
return kn;
|
|
|
|
err_out3:
|
|
spin_lock(&kernfs_idr_lock);
|
|
idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
|
|
spin_unlock(&kernfs_idr_lock);
|
|
err_out2:
|
|
kmem_cache_free(kernfs_node_cache, kn);
|
|
err_out1:
|
|
kfree_const(name);
|
|
return NULL;
|
|
}
|
|
|
|
struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
|
|
const char *name, umode_t mode,
|
|
kuid_t uid, kgid_t gid,
|
|
unsigned flags)
|
|
{
|
|
struct kernfs_node *kn;
|
|
|
|
if (parent->mode & S_ISGID) {
|
|
/* this code block imitates inode_init_owner() for
|
|
* kernfs
|
|
*/
|
|
|
|
if (parent->iattr)
|
|
gid = parent->iattr->ia_gid;
|
|
|
|
if (flags & KERNFS_DIR)
|
|
mode |= S_ISGID;
|
|
}
|
|
|
|
kn = __kernfs_new_node(kernfs_root(parent), parent,
|
|
name, mode, uid, gid, flags);
|
|
if (kn) {
|
|
kernfs_get(parent);
|
|
kn->parent = parent;
|
|
}
|
|
return kn;
|
|
}
|
|
|
|
/*
|
|
* kernfs_find_and_get_node_by_id - get kernfs_node from node id
|
|
* @root: the kernfs root
|
|
* @id: the target node id
|
|
*
|
|
* @id's lower 32bits encode ino and upper gen. If the gen portion is
|
|
* zero, all generations are matched.
|
|
*
|
|
* Return: %NULL on failure,
|
|
* otherwise a kernfs node with reference counter incremented.
|
|
*/
|
|
struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
|
|
u64 id)
|
|
{
|
|
struct kernfs_node *kn;
|
|
ino_t ino = kernfs_id_ino(id);
|
|
u32 gen = kernfs_id_gen(id);
|
|
|
|
spin_lock(&kernfs_idr_lock);
|
|
|
|
kn = idr_find(&root->ino_idr, (u32)ino);
|
|
if (!kn)
|
|
goto err_unlock;
|
|
|
|
if (sizeof(ino_t) >= sizeof(u64)) {
|
|
/* we looked up with the low 32bits, compare the whole */
|
|
if (kernfs_ino(kn) != ino)
|
|
goto err_unlock;
|
|
} else {
|
|
/* 0 matches all generations */
|
|
if (unlikely(gen && kernfs_gen(kn) != gen))
|
|
goto err_unlock;
|
|
}
|
|
|
|
/*
|
|
* We should fail if @kn has never been activated and guarantee success
|
|
* if the caller knows that @kn is active. Both can be achieved by
|
|
* __kernfs_active() which tests @kn->active without kernfs_rwsem.
|
|
*/
|
|
if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
|
|
goto err_unlock;
|
|
|
|
spin_unlock(&kernfs_idr_lock);
|
|
return kn;
|
|
err_unlock:
|
|
spin_unlock(&kernfs_idr_lock);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* kernfs_add_one - add kernfs_node to parent without warning
|
|
* @kn: kernfs_node to be added
|
|
*
|
|
* The caller must already have initialized @kn->parent. This
|
|
* function increments nlink of the parent's inode if @kn is a
|
|
* directory and link into the children list of the parent.
|
|
*
|
|
* Return:
|
|
* %0 on success, -EEXIST if entry with the given name already
|
|
* exists.
|
|
*/
|
|
int kernfs_add_one(struct kernfs_node *kn)
|
|
{
|
|
struct kernfs_node *parent = kn->parent;
|
|
struct kernfs_root *root = kernfs_root(parent);
|
|
struct kernfs_iattrs *ps_iattr;
|
|
bool has_ns;
|
|
int ret;
|
|
|
|
down_write(&root->kernfs_rwsem);
|
|
|
|
ret = -EINVAL;
|
|
has_ns = kernfs_ns_enabled(parent);
|
|
if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
|
|
has_ns ? "required" : "invalid", parent->name, kn->name))
|
|
goto out_unlock;
|
|
|
|
if (kernfs_type(parent) != KERNFS_DIR)
|
|
goto out_unlock;
|
|
|
|
ret = -ENOENT;
|
|
if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
|
|
goto out_unlock;
|
|
|
|
kn->hash = kernfs_name_hash(kn->name, kn->ns);
|
|
|
|
ret = kernfs_link_sibling(kn);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
/* Update timestamps on the parent */
|
|
down_write(&root->kernfs_iattr_rwsem);
|
|
|
|
ps_iattr = parent->iattr;
|
|
if (ps_iattr) {
|
|
ktime_get_real_ts64(&ps_iattr->ia_ctime);
|
|
ps_iattr->ia_mtime = ps_iattr->ia_ctime;
|
|
}
|
|
|
|
up_write(&root->kernfs_iattr_rwsem);
|
|
up_write(&root->kernfs_rwsem);
|
|
|
|
/*
|
|
* Activate the new node unless CREATE_DEACTIVATED is requested.
|
|
* If not activated here, the kernfs user is responsible for
|
|
* activating the node with kernfs_activate(). A node which hasn't
|
|
* been activated is not visible to userland and its removal won't
|
|
* trigger deactivation.
|
|
*/
|
|
if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
|
|
kernfs_activate(kn);
|
|
return 0;
|
|
|
|
out_unlock:
|
|
up_write(&root->kernfs_rwsem);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kernfs_find_ns - find kernfs_node with the given name
|
|
* @parent: kernfs_node to search under
|
|
* @name: name to look for
|
|
* @ns: the namespace tag to use
|
|
*
|
|
* Look for kernfs_node with name @name under @parent.
|
|
*
|
|
* Return: pointer to the found kernfs_node on success, %NULL on failure.
|
|
*/
|
|
static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
|
|
const unsigned char *name,
|
|
const void *ns)
|
|
{
|
|
struct rb_node *node = parent->dir.children.rb_node;
|
|
bool has_ns = kernfs_ns_enabled(parent);
|
|
unsigned int hash;
|
|
|
|
lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
|
|
|
|
if (has_ns != (bool)ns) {
|
|
WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
|
|
has_ns ? "required" : "invalid", parent->name, name);
|
|
return NULL;
|
|
}
|
|
|
|
hash = kernfs_name_hash(name, ns);
|
|
while (node) {
|
|
struct kernfs_node *kn;
|
|
int result;
|
|
|
|
kn = rb_to_kn(node);
|
|
result = kernfs_name_compare(hash, name, ns, kn);
|
|
if (result < 0)
|
|
node = node->rb_left;
|
|
else if (result > 0)
|
|
node = node->rb_right;
|
|
else
|
|
return kn;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
|
|
const unsigned char *path,
|
|
const void *ns)
|
|
{
|
|
ssize_t len;
|
|
char *p, *name;
|
|
|
|
lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
|
|
|
|
spin_lock_irq(&kernfs_pr_cont_lock);
|
|
|
|
len = strscpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
|
|
|
|
if (len < 0) {
|
|
spin_unlock_irq(&kernfs_pr_cont_lock);
|
|
return NULL;
|
|
}
|
|
|
|
p = kernfs_pr_cont_buf;
|
|
|
|
while ((name = strsep(&p, "/")) && parent) {
|
|
if (*name == '\0')
|
|
continue;
|
|
parent = kernfs_find_ns(parent, name, ns);
|
|
}
|
|
|
|
spin_unlock_irq(&kernfs_pr_cont_lock);
|
|
|
|
return parent;
|
|
}
|
|
|
|
/**
|
|
* kernfs_find_and_get_ns - find and get kernfs_node with the given name
|
|
* @parent: kernfs_node to search under
|
|
* @name: name to look for
|
|
* @ns: the namespace tag to use
|
|
*
|
|
* Look for kernfs_node with name @name under @parent and get a reference
|
|
* if found. This function may sleep.
|
|
*
|
|
* Return: pointer to the found kernfs_node on success, %NULL on failure.
|
|
*/
|
|
struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
|
|
const char *name, const void *ns)
|
|
{
|
|
struct kernfs_node *kn;
|
|
struct kernfs_root *root = kernfs_root(parent);
|
|
|
|
down_read(&root->kernfs_rwsem);
|
|
kn = kernfs_find_ns(parent, name, ns);
|
|
kernfs_get(kn);
|
|
up_read(&root->kernfs_rwsem);
|
|
|
|
return kn;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
|
|
|
|
/**
|
|
* kernfs_walk_and_get_ns - find and get kernfs_node with the given path
|
|
* @parent: kernfs_node to search under
|
|
* @path: path to look for
|
|
* @ns: the namespace tag to use
|
|
*
|
|
* Look for kernfs_node with path @path under @parent and get a reference
|
|
* if found. This function may sleep.
|
|
*
|
|
* Return: pointer to the found kernfs_node on success, %NULL on failure.
|
|
*/
|
|
struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
|
|
const char *path, const void *ns)
|
|
{
|
|
struct kernfs_node *kn;
|
|
struct kernfs_root *root = kernfs_root(parent);
|
|
|
|
down_read(&root->kernfs_rwsem);
|
|
kn = kernfs_walk_ns(parent, path, ns);
|
|
kernfs_get(kn);
|
|
up_read(&root->kernfs_rwsem);
|
|
|
|
return kn;
|
|
}
|
|
|
|
/**
|
|
* kernfs_create_root - create a new kernfs hierarchy
|
|
* @scops: optional syscall operations for the hierarchy
|
|
* @flags: KERNFS_ROOT_* flags
|
|
* @priv: opaque data associated with the new directory
|
|
*
|
|
* Return: the root of the new hierarchy on success, ERR_PTR() value on
|
|
* failure.
|
|
*/
|
|
struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
|
|
unsigned int flags, void *priv)
|
|
{
|
|
struct kernfs_root *root;
|
|
struct kernfs_node *kn;
|
|
|
|
root = kzalloc(sizeof(*root), GFP_KERNEL);
|
|
if (!root)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
idr_init(&root->ino_idr);
|
|
init_rwsem(&root->kernfs_rwsem);
|
|
init_rwsem(&root->kernfs_iattr_rwsem);
|
|
init_rwsem(&root->kernfs_supers_rwsem);
|
|
INIT_LIST_HEAD(&root->supers);
|
|
|
|
/*
|
|
* On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
|
|
* High bits generation. The starting value for both ino and
|
|
* genenration is 1. Initialize upper 32bit allocation
|
|
* accordingly.
|
|
*/
|
|
if (sizeof(ino_t) >= sizeof(u64))
|
|
root->id_highbits = 0;
|
|
else
|
|
root->id_highbits = 1;
|
|
|
|
kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
|
|
GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
|
|
KERNFS_DIR);
|
|
if (!kn) {
|
|
idr_destroy(&root->ino_idr);
|
|
kfree(root);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
kn->priv = priv;
|
|
kn->dir.root = root;
|
|
|
|
root->syscall_ops = scops;
|
|
root->flags = flags;
|
|
root->kn = kn;
|
|
init_waitqueue_head(&root->deactivate_waitq);
|
|
|
|
if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
|
|
kernfs_activate(kn);
|
|
|
|
return root;
|
|
}
|
|
|
|
/**
|
|
* kernfs_destroy_root - destroy a kernfs hierarchy
|
|
* @root: root of the hierarchy to destroy
|
|
*
|
|
* Destroy the hierarchy anchored at @root by removing all existing
|
|
* directories and destroying @root.
|
|
*/
|
|
void kernfs_destroy_root(struct kernfs_root *root)
|
|
{
|
|
/*
|
|
* kernfs_remove holds kernfs_rwsem from the root so the root
|
|
* shouldn't be freed during the operation.
|
|
*/
|
|
kernfs_get(root->kn);
|
|
kernfs_remove(root->kn);
|
|
kernfs_put(root->kn); /* will also free @root */
|
|
}
|
|
|
|
/**
|
|
* kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
|
|
* @root: root to use to lookup
|
|
*
|
|
* Return: @root's kernfs_node
|
|
*/
|
|
struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
|
|
{
|
|
return root->kn;
|
|
}
|
|
|
|
/**
|
|
* kernfs_create_dir_ns - create a directory
|
|
* @parent: parent in which to create a new directory
|
|
* @name: name of the new directory
|
|
* @mode: mode of the new directory
|
|
* @uid: uid of the new directory
|
|
* @gid: gid of the new directory
|
|
* @priv: opaque data associated with the new directory
|
|
* @ns: optional namespace tag of the directory
|
|
*
|
|
* Return: the created node on success, ERR_PTR() value on failure.
|
|
*/
|
|
struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
|
|
const char *name, umode_t mode,
|
|
kuid_t uid, kgid_t gid,
|
|
void *priv, const void *ns)
|
|
{
|
|
struct kernfs_node *kn;
|
|
int rc;
|
|
|
|
/* allocate */
|
|
kn = kernfs_new_node(parent, name, mode | S_IFDIR,
|
|
uid, gid, KERNFS_DIR);
|
|
if (!kn)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
kn->dir.root = parent->dir.root;
|
|
kn->ns = ns;
|
|
kn->priv = priv;
|
|
|
|
/* link in */
|
|
rc = kernfs_add_one(kn);
|
|
if (!rc)
|
|
return kn;
|
|
|
|
kernfs_put(kn);
|
|
return ERR_PTR(rc);
|
|
}
|
|
|
|
/**
|
|
* kernfs_create_empty_dir - create an always empty directory
|
|
* @parent: parent in which to create a new directory
|
|
* @name: name of the new directory
|
|
*
|
|
* Return: the created node on success, ERR_PTR() value on failure.
|
|
*/
|
|
struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
|
|
const char *name)
|
|
{
|
|
struct kernfs_node *kn;
|
|
int rc;
|
|
|
|
/* allocate */
|
|
kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
|
|
GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
|
|
if (!kn)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
kn->flags |= KERNFS_EMPTY_DIR;
|
|
kn->dir.root = parent->dir.root;
|
|
kn->ns = NULL;
|
|
kn->priv = NULL;
|
|
|
|
/* link in */
|
|
rc = kernfs_add_one(kn);
|
|
if (!rc)
|
|
return kn;
|
|
|
|
kernfs_put(kn);
|
|
return ERR_PTR(rc);
|
|
}
|
|
|
|
static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
|
|
{
|
|
struct kernfs_node *kn;
|
|
struct kernfs_root *root;
|
|
|
|
if (flags & LOOKUP_RCU)
|
|
return -ECHILD;
|
|
|
|
/* Negative hashed dentry? */
|
|
if (d_really_is_negative(dentry)) {
|
|
struct kernfs_node *parent;
|
|
|
|
/* If the kernfs parent node has changed discard and
|
|
* proceed to ->lookup.
|
|
*
|
|
* There's nothing special needed here when getting the
|
|
* dentry parent, even if a concurrent rename is in
|
|
* progress. That's because the dentry is negative so
|
|
* it can only be the target of the rename and it will
|
|
* be doing a d_move() not a replace. Consequently the
|
|
* dentry d_parent won't change over the d_move().
|
|
*
|
|
* Also kernfs negative dentries transitioning from
|
|
* negative to positive during revalidate won't happen
|
|
* because they are invalidated on containing directory
|
|
* changes and the lookup re-done so that a new positive
|
|
* dentry can be properly created.
|
|
*/
|
|
root = kernfs_root_from_sb(dentry->d_sb);
|
|
down_read(&root->kernfs_rwsem);
|
|
parent = kernfs_dentry_node(dentry->d_parent);
|
|
if (parent) {
|
|
if (kernfs_dir_changed(parent, dentry)) {
|
|
up_read(&root->kernfs_rwsem);
|
|
return 0;
|
|
}
|
|
}
|
|
up_read(&root->kernfs_rwsem);
|
|
|
|
/* The kernfs parent node hasn't changed, leave the
|
|
* dentry negative and return success.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
kn = kernfs_dentry_node(dentry);
|
|
root = kernfs_root(kn);
|
|
down_read(&root->kernfs_rwsem);
|
|
|
|
/* The kernfs node has been deactivated */
|
|
if (!kernfs_active(kn))
|
|
goto out_bad;
|
|
|
|
/* The kernfs node has been moved? */
|
|
if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
|
|
goto out_bad;
|
|
|
|
/* The kernfs node has been renamed */
|
|
if (strcmp(dentry->d_name.name, kn->name) != 0)
|
|
goto out_bad;
|
|
|
|
/* The kernfs node has been moved to a different namespace */
|
|
if (kn->parent && kernfs_ns_enabled(kn->parent) &&
|
|
kernfs_info(dentry->d_sb)->ns != kn->ns)
|
|
goto out_bad;
|
|
|
|
up_read(&root->kernfs_rwsem);
|
|
return 1;
|
|
out_bad:
|
|
up_read(&root->kernfs_rwsem);
|
|
return 0;
|
|
}
|
|
|
|
const struct dentry_operations kernfs_dops = {
|
|
.d_revalidate = kernfs_dop_revalidate,
|
|
};
|
|
|
|
static struct dentry *kernfs_iop_lookup(struct inode *dir,
|
|
struct dentry *dentry,
|
|
unsigned int flags)
|
|
{
|
|
struct kernfs_node *parent = dir->i_private;
|
|
struct kernfs_node *kn;
|
|
struct kernfs_root *root;
|
|
struct inode *inode = NULL;
|
|
const void *ns = NULL;
|
|
|
|
root = kernfs_root(parent);
|
|
down_read(&root->kernfs_rwsem);
|
|
if (kernfs_ns_enabled(parent))
|
|
ns = kernfs_info(dir->i_sb)->ns;
|
|
|
|
kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
|
|
/* attach dentry and inode */
|
|
if (kn) {
|
|
/* Inactive nodes are invisible to the VFS so don't
|
|
* create a negative.
|
|
*/
|
|
if (!kernfs_active(kn)) {
|
|
up_read(&root->kernfs_rwsem);
|
|
return NULL;
|
|
}
|
|
inode = kernfs_get_inode(dir->i_sb, kn);
|
|
if (!inode)
|
|
inode = ERR_PTR(-ENOMEM);
|
|
}
|
|
/*
|
|
* Needed for negative dentry validation.
|
|
* The negative dentry can be created in kernfs_iop_lookup()
|
|
* or transforms from positive dentry in dentry_unlink_inode()
|
|
* called from vfs_rmdir().
|
|
*/
|
|
if (!IS_ERR(inode))
|
|
kernfs_set_rev(parent, dentry);
|
|
up_read(&root->kernfs_rwsem);
|
|
|
|
/* instantiate and hash (possibly negative) dentry */
|
|
return d_splice_alias(inode, dentry);
|
|
}
|
|
|
|
static int kernfs_iop_mkdir(struct mnt_idmap *idmap,
|
|
struct inode *dir, struct dentry *dentry,
|
|
umode_t mode)
|
|
{
|
|
struct kernfs_node *parent = dir->i_private;
|
|
struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
|
|
int ret;
|
|
|
|
if (!scops || !scops->mkdir)
|
|
return -EPERM;
|
|
|
|
if (!kernfs_get_active(parent))
|
|
return -ENODEV;
|
|
|
|
ret = scops->mkdir(parent, dentry->d_name.name, mode);
|
|
|
|
kernfs_put_active(parent);
|
|
return ret;
|
|
}
|
|
|
|
static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct kernfs_node *kn = kernfs_dentry_node(dentry);
|
|
struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
|
|
int ret;
|
|
|
|
if (!scops || !scops->rmdir)
|
|
return -EPERM;
|
|
|
|
if (!kernfs_get_active(kn))
|
|
return -ENODEV;
|
|
|
|
ret = scops->rmdir(kn);
|
|
|
|
kernfs_put_active(kn);
|
|
return ret;
|
|
}
|
|
|
|
static int kernfs_iop_rename(struct mnt_idmap *idmap,
|
|
struct inode *old_dir, struct dentry *old_dentry,
|
|
struct inode *new_dir, struct dentry *new_dentry,
|
|
unsigned int flags)
|
|
{
|
|
struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
|
|
struct kernfs_node *new_parent = new_dir->i_private;
|
|
struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
|
|
int ret;
|
|
|
|
if (flags)
|
|
return -EINVAL;
|
|
|
|
if (!scops || !scops->rename)
|
|
return -EPERM;
|
|
|
|
if (!kernfs_get_active(kn))
|
|
return -ENODEV;
|
|
|
|
if (!kernfs_get_active(new_parent)) {
|
|
kernfs_put_active(kn);
|
|
return -ENODEV;
|
|
}
|
|
|
|
ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
|
|
|
|
kernfs_put_active(new_parent);
|
|
kernfs_put_active(kn);
|
|
return ret;
|
|
}
|
|
|
|
const struct inode_operations kernfs_dir_iops = {
|
|
.lookup = kernfs_iop_lookup,
|
|
.permission = kernfs_iop_permission,
|
|
.setattr = kernfs_iop_setattr,
|
|
.getattr = kernfs_iop_getattr,
|
|
.listxattr = kernfs_iop_listxattr,
|
|
|
|
.mkdir = kernfs_iop_mkdir,
|
|
.rmdir = kernfs_iop_rmdir,
|
|
.rename = kernfs_iop_rename,
|
|
};
|
|
|
|
static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
|
|
{
|
|
struct kernfs_node *last;
|
|
|
|
while (true) {
|
|
struct rb_node *rbn;
|
|
|
|
last = pos;
|
|
|
|
if (kernfs_type(pos) != KERNFS_DIR)
|
|
break;
|
|
|
|
rbn = rb_first(&pos->dir.children);
|
|
if (!rbn)
|
|
break;
|
|
|
|
pos = rb_to_kn(rbn);
|
|
}
|
|
|
|
return last;
|
|
}
|
|
|
|
/**
|
|
* kernfs_next_descendant_post - find the next descendant for post-order walk
|
|
* @pos: the current position (%NULL to initiate traversal)
|
|
* @root: kernfs_node whose descendants to walk
|
|
*
|
|
* Find the next descendant to visit for post-order traversal of @root's
|
|
* descendants. @root is included in the iteration and the last node to be
|
|
* visited.
|
|
*
|
|
* Return: the next descendant to visit or %NULL when done.
|
|
*/
|
|
static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
|
|
struct kernfs_node *root)
|
|
{
|
|
struct rb_node *rbn;
|
|
|
|
lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
|
|
|
|
/* if first iteration, visit leftmost descendant which may be root */
|
|
if (!pos)
|
|
return kernfs_leftmost_descendant(root);
|
|
|
|
/* if we visited @root, we're done */
|
|
if (pos == root)
|
|
return NULL;
|
|
|
|
/* if there's an unvisited sibling, visit its leftmost descendant */
|
|
rbn = rb_next(&pos->rb);
|
|
if (rbn)
|
|
return kernfs_leftmost_descendant(rb_to_kn(rbn));
|
|
|
|
/* no sibling left, visit parent */
|
|
return pos->parent;
|
|
}
|
|
|
|
static void kernfs_activate_one(struct kernfs_node *kn)
|
|
{
|
|
lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
|
|
|
|
kn->flags |= KERNFS_ACTIVATED;
|
|
|
|
if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
|
|
return;
|
|
|
|
WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb));
|
|
WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
|
|
|
|
atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
|
|
}
|
|
|
|
/**
|
|
* kernfs_activate - activate a node which started deactivated
|
|
* @kn: kernfs_node whose subtree is to be activated
|
|
*
|
|
* If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
|
|
* needs to be explicitly activated. A node which hasn't been activated
|
|
* isn't visible to userland and deactivation is skipped during its
|
|
* removal. This is useful to construct atomic init sequences where
|
|
* creation of multiple nodes should either succeed or fail atomically.
|
|
*
|
|
* The caller is responsible for ensuring that this function is not called
|
|
* after kernfs_remove*() is invoked on @kn.
|
|
*/
|
|
void kernfs_activate(struct kernfs_node *kn)
|
|
{
|
|
struct kernfs_node *pos;
|
|
struct kernfs_root *root = kernfs_root(kn);
|
|
|
|
down_write(&root->kernfs_rwsem);
|
|
|
|
pos = NULL;
|
|
while ((pos = kernfs_next_descendant_post(pos, kn)))
|
|
kernfs_activate_one(pos);
|
|
|
|
up_write(&root->kernfs_rwsem);
|
|
}
|
|
|
|
/**
|
|
* kernfs_show - show or hide a node
|
|
* @kn: kernfs_node to show or hide
|
|
* @show: whether to show or hide
|
|
*
|
|
* If @show is %false, @kn is marked hidden and deactivated. A hidden node is
|
|
* ignored in future activaitons. If %true, the mark is removed and activation
|
|
* state is restored. This function won't implicitly activate a new node in a
|
|
* %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
|
|
*
|
|
* To avoid recursion complexities, directories aren't supported for now.
|
|
*/
|
|
void kernfs_show(struct kernfs_node *kn, bool show)
|
|
{
|
|
struct kernfs_root *root = kernfs_root(kn);
|
|
|
|
if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
|
|
return;
|
|
|
|
down_write(&root->kernfs_rwsem);
|
|
|
|
if (show) {
|
|
kn->flags &= ~KERNFS_HIDDEN;
|
|
if (kn->flags & KERNFS_ACTIVATED)
|
|
kernfs_activate_one(kn);
|
|
} else {
|
|
kn->flags |= KERNFS_HIDDEN;
|
|
if (kernfs_active(kn))
|
|
atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
|
|
kernfs_drain(kn);
|
|
}
|
|
|
|
up_write(&root->kernfs_rwsem);
|
|
}
|
|
|
|
static void __kernfs_remove(struct kernfs_node *kn)
|
|
{
|
|
struct kernfs_node *pos;
|
|
|
|
/* Short-circuit if non-root @kn has already finished removal. */
|
|
if (!kn)
|
|
return;
|
|
|
|
lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
|
|
|
|
/*
|
|
* This is for kernfs_remove_self() which plays with active ref
|
|
* after removal.
|
|
*/
|
|
if (kn->parent && RB_EMPTY_NODE(&kn->rb))
|
|
return;
|
|
|
|
pr_debug("kernfs %s: removing\n", kn->name);
|
|
|
|
/* prevent new usage by marking all nodes removing and deactivating */
|
|
pos = NULL;
|
|
while ((pos = kernfs_next_descendant_post(pos, kn))) {
|
|
pos->flags |= KERNFS_REMOVING;
|
|
if (kernfs_active(pos))
|
|
atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
|
|
}
|
|
|
|
/* deactivate and unlink the subtree node-by-node */
|
|
do {
|
|
pos = kernfs_leftmost_descendant(kn);
|
|
|
|
/*
|
|
* kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
|
|
* base ref could have been put by someone else by the time
|
|
* the function returns. Make sure it doesn't go away
|
|
* underneath us.
|
|
*/
|
|
kernfs_get(pos);
|
|
|
|
kernfs_drain(pos);
|
|
|
|
/*
|
|
* kernfs_unlink_sibling() succeeds once per node. Use it
|
|
* to decide who's responsible for cleanups.
|
|
*/
|
|
if (!pos->parent || kernfs_unlink_sibling(pos)) {
|
|
struct kernfs_iattrs *ps_iattr =
|
|
pos->parent ? pos->parent->iattr : NULL;
|
|
|
|
/* update timestamps on the parent */
|
|
down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
|
|
|
|
if (ps_iattr) {
|
|
ktime_get_real_ts64(&ps_iattr->ia_ctime);
|
|
ps_iattr->ia_mtime = ps_iattr->ia_ctime;
|
|
}
|
|
|
|
up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
|
|
kernfs_put(pos);
|
|
}
|
|
|
|
kernfs_put(pos);
|
|
} while (pos != kn);
|
|
}
|
|
|
|
/**
|
|
* kernfs_remove - remove a kernfs_node recursively
|
|
* @kn: the kernfs_node to remove
|
|
*
|
|
* Remove @kn along with all its subdirectories and files.
|
|
*/
|
|
void kernfs_remove(struct kernfs_node *kn)
|
|
{
|
|
struct kernfs_root *root;
|
|
|
|
if (!kn)
|
|
return;
|
|
|
|
root = kernfs_root(kn);
|
|
|
|
down_write(&root->kernfs_rwsem);
|
|
__kernfs_remove(kn);
|
|
up_write(&root->kernfs_rwsem);
|
|
}
|
|
|
|
/**
|
|
* kernfs_break_active_protection - break out of active protection
|
|
* @kn: the self kernfs_node
|
|
*
|
|
* The caller must be running off of a kernfs operation which is invoked
|
|
* with an active reference - e.g. one of kernfs_ops. Each invocation of
|
|
* this function must also be matched with an invocation of
|
|
* kernfs_unbreak_active_protection().
|
|
*
|
|
* This function releases the active reference of @kn the caller is
|
|
* holding. Once this function is called, @kn may be removed at any point
|
|
* and the caller is solely responsible for ensuring that the objects it
|
|
* dereferences are accessible.
|
|
*/
|
|
void kernfs_break_active_protection(struct kernfs_node *kn)
|
|
{
|
|
/*
|
|
* Take out ourself out of the active ref dependency chain. If
|
|
* we're called without an active ref, lockdep will complain.
|
|
*/
|
|
kernfs_put_active(kn);
|
|
}
|
|
|
|
/**
|
|
* kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
|
|
* @kn: the self kernfs_node
|
|
*
|
|
* If kernfs_break_active_protection() was called, this function must be
|
|
* invoked before finishing the kernfs operation. Note that while this
|
|
* function restores the active reference, it doesn't and can't actually
|
|
* restore the active protection - @kn may already or be in the process of
|
|
* being removed. Once kernfs_break_active_protection() is invoked, that
|
|
* protection is irreversibly gone for the kernfs operation instance.
|
|
*
|
|
* While this function may be called at any point after
|
|
* kernfs_break_active_protection() is invoked, its most useful location
|
|
* would be right before the enclosing kernfs operation returns.
|
|
*/
|
|
void kernfs_unbreak_active_protection(struct kernfs_node *kn)
|
|
{
|
|
/*
|
|
* @kn->active could be in any state; however, the increment we do
|
|
* here will be undone as soon as the enclosing kernfs operation
|
|
* finishes and this temporary bump can't break anything. If @kn
|
|
* is alive, nothing changes. If @kn is being deactivated, the
|
|
* soon-to-follow put will either finish deactivation or restore
|
|
* deactivated state. If @kn is already removed, the temporary
|
|
* bump is guaranteed to be gone before @kn is released.
|
|
*/
|
|
atomic_inc(&kn->active);
|
|
if (kernfs_lockdep(kn))
|
|
rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
|
|
}
|
|
|
|
/**
|
|
* kernfs_remove_self - remove a kernfs_node from its own method
|
|
* @kn: the self kernfs_node to remove
|
|
*
|
|
* The caller must be running off of a kernfs operation which is invoked
|
|
* with an active reference - e.g. one of kernfs_ops. This can be used to
|
|
* implement a file operation which deletes itself.
|
|
*
|
|
* For example, the "delete" file for a sysfs device directory can be
|
|
* implemented by invoking kernfs_remove_self() on the "delete" file
|
|
* itself. This function breaks the circular dependency of trying to
|
|
* deactivate self while holding an active ref itself. It isn't necessary
|
|
* to modify the usual removal path to use kernfs_remove_self(). The
|
|
* "delete" implementation can simply invoke kernfs_remove_self() on self
|
|
* before proceeding with the usual removal path. kernfs will ignore later
|
|
* kernfs_remove() on self.
|
|
*
|
|
* kernfs_remove_self() can be called multiple times concurrently on the
|
|
* same kernfs_node. Only the first one actually performs removal and
|
|
* returns %true. All others will wait until the kernfs operation which
|
|
* won self-removal finishes and return %false. Note that the losers wait
|
|
* for the completion of not only the winning kernfs_remove_self() but also
|
|
* the whole kernfs_ops which won the arbitration. This can be used to
|
|
* guarantee, for example, all concurrent writes to a "delete" file to
|
|
* finish only after the whole operation is complete.
|
|
*
|
|
* Return: %true if @kn is removed by this call, otherwise %false.
|
|
*/
|
|
bool kernfs_remove_self(struct kernfs_node *kn)
|
|
{
|
|
bool ret;
|
|
struct kernfs_root *root = kernfs_root(kn);
|
|
|
|
down_write(&root->kernfs_rwsem);
|
|
kernfs_break_active_protection(kn);
|
|
|
|
/*
|
|
* SUICIDAL is used to arbitrate among competing invocations. Only
|
|
* the first one will actually perform removal. When the removal
|
|
* is complete, SUICIDED is set and the active ref is restored
|
|
* while kernfs_rwsem for held exclusive. The ones which lost
|
|
* arbitration waits for SUICIDED && drained which can happen only
|
|
* after the enclosing kernfs operation which executed the winning
|
|
* instance of kernfs_remove_self() finished.
|
|
*/
|
|
if (!(kn->flags & KERNFS_SUICIDAL)) {
|
|
kn->flags |= KERNFS_SUICIDAL;
|
|
__kernfs_remove(kn);
|
|
kn->flags |= KERNFS_SUICIDED;
|
|
ret = true;
|
|
} else {
|
|
wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
|
|
DEFINE_WAIT(wait);
|
|
|
|
while (true) {
|
|
prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
|
|
|
|
if ((kn->flags & KERNFS_SUICIDED) &&
|
|
atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
|
|
break;
|
|
|
|
up_write(&root->kernfs_rwsem);
|
|
schedule();
|
|
down_write(&root->kernfs_rwsem);
|
|
}
|
|
finish_wait(waitq, &wait);
|
|
WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
|
|
ret = false;
|
|
}
|
|
|
|
/*
|
|
* This must be done while kernfs_rwsem held exclusive; otherwise,
|
|
* waiting for SUICIDED && deactivated could finish prematurely.
|
|
*/
|
|
kernfs_unbreak_active_protection(kn);
|
|
|
|
up_write(&root->kernfs_rwsem);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
|
|
* @parent: parent of the target
|
|
* @name: name of the kernfs_node to remove
|
|
* @ns: namespace tag of the kernfs_node to remove
|
|
*
|
|
* Look for the kernfs_node with @name and @ns under @parent and remove it.
|
|
*
|
|
* Return: %0 on success, -ENOENT if such entry doesn't exist.
|
|
*/
|
|
int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
|
|
const void *ns)
|
|
{
|
|
struct kernfs_node *kn;
|
|
struct kernfs_root *root;
|
|
|
|
if (!parent) {
|
|
WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
|
|
name);
|
|
return -ENOENT;
|
|
}
|
|
|
|
root = kernfs_root(parent);
|
|
down_write(&root->kernfs_rwsem);
|
|
|
|
kn = kernfs_find_ns(parent, name, ns);
|
|
if (kn) {
|
|
kernfs_get(kn);
|
|
__kernfs_remove(kn);
|
|
kernfs_put(kn);
|
|
}
|
|
|
|
up_write(&root->kernfs_rwsem);
|
|
|
|
if (kn)
|
|
return 0;
|
|
else
|
|
return -ENOENT;
|
|
}
|
|
|
|
/**
|
|
* kernfs_rename_ns - move and rename a kernfs_node
|
|
* @kn: target node
|
|
* @new_parent: new parent to put @sd under
|
|
* @new_name: new name
|
|
* @new_ns: new namespace tag
|
|
*
|
|
* Return: %0 on success, -errno on failure.
|
|
*/
|
|
int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
|
|
const char *new_name, const void *new_ns)
|
|
{
|
|
struct kernfs_node *old_parent;
|
|
struct kernfs_root *root;
|
|
const char *old_name = NULL;
|
|
int error;
|
|
|
|
/* can't move or rename root */
|
|
if (!kn->parent)
|
|
return -EINVAL;
|
|
|
|
root = kernfs_root(kn);
|
|
down_write(&root->kernfs_rwsem);
|
|
|
|
error = -ENOENT;
|
|
if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
|
|
(new_parent->flags & KERNFS_EMPTY_DIR))
|
|
goto out;
|
|
|
|
error = 0;
|
|
if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
|
|
(strcmp(kn->name, new_name) == 0))
|
|
goto out; /* nothing to rename */
|
|
|
|
error = -EEXIST;
|
|
if (kernfs_find_ns(new_parent, new_name, new_ns))
|
|
goto out;
|
|
|
|
/* rename kernfs_node */
|
|
if (strcmp(kn->name, new_name) != 0) {
|
|
error = -ENOMEM;
|
|
new_name = kstrdup_const(new_name, GFP_KERNEL);
|
|
if (!new_name)
|
|
goto out;
|
|
} else {
|
|
new_name = NULL;
|
|
}
|
|
|
|
/*
|
|
* Move to the appropriate place in the appropriate directories rbtree.
|
|
*/
|
|
kernfs_unlink_sibling(kn);
|
|
kernfs_get(new_parent);
|
|
|
|
/* rename_lock protects ->parent and ->name accessors */
|
|
write_lock_irq(&kernfs_rename_lock);
|
|
|
|
old_parent = kn->parent;
|
|
kn->parent = new_parent;
|
|
|
|
kn->ns = new_ns;
|
|
if (new_name) {
|
|
old_name = kn->name;
|
|
kn->name = new_name;
|
|
}
|
|
|
|
write_unlock_irq(&kernfs_rename_lock);
|
|
|
|
kn->hash = kernfs_name_hash(kn->name, kn->ns);
|
|
kernfs_link_sibling(kn);
|
|
|
|
kernfs_put(old_parent);
|
|
kfree_const(old_name);
|
|
|
|
error = 0;
|
|
out:
|
|
up_write(&root->kernfs_rwsem);
|
|
return error;
|
|
}
|
|
|
|
static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
|
|
{
|
|
kernfs_put(filp->private_data);
|
|
return 0;
|
|
}
|
|
|
|
static struct kernfs_node *kernfs_dir_pos(const void *ns,
|
|
struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
|
|
{
|
|
if (pos) {
|
|
int valid = kernfs_active(pos) &&
|
|
pos->parent == parent && hash == pos->hash;
|
|
kernfs_put(pos);
|
|
if (!valid)
|
|
pos = NULL;
|
|
}
|
|
if (!pos && (hash > 1) && (hash < INT_MAX)) {
|
|
struct rb_node *node = parent->dir.children.rb_node;
|
|
while (node) {
|
|
pos = rb_to_kn(node);
|
|
|
|
if (hash < pos->hash)
|
|
node = node->rb_left;
|
|
else if (hash > pos->hash)
|
|
node = node->rb_right;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
/* Skip over entries which are dying/dead or in the wrong namespace */
|
|
while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
|
|
struct rb_node *node = rb_next(&pos->rb);
|
|
if (!node)
|
|
pos = NULL;
|
|
else
|
|
pos = rb_to_kn(node);
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
|
|
struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
|
|
{
|
|
pos = kernfs_dir_pos(ns, parent, ino, pos);
|
|
if (pos) {
|
|
do {
|
|
struct rb_node *node = rb_next(&pos->rb);
|
|
if (!node)
|
|
pos = NULL;
|
|
else
|
|
pos = rb_to_kn(node);
|
|
} while (pos && (!kernfs_active(pos) || pos->ns != ns));
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
|
|
{
|
|
struct dentry *dentry = file->f_path.dentry;
|
|
struct kernfs_node *parent = kernfs_dentry_node(dentry);
|
|
struct kernfs_node *pos = file->private_data;
|
|
struct kernfs_root *root;
|
|
const void *ns = NULL;
|
|
|
|
if (!dir_emit_dots(file, ctx))
|
|
return 0;
|
|
|
|
root = kernfs_root(parent);
|
|
down_read(&root->kernfs_rwsem);
|
|
|
|
if (kernfs_ns_enabled(parent))
|
|
ns = kernfs_info(dentry->d_sb)->ns;
|
|
|
|
for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
|
|
pos;
|
|
pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
|
|
const char *name = pos->name;
|
|
unsigned int type = fs_umode_to_dtype(pos->mode);
|
|
int len = strlen(name);
|
|
ino_t ino = kernfs_ino(pos);
|
|
|
|
ctx->pos = pos->hash;
|
|
file->private_data = pos;
|
|
kernfs_get(pos);
|
|
|
|
up_read(&root->kernfs_rwsem);
|
|
if (!dir_emit(ctx, name, len, ino, type))
|
|
return 0;
|
|
down_read(&root->kernfs_rwsem);
|
|
}
|
|
up_read(&root->kernfs_rwsem);
|
|
file->private_data = NULL;
|
|
ctx->pos = INT_MAX;
|
|
return 0;
|
|
}
|
|
|
|
const struct file_operations kernfs_dir_fops = {
|
|
.read = generic_read_dir,
|
|
.iterate_shared = kernfs_fop_readdir,
|
|
.release = kernfs_dir_fop_release,
|
|
.llseek = generic_file_llseek,
|
|
};
|