linux/drivers/spi/spi-mtk-nor.c
Allen-KH Cheng 76900a136b spi: spi-mtk-nor: initialize spi controller after resume
[ Upstream commit 317c204561 ]

After system resumes, the registers of nor controller are
initialized with default values. The nor controller will
not function properly.

To handle both issues above, we add mtk_nor_init() in
mtk_nor_resume after pm_runtime_force_resume().

Fixes: 3bfd9103c7 ("spi: spi-mtk-nor: Add power management support")

Signed-off-by: Allen-KH Cheng <allen-kh.cheng@mediatek.com>
Reviewed-by: Rex-BC Chen <rex-bc.chen@mediatek.com>
Link: https://lore.kernel.org/r/20220412115743.22641-1-allen-kh.cheng@mediatek.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-04-27 14:38:52 +02:00

947 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Mediatek SPI NOR controller driver
//
// Copyright (C) 2020 Chuanhong Guo <gch981213@gmail.com>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/string.h>
#define DRIVER_NAME "mtk-spi-nor"
#define MTK_NOR_REG_CMD 0x00
#define MTK_NOR_CMD_WRITE BIT(4)
#define MTK_NOR_CMD_PROGRAM BIT(2)
#define MTK_NOR_CMD_READ BIT(0)
#define MTK_NOR_CMD_MASK GENMASK(5, 0)
#define MTK_NOR_REG_PRG_CNT 0x04
#define MTK_NOR_PRG_CNT_MAX 56
#define MTK_NOR_REG_RDATA 0x0c
#define MTK_NOR_REG_RADR0 0x10
#define MTK_NOR_REG_RADR(n) (MTK_NOR_REG_RADR0 + 4 * (n))
#define MTK_NOR_REG_RADR3 0xc8
#define MTK_NOR_REG_WDATA 0x1c
#define MTK_NOR_REG_PRGDATA0 0x20
#define MTK_NOR_REG_PRGDATA(n) (MTK_NOR_REG_PRGDATA0 + 4 * (n))
#define MTK_NOR_REG_PRGDATA_MAX 5
#define MTK_NOR_REG_SHIFT0 0x38
#define MTK_NOR_REG_SHIFT(n) (MTK_NOR_REG_SHIFT0 + 4 * (n))
#define MTK_NOR_REG_SHIFT_MAX 9
#define MTK_NOR_REG_CFG1 0x60
#define MTK_NOR_FAST_READ BIT(0)
#define MTK_NOR_REG_CFG2 0x64
#define MTK_NOR_WR_CUSTOM_OP_EN BIT(4)
#define MTK_NOR_WR_BUF_EN BIT(0)
#define MTK_NOR_REG_PP_DATA 0x98
#define MTK_NOR_REG_IRQ_STAT 0xa8
#define MTK_NOR_REG_IRQ_EN 0xac
#define MTK_NOR_IRQ_DMA BIT(7)
#define MTK_NOR_IRQ_MASK GENMASK(7, 0)
#define MTK_NOR_REG_CFG3 0xb4
#define MTK_NOR_DISABLE_WREN BIT(7)
#define MTK_NOR_DISABLE_SR_POLL BIT(5)
#define MTK_NOR_REG_WP 0xc4
#define MTK_NOR_ENABLE_SF_CMD 0x30
#define MTK_NOR_REG_BUSCFG 0xcc
#define MTK_NOR_4B_ADDR BIT(4)
#define MTK_NOR_QUAD_ADDR BIT(3)
#define MTK_NOR_QUAD_READ BIT(2)
#define MTK_NOR_DUAL_ADDR BIT(1)
#define MTK_NOR_DUAL_READ BIT(0)
#define MTK_NOR_BUS_MODE_MASK GENMASK(4, 0)
#define MTK_NOR_REG_DMA_CTL 0x718
#define MTK_NOR_DMA_START BIT(0)
#define MTK_NOR_REG_DMA_FADR 0x71c
#define MTK_NOR_REG_DMA_DADR 0x720
#define MTK_NOR_REG_DMA_END_DADR 0x724
#define MTK_NOR_REG_DMA_DADR_HB 0x738
#define MTK_NOR_REG_DMA_END_DADR_HB 0x73c
#define MTK_NOR_PRG_MAX_SIZE 6
// Reading DMA src/dst addresses have to be 16-byte aligned
#define MTK_NOR_DMA_ALIGN 16
#define MTK_NOR_DMA_ALIGN_MASK (MTK_NOR_DMA_ALIGN - 1)
// and we allocate a bounce buffer if destination address isn't aligned.
#define MTK_NOR_BOUNCE_BUF_SIZE PAGE_SIZE
// Buffered page program can do one 128-byte transfer
#define MTK_NOR_PP_SIZE 128
#define CLK_TO_US(sp, clkcnt) DIV_ROUND_UP(clkcnt, sp->spi_freq / 1000000)
struct mtk_nor {
struct spi_controller *ctlr;
struct device *dev;
void __iomem *base;
u8 *buffer;
dma_addr_t buffer_dma;
struct clk *spi_clk;
struct clk *ctlr_clk;
struct clk *axi_clk;
unsigned int spi_freq;
bool wbuf_en;
bool has_irq;
bool high_dma;
struct completion op_done;
};
static inline void mtk_nor_rmw(struct mtk_nor *sp, u32 reg, u32 set, u32 clr)
{
u32 val = readl(sp->base + reg);
val &= ~clr;
val |= set;
writel(val, sp->base + reg);
}
static inline int mtk_nor_cmd_exec(struct mtk_nor *sp, u32 cmd, ulong clk)
{
ulong delay = CLK_TO_US(sp, clk);
u32 reg;
int ret;
writel(cmd, sp->base + MTK_NOR_REG_CMD);
ret = readl_poll_timeout(sp->base + MTK_NOR_REG_CMD, reg, !(reg & cmd),
delay / 3, (delay + 1) * 200);
if (ret < 0)
dev_err(sp->dev, "command %u timeout.\n", cmd);
return ret;
}
static void mtk_nor_set_addr(struct mtk_nor *sp, const struct spi_mem_op *op)
{
u32 addr = op->addr.val;
int i;
for (i = 0; i < 3; i++) {
writeb(addr & 0xff, sp->base + MTK_NOR_REG_RADR(i));
addr >>= 8;
}
if (op->addr.nbytes == 4) {
writeb(addr & 0xff, sp->base + MTK_NOR_REG_RADR3);
mtk_nor_rmw(sp, MTK_NOR_REG_BUSCFG, MTK_NOR_4B_ADDR, 0);
} else {
mtk_nor_rmw(sp, MTK_NOR_REG_BUSCFG, 0, MTK_NOR_4B_ADDR);
}
}
static bool need_bounce(struct mtk_nor *sp, const struct spi_mem_op *op)
{
return ((uintptr_t)op->data.buf.in & MTK_NOR_DMA_ALIGN_MASK);
}
static bool mtk_nor_match_read(const struct spi_mem_op *op)
{
int dummy = 0;
if (op->dummy.nbytes)
dummy = op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth;
if ((op->data.buswidth == 2) || (op->data.buswidth == 4)) {
if (op->addr.buswidth == 1)
return dummy == 8;
else if (op->addr.buswidth == 2)
return dummy == 4;
else if (op->addr.buswidth == 4)
return dummy == 6;
} else if ((op->addr.buswidth == 1) && (op->data.buswidth == 1)) {
if (op->cmd.opcode == 0x03)
return dummy == 0;
else if (op->cmd.opcode == 0x0b)
return dummy == 8;
}
return false;
}
static bool mtk_nor_match_prg(const struct spi_mem_op *op)
{
int tx_len, rx_len, prg_len, prg_left;
// prg mode is spi-only.
if ((op->cmd.buswidth > 1) || (op->addr.buswidth > 1) ||
(op->dummy.buswidth > 1) || (op->data.buswidth > 1))
return false;
tx_len = op->cmd.nbytes + op->addr.nbytes;
if (op->data.dir == SPI_MEM_DATA_OUT) {
// count dummy bytes only if we need to write data after it
tx_len += op->dummy.nbytes;
// leave at least one byte for data
if (tx_len > MTK_NOR_REG_PRGDATA_MAX)
return false;
// if there's no addr, meaning adjust_op_size is impossible,
// check data length as well.
if ((!op->addr.nbytes) &&
(tx_len + op->data.nbytes > MTK_NOR_REG_PRGDATA_MAX + 1))
return false;
} else if (op->data.dir == SPI_MEM_DATA_IN) {
if (tx_len > MTK_NOR_REG_PRGDATA_MAX + 1)
return false;
rx_len = op->data.nbytes;
prg_left = MTK_NOR_PRG_CNT_MAX / 8 - tx_len - op->dummy.nbytes;
if (prg_left > MTK_NOR_REG_SHIFT_MAX + 1)
prg_left = MTK_NOR_REG_SHIFT_MAX + 1;
if (rx_len > prg_left) {
if (!op->addr.nbytes)
return false;
rx_len = prg_left;
}
prg_len = tx_len + op->dummy.nbytes + rx_len;
if (prg_len > MTK_NOR_PRG_CNT_MAX / 8)
return false;
} else {
prg_len = tx_len + op->dummy.nbytes;
if (prg_len > MTK_NOR_PRG_CNT_MAX / 8)
return false;
}
return true;
}
static void mtk_nor_adj_prg_size(struct spi_mem_op *op)
{
int tx_len, tx_left, prg_left;
tx_len = op->cmd.nbytes + op->addr.nbytes;
if (op->data.dir == SPI_MEM_DATA_OUT) {
tx_len += op->dummy.nbytes;
tx_left = MTK_NOR_REG_PRGDATA_MAX + 1 - tx_len;
if (op->data.nbytes > tx_left)
op->data.nbytes = tx_left;
} else if (op->data.dir == SPI_MEM_DATA_IN) {
prg_left = MTK_NOR_PRG_CNT_MAX / 8 - tx_len - op->dummy.nbytes;
if (prg_left > MTK_NOR_REG_SHIFT_MAX + 1)
prg_left = MTK_NOR_REG_SHIFT_MAX + 1;
if (op->data.nbytes > prg_left)
op->data.nbytes = prg_left;
}
}
static int mtk_nor_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
struct mtk_nor *sp = spi_controller_get_devdata(mem->spi->master);
if (!op->data.nbytes)
return 0;
if ((op->addr.nbytes == 3) || (op->addr.nbytes == 4)) {
if ((op->data.dir == SPI_MEM_DATA_IN) &&
mtk_nor_match_read(op)) {
// limit size to prevent timeout calculation overflow
if (op->data.nbytes > 0x400000)
op->data.nbytes = 0x400000;
if ((op->addr.val & MTK_NOR_DMA_ALIGN_MASK) ||
(op->data.nbytes < MTK_NOR_DMA_ALIGN))
op->data.nbytes = 1;
else if (!need_bounce(sp, op))
op->data.nbytes &= ~MTK_NOR_DMA_ALIGN_MASK;
else if (op->data.nbytes > MTK_NOR_BOUNCE_BUF_SIZE)
op->data.nbytes = MTK_NOR_BOUNCE_BUF_SIZE;
return 0;
} else if (op->data.dir == SPI_MEM_DATA_OUT) {
if (op->data.nbytes >= MTK_NOR_PP_SIZE)
op->data.nbytes = MTK_NOR_PP_SIZE;
else
op->data.nbytes = 1;
return 0;
}
}
mtk_nor_adj_prg_size(op);
return 0;
}
static bool mtk_nor_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (!spi_mem_default_supports_op(mem, op))
return false;
if (op->cmd.buswidth != 1)
return false;
if ((op->addr.nbytes == 3) || (op->addr.nbytes == 4)) {
switch (op->data.dir) {
case SPI_MEM_DATA_IN:
if (mtk_nor_match_read(op))
return true;
break;
case SPI_MEM_DATA_OUT:
if ((op->addr.buswidth == 1) &&
(op->dummy.nbytes == 0) &&
(op->data.buswidth == 1))
return true;
break;
default:
break;
}
}
return mtk_nor_match_prg(op);
}
static void mtk_nor_setup_bus(struct mtk_nor *sp, const struct spi_mem_op *op)
{
u32 reg = 0;
if (op->addr.nbytes == 4)
reg |= MTK_NOR_4B_ADDR;
if (op->data.buswidth == 4) {
reg |= MTK_NOR_QUAD_READ;
writeb(op->cmd.opcode, sp->base + MTK_NOR_REG_PRGDATA(4));
if (op->addr.buswidth == 4)
reg |= MTK_NOR_QUAD_ADDR;
} else if (op->data.buswidth == 2) {
reg |= MTK_NOR_DUAL_READ;
writeb(op->cmd.opcode, sp->base + MTK_NOR_REG_PRGDATA(3));
if (op->addr.buswidth == 2)
reg |= MTK_NOR_DUAL_ADDR;
} else {
if (op->cmd.opcode == 0x0b)
mtk_nor_rmw(sp, MTK_NOR_REG_CFG1, MTK_NOR_FAST_READ, 0);
else
mtk_nor_rmw(sp, MTK_NOR_REG_CFG1, 0, MTK_NOR_FAST_READ);
}
mtk_nor_rmw(sp, MTK_NOR_REG_BUSCFG, reg, MTK_NOR_BUS_MODE_MASK);
}
static int mtk_nor_dma_exec(struct mtk_nor *sp, u32 from, unsigned int length,
dma_addr_t dma_addr)
{
int ret = 0;
ulong delay;
u32 reg;
writel(from, sp->base + MTK_NOR_REG_DMA_FADR);
writel(dma_addr, sp->base + MTK_NOR_REG_DMA_DADR);
writel(dma_addr + length, sp->base + MTK_NOR_REG_DMA_END_DADR);
if (sp->high_dma) {
writel(upper_32_bits(dma_addr),
sp->base + MTK_NOR_REG_DMA_DADR_HB);
writel(upper_32_bits(dma_addr + length),
sp->base + MTK_NOR_REG_DMA_END_DADR_HB);
}
if (sp->has_irq) {
reinit_completion(&sp->op_done);
mtk_nor_rmw(sp, MTK_NOR_REG_IRQ_EN, MTK_NOR_IRQ_DMA, 0);
}
mtk_nor_rmw(sp, MTK_NOR_REG_DMA_CTL, MTK_NOR_DMA_START, 0);
delay = CLK_TO_US(sp, (length + 5) * BITS_PER_BYTE);
if (sp->has_irq) {
if (!wait_for_completion_timeout(&sp->op_done,
(delay + 1) * 100))
ret = -ETIMEDOUT;
} else {
ret = readl_poll_timeout(sp->base + MTK_NOR_REG_DMA_CTL, reg,
!(reg & MTK_NOR_DMA_START), delay / 3,
(delay + 1) * 100);
}
if (ret < 0)
dev_err(sp->dev, "dma read timeout.\n");
return ret;
}
static int mtk_nor_read_bounce(struct mtk_nor *sp, const struct spi_mem_op *op)
{
unsigned int rdlen;
int ret;
if (op->data.nbytes & MTK_NOR_DMA_ALIGN_MASK)
rdlen = (op->data.nbytes + MTK_NOR_DMA_ALIGN) & ~MTK_NOR_DMA_ALIGN_MASK;
else
rdlen = op->data.nbytes;
ret = mtk_nor_dma_exec(sp, op->addr.val, rdlen, sp->buffer_dma);
if (!ret)
memcpy(op->data.buf.in, sp->buffer, op->data.nbytes);
return ret;
}
static int mtk_nor_read_dma(struct mtk_nor *sp, const struct spi_mem_op *op)
{
int ret;
dma_addr_t dma_addr;
if (need_bounce(sp, op))
return mtk_nor_read_bounce(sp, op);
dma_addr = dma_map_single(sp->dev, op->data.buf.in,
op->data.nbytes, DMA_FROM_DEVICE);
if (dma_mapping_error(sp->dev, dma_addr))
return -EINVAL;
ret = mtk_nor_dma_exec(sp, op->addr.val, op->data.nbytes, dma_addr);
dma_unmap_single(sp->dev, dma_addr, op->data.nbytes, DMA_FROM_DEVICE);
return ret;
}
static int mtk_nor_read_pio(struct mtk_nor *sp, const struct spi_mem_op *op)
{
u8 *buf = op->data.buf.in;
int ret;
ret = mtk_nor_cmd_exec(sp, MTK_NOR_CMD_READ, 6 * BITS_PER_BYTE);
if (!ret)
buf[0] = readb(sp->base + MTK_NOR_REG_RDATA);
return ret;
}
static int mtk_nor_write_buffer_enable(struct mtk_nor *sp)
{
int ret;
u32 val;
if (sp->wbuf_en)
return 0;
val = readl(sp->base + MTK_NOR_REG_CFG2);
writel(val | MTK_NOR_WR_BUF_EN, sp->base + MTK_NOR_REG_CFG2);
ret = readl_poll_timeout(sp->base + MTK_NOR_REG_CFG2, val,
val & MTK_NOR_WR_BUF_EN, 0, 10000);
if (!ret)
sp->wbuf_en = true;
return ret;
}
static int mtk_nor_write_buffer_disable(struct mtk_nor *sp)
{
int ret;
u32 val;
if (!sp->wbuf_en)
return 0;
val = readl(sp->base + MTK_NOR_REG_CFG2);
writel(val & ~MTK_NOR_WR_BUF_EN, sp->base + MTK_NOR_REG_CFG2);
ret = readl_poll_timeout(sp->base + MTK_NOR_REG_CFG2, val,
!(val & MTK_NOR_WR_BUF_EN), 0, 10000);
if (!ret)
sp->wbuf_en = false;
return ret;
}
static int mtk_nor_pp_buffered(struct mtk_nor *sp, const struct spi_mem_op *op)
{
const u8 *buf = op->data.buf.out;
u32 val;
int ret, i;
ret = mtk_nor_write_buffer_enable(sp);
if (ret < 0)
return ret;
for (i = 0; i < op->data.nbytes; i += 4) {
val = buf[i + 3] << 24 | buf[i + 2] << 16 | buf[i + 1] << 8 |
buf[i];
writel(val, sp->base + MTK_NOR_REG_PP_DATA);
}
return mtk_nor_cmd_exec(sp, MTK_NOR_CMD_WRITE,
(op->data.nbytes + 5) * BITS_PER_BYTE);
}
static int mtk_nor_pp_unbuffered(struct mtk_nor *sp,
const struct spi_mem_op *op)
{
const u8 *buf = op->data.buf.out;
int ret;
ret = mtk_nor_write_buffer_disable(sp);
if (ret < 0)
return ret;
writeb(buf[0], sp->base + MTK_NOR_REG_WDATA);
return mtk_nor_cmd_exec(sp, MTK_NOR_CMD_WRITE, 6 * BITS_PER_BYTE);
}
static int mtk_nor_spi_mem_prg(struct mtk_nor *sp, const struct spi_mem_op *op)
{
int rx_len = 0;
int reg_offset = MTK_NOR_REG_PRGDATA_MAX;
int tx_len, prg_len;
int i, ret;
void __iomem *reg;
u8 bufbyte;
tx_len = op->cmd.nbytes + op->addr.nbytes;
// count dummy bytes only if we need to write data after it
if (op->data.dir == SPI_MEM_DATA_OUT)
tx_len += op->dummy.nbytes + op->data.nbytes;
else if (op->data.dir == SPI_MEM_DATA_IN)
rx_len = op->data.nbytes;
prg_len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes +
op->data.nbytes;
// an invalid op may reach here if the caller calls exec_op without
// adjust_op_size. return -EINVAL instead of -ENOTSUPP so that
// spi-mem won't try this op again with generic spi transfers.
if ((tx_len > MTK_NOR_REG_PRGDATA_MAX + 1) ||
(rx_len > MTK_NOR_REG_SHIFT_MAX + 1) ||
(prg_len > MTK_NOR_PRG_CNT_MAX / 8))
return -EINVAL;
// fill tx data
for (i = op->cmd.nbytes; i > 0; i--, reg_offset--) {
reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
bufbyte = (op->cmd.opcode >> ((i - 1) * BITS_PER_BYTE)) & 0xff;
writeb(bufbyte, reg);
}
for (i = op->addr.nbytes; i > 0; i--, reg_offset--) {
reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
bufbyte = (op->addr.val >> ((i - 1) * BITS_PER_BYTE)) & 0xff;
writeb(bufbyte, reg);
}
if (op->data.dir == SPI_MEM_DATA_OUT) {
for (i = 0; i < op->dummy.nbytes; i++, reg_offset--) {
reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
writeb(0, reg);
}
for (i = 0; i < op->data.nbytes; i++, reg_offset--) {
reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
writeb(((const u8 *)(op->data.buf.out))[i], reg);
}
}
for (; reg_offset >= 0; reg_offset--) {
reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
writeb(0, reg);
}
// trigger op
writel(prg_len * BITS_PER_BYTE, sp->base + MTK_NOR_REG_PRG_CNT);
ret = mtk_nor_cmd_exec(sp, MTK_NOR_CMD_PROGRAM,
prg_len * BITS_PER_BYTE);
if (ret)
return ret;
// fetch read data
reg_offset = 0;
if (op->data.dir == SPI_MEM_DATA_IN) {
for (i = op->data.nbytes - 1; i >= 0; i--, reg_offset++) {
reg = sp->base + MTK_NOR_REG_SHIFT(reg_offset);
((u8 *)(op->data.buf.in))[i] = readb(reg);
}
}
return 0;
}
static int mtk_nor_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct mtk_nor *sp = spi_controller_get_devdata(mem->spi->master);
int ret;
if ((op->data.nbytes == 0) ||
((op->addr.nbytes != 3) && (op->addr.nbytes != 4)))
return mtk_nor_spi_mem_prg(sp, op);
if (op->data.dir == SPI_MEM_DATA_OUT) {
mtk_nor_set_addr(sp, op);
writeb(op->cmd.opcode, sp->base + MTK_NOR_REG_PRGDATA0);
if (op->data.nbytes == MTK_NOR_PP_SIZE)
return mtk_nor_pp_buffered(sp, op);
return mtk_nor_pp_unbuffered(sp, op);
}
if ((op->data.dir == SPI_MEM_DATA_IN) && mtk_nor_match_read(op)) {
ret = mtk_nor_write_buffer_disable(sp);
if (ret < 0)
return ret;
mtk_nor_setup_bus(sp, op);
if (op->data.nbytes == 1) {
mtk_nor_set_addr(sp, op);
return mtk_nor_read_pio(sp, op);
} else {
return mtk_nor_read_dma(sp, op);
}
}
return mtk_nor_spi_mem_prg(sp, op);
}
static int mtk_nor_setup(struct spi_device *spi)
{
struct mtk_nor *sp = spi_controller_get_devdata(spi->master);
if (spi->max_speed_hz && (spi->max_speed_hz < sp->spi_freq)) {
dev_err(&spi->dev, "spi clock should be %u Hz.\n",
sp->spi_freq);
return -EINVAL;
}
spi->max_speed_hz = sp->spi_freq;
return 0;
}
static int mtk_nor_transfer_one_message(struct spi_controller *master,
struct spi_message *m)
{
struct mtk_nor *sp = spi_controller_get_devdata(master);
struct spi_transfer *t = NULL;
unsigned long trx_len = 0;
int stat = 0;
int reg_offset = MTK_NOR_REG_PRGDATA_MAX;
void __iomem *reg;
const u8 *txbuf;
u8 *rxbuf;
int i;
list_for_each_entry(t, &m->transfers, transfer_list) {
txbuf = t->tx_buf;
for (i = 0; i < t->len; i++, reg_offset--) {
reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
if (txbuf)
writeb(txbuf[i], reg);
else
writeb(0, reg);
}
trx_len += t->len;
}
writel(trx_len * BITS_PER_BYTE, sp->base + MTK_NOR_REG_PRG_CNT);
stat = mtk_nor_cmd_exec(sp, MTK_NOR_CMD_PROGRAM,
trx_len * BITS_PER_BYTE);
if (stat < 0)
goto msg_done;
reg_offset = trx_len - 1;
list_for_each_entry(t, &m->transfers, transfer_list) {
rxbuf = t->rx_buf;
for (i = 0; i < t->len; i++, reg_offset--) {
reg = sp->base + MTK_NOR_REG_SHIFT(reg_offset);
if (rxbuf)
rxbuf[i] = readb(reg);
}
}
m->actual_length = trx_len;
msg_done:
m->status = stat;
spi_finalize_current_message(master);
return 0;
}
static void mtk_nor_disable_clk(struct mtk_nor *sp)
{
clk_disable_unprepare(sp->spi_clk);
clk_disable_unprepare(sp->ctlr_clk);
clk_disable_unprepare(sp->axi_clk);
}
static int mtk_nor_enable_clk(struct mtk_nor *sp)
{
int ret;
ret = clk_prepare_enable(sp->spi_clk);
if (ret)
return ret;
ret = clk_prepare_enable(sp->ctlr_clk);
if (ret) {
clk_disable_unprepare(sp->spi_clk);
return ret;
}
ret = clk_prepare_enable(sp->axi_clk);
if (ret) {
clk_disable_unprepare(sp->spi_clk);
clk_disable_unprepare(sp->ctlr_clk);
return ret;
}
return 0;
}
static void mtk_nor_init(struct mtk_nor *sp)
{
writel(0, sp->base + MTK_NOR_REG_IRQ_EN);
writel(MTK_NOR_IRQ_MASK, sp->base + MTK_NOR_REG_IRQ_STAT);
writel(MTK_NOR_ENABLE_SF_CMD, sp->base + MTK_NOR_REG_WP);
mtk_nor_rmw(sp, MTK_NOR_REG_CFG2, MTK_NOR_WR_CUSTOM_OP_EN, 0);
mtk_nor_rmw(sp, MTK_NOR_REG_CFG3,
MTK_NOR_DISABLE_WREN | MTK_NOR_DISABLE_SR_POLL, 0);
}
static irqreturn_t mtk_nor_irq_handler(int irq, void *data)
{
struct mtk_nor *sp = data;
u32 irq_status, irq_enabled;
irq_status = readl(sp->base + MTK_NOR_REG_IRQ_STAT);
irq_enabled = readl(sp->base + MTK_NOR_REG_IRQ_EN);
// write status back to clear interrupt
writel(irq_status, sp->base + MTK_NOR_REG_IRQ_STAT);
if (!(irq_status & irq_enabled))
return IRQ_NONE;
if (irq_status & MTK_NOR_IRQ_DMA) {
complete(&sp->op_done);
writel(0, sp->base + MTK_NOR_REG_IRQ_EN);
}
return IRQ_HANDLED;
}
static size_t mtk_max_msg_size(struct spi_device *spi)
{
return MTK_NOR_PRG_MAX_SIZE;
}
static const struct spi_controller_mem_ops mtk_nor_mem_ops = {
.adjust_op_size = mtk_nor_adjust_op_size,
.supports_op = mtk_nor_supports_op,
.exec_op = mtk_nor_exec_op
};
static const struct of_device_id mtk_nor_match[] = {
{ .compatible = "mediatek,mt8192-nor", .data = (void *)36 },
{ .compatible = "mediatek,mt8173-nor", .data = (void *)32 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mtk_nor_match);
static int mtk_nor_probe(struct platform_device *pdev)
{
struct spi_controller *ctlr;
struct mtk_nor *sp;
void __iomem *base;
struct clk *spi_clk, *ctlr_clk, *axi_clk;
int ret, irq;
unsigned long dma_bits;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
spi_clk = devm_clk_get(&pdev->dev, "spi");
if (IS_ERR(spi_clk))
return PTR_ERR(spi_clk);
ctlr_clk = devm_clk_get(&pdev->dev, "sf");
if (IS_ERR(ctlr_clk))
return PTR_ERR(ctlr_clk);
axi_clk = devm_clk_get_optional(&pdev->dev, "axi");
if (IS_ERR(axi_clk))
return PTR_ERR(axi_clk);
dma_bits = (unsigned long)of_device_get_match_data(&pdev->dev);
if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(dma_bits))) {
dev_err(&pdev->dev, "failed to set dma mask(%lu)\n", dma_bits);
return -EINVAL;
}
ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*sp));
if (!ctlr) {
dev_err(&pdev->dev, "failed to allocate spi controller\n");
return -ENOMEM;
}
ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
ctlr->dev.of_node = pdev->dev.of_node;
ctlr->max_message_size = mtk_max_msg_size;
ctlr->mem_ops = &mtk_nor_mem_ops;
ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
ctlr->num_chipselect = 1;
ctlr->setup = mtk_nor_setup;
ctlr->transfer_one_message = mtk_nor_transfer_one_message;
ctlr->auto_runtime_pm = true;
dev_set_drvdata(&pdev->dev, ctlr);
sp = spi_controller_get_devdata(ctlr);
sp->base = base;
sp->has_irq = false;
sp->wbuf_en = false;
sp->ctlr = ctlr;
sp->dev = &pdev->dev;
sp->spi_clk = spi_clk;
sp->ctlr_clk = ctlr_clk;
sp->axi_clk = axi_clk;
sp->high_dma = (dma_bits > 32);
sp->buffer = dmam_alloc_coherent(&pdev->dev,
MTK_NOR_BOUNCE_BUF_SIZE + MTK_NOR_DMA_ALIGN,
&sp->buffer_dma, GFP_KERNEL);
if (!sp->buffer)
return -ENOMEM;
if ((uintptr_t)sp->buffer & MTK_NOR_DMA_ALIGN_MASK) {
dev_err(sp->dev, "misaligned allocation of internal buffer.\n");
return -ENOMEM;
}
ret = mtk_nor_enable_clk(sp);
if (ret < 0)
return ret;
sp->spi_freq = clk_get_rate(sp->spi_clk);
mtk_nor_init(sp);
irq = platform_get_irq_optional(pdev, 0);
if (irq < 0) {
dev_warn(sp->dev, "IRQ not available.");
} else {
ret = devm_request_irq(sp->dev, irq, mtk_nor_irq_handler, 0,
pdev->name, sp);
if (ret < 0) {
dev_warn(sp->dev, "failed to request IRQ.");
} else {
init_completion(&sp->op_done);
sp->has_irq = true;
}
}
pm_runtime_set_autosuspend_delay(&pdev->dev, -1);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
ret = devm_spi_register_controller(&pdev->dev, ctlr);
if (ret < 0)
goto err_probe;
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
dev_info(&pdev->dev, "spi frequency: %d Hz\n", sp->spi_freq);
return 0;
err_probe:
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
mtk_nor_disable_clk(sp);
return ret;
}
static int mtk_nor_remove(struct platform_device *pdev)
{
struct spi_controller *ctlr = dev_get_drvdata(&pdev->dev);
struct mtk_nor *sp = spi_controller_get_devdata(ctlr);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
mtk_nor_disable_clk(sp);
return 0;
}
static int __maybe_unused mtk_nor_runtime_suspend(struct device *dev)
{
struct spi_controller *ctlr = dev_get_drvdata(dev);
struct mtk_nor *sp = spi_controller_get_devdata(ctlr);
mtk_nor_disable_clk(sp);
return 0;
}
static int __maybe_unused mtk_nor_runtime_resume(struct device *dev)
{
struct spi_controller *ctlr = dev_get_drvdata(dev);
struct mtk_nor *sp = spi_controller_get_devdata(ctlr);
return mtk_nor_enable_clk(sp);
}
static int __maybe_unused mtk_nor_suspend(struct device *dev)
{
return pm_runtime_force_suspend(dev);
}
static int __maybe_unused mtk_nor_resume(struct device *dev)
{
struct spi_controller *ctlr = dev_get_drvdata(dev);
struct mtk_nor *sp = spi_controller_get_devdata(ctlr);
int ret;
ret = pm_runtime_force_resume(dev);
if (ret)
return ret;
mtk_nor_init(sp);
return 0;
}
static const struct dev_pm_ops mtk_nor_pm_ops = {
SET_RUNTIME_PM_OPS(mtk_nor_runtime_suspend,
mtk_nor_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(mtk_nor_suspend, mtk_nor_resume)
};
static struct platform_driver mtk_nor_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = mtk_nor_match,
.pm = &mtk_nor_pm_ops,
},
.probe = mtk_nor_probe,
.remove = mtk_nor_remove,
};
module_platform_driver(mtk_nor_driver);
MODULE_DESCRIPTION("Mediatek SPI NOR controller driver");
MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);