linux/drivers/infiniband/hw/hns/hns_roce_mr.c
Colin Ian King e930b4d8a5 RDMA/hns: remove redundant assignment to variable j
Variable j is being assigned to loop_j and then later being
assigned to a new value in for loops. The first initialization
is therefore redundant and can be removed.

Cleans up clang warning:
warning: Value stored to 'j' is never read

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-09-29 11:18:56 -04:00

1048 lines
24 KiB
C

/*
* Copyright (c) 2016 Hisilicon Limited.
* Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/platform_device.h>
#include <linux/vmalloc.h>
#include <rdma/ib_umem.h>
#include "hns_roce_device.h"
#include "hns_roce_cmd.h"
#include "hns_roce_hem.h"
static u32 hw_index_to_key(unsigned long ind)
{
return (u32)(ind >> 24) | (ind << 8);
}
unsigned long key_to_hw_index(u32 key)
{
return (key << 24) | (key >> 8);
}
EXPORT_SYMBOL_GPL(key_to_hw_index);
static int hns_roce_sw2hw_mpt(struct hns_roce_dev *hr_dev,
struct hns_roce_cmd_mailbox *mailbox,
unsigned long mpt_index)
{
return hns_roce_cmd_mbox(hr_dev, mailbox->dma, 0, mpt_index, 0,
HNS_ROCE_CMD_SW2HW_MPT,
HNS_ROCE_CMD_TIMEOUT_MSECS);
}
int hns_roce_hw2sw_mpt(struct hns_roce_dev *hr_dev,
struct hns_roce_cmd_mailbox *mailbox,
unsigned long mpt_index)
{
return hns_roce_cmd_mbox(hr_dev, 0, mailbox ? mailbox->dma : 0,
mpt_index, !mailbox, HNS_ROCE_CMD_HW2SW_MPT,
HNS_ROCE_CMD_TIMEOUT_MSECS);
}
EXPORT_SYMBOL_GPL(hns_roce_hw2sw_mpt);
static int hns_roce_buddy_alloc(struct hns_roce_buddy *buddy, int order,
unsigned long *seg)
{
int o;
u32 m;
spin_lock(&buddy->lock);
for (o = order; o <= buddy->max_order; ++o) {
if (buddy->num_free[o]) {
m = 1 << (buddy->max_order - o);
*seg = find_first_bit(buddy->bits[o], m);
if (*seg < m)
goto found;
}
}
spin_unlock(&buddy->lock);
return -1;
found:
clear_bit(*seg, buddy->bits[o]);
--buddy->num_free[o];
while (o > order) {
--o;
*seg <<= 1;
set_bit(*seg ^ 1, buddy->bits[o]);
++buddy->num_free[o];
}
spin_unlock(&buddy->lock);
*seg <<= order;
return 0;
}
static void hns_roce_buddy_free(struct hns_roce_buddy *buddy, unsigned long seg,
int order)
{
seg >>= order;
spin_lock(&buddy->lock);
while (test_bit(seg ^ 1, buddy->bits[order])) {
clear_bit(seg ^ 1, buddy->bits[order]);
--buddy->num_free[order];
seg >>= 1;
++order;
}
set_bit(seg, buddy->bits[order]);
++buddy->num_free[order];
spin_unlock(&buddy->lock);
}
static int hns_roce_buddy_init(struct hns_roce_buddy *buddy, int max_order)
{
int i, s;
buddy->max_order = max_order;
spin_lock_init(&buddy->lock);
buddy->bits = kcalloc(buddy->max_order + 1,
sizeof(*buddy->bits),
GFP_KERNEL);
buddy->num_free = kcalloc(buddy->max_order + 1,
sizeof(*buddy->num_free),
GFP_KERNEL);
if (!buddy->bits || !buddy->num_free)
goto err_out;
for (i = 0; i <= buddy->max_order; ++i) {
s = BITS_TO_LONGS(1 << (buddy->max_order - i));
buddy->bits[i] = kcalloc(s, sizeof(long), GFP_KERNEL |
__GFP_NOWARN);
if (!buddy->bits[i]) {
buddy->bits[i] = vzalloc(s * sizeof(long));
if (!buddy->bits[i])
goto err_out_free;
}
}
set_bit(0, buddy->bits[buddy->max_order]);
buddy->num_free[buddy->max_order] = 1;
return 0;
err_out_free:
for (i = 0; i <= buddy->max_order; ++i)
kvfree(buddy->bits[i]);
err_out:
kfree(buddy->bits);
kfree(buddy->num_free);
return -ENOMEM;
}
static void hns_roce_buddy_cleanup(struct hns_roce_buddy *buddy)
{
int i;
for (i = 0; i <= buddy->max_order; ++i)
kvfree(buddy->bits[i]);
kfree(buddy->bits);
kfree(buddy->num_free);
}
static int hns_roce_alloc_mtt_range(struct hns_roce_dev *hr_dev, int order,
unsigned long *seg, u32 mtt_type)
{
struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
struct hns_roce_hem_table *table;
struct hns_roce_buddy *buddy;
int ret;
if (mtt_type == MTT_TYPE_WQE) {
buddy = &mr_table->mtt_buddy;
table = &mr_table->mtt_table;
} else {
buddy = &mr_table->mtt_cqe_buddy;
table = &mr_table->mtt_cqe_table;
}
ret = hns_roce_buddy_alloc(buddy, order, seg);
if (ret == -1)
return -1;
if (hns_roce_table_get_range(hr_dev, table, *seg,
*seg + (1 << order) - 1)) {
hns_roce_buddy_free(buddy, *seg, order);
return -1;
}
return 0;
}
int hns_roce_mtt_init(struct hns_roce_dev *hr_dev, int npages, int page_shift,
struct hns_roce_mtt *mtt)
{
int ret;
int i;
/* Page num is zero, correspond to DMA memory register */
if (!npages) {
mtt->order = -1;
mtt->page_shift = HNS_ROCE_HEM_PAGE_SHIFT;
return 0;
}
/* Note: if page_shift is zero, FAST memory register */
mtt->page_shift = page_shift;
/* Compute MTT entry necessary */
for (mtt->order = 0, i = HNS_ROCE_MTT_ENTRY_PER_SEG; i < npages;
i <<= 1)
++mtt->order;
/* Allocate MTT entry */
ret = hns_roce_alloc_mtt_range(hr_dev, mtt->order, &mtt->first_seg,
mtt->mtt_type);
if (ret == -1)
return -ENOMEM;
return 0;
}
void hns_roce_mtt_cleanup(struct hns_roce_dev *hr_dev, struct hns_roce_mtt *mtt)
{
struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
if (mtt->order < 0)
return;
if (mtt->mtt_type == MTT_TYPE_WQE) {
hns_roce_buddy_free(&mr_table->mtt_buddy, mtt->first_seg,
mtt->order);
hns_roce_table_put_range(hr_dev, &mr_table->mtt_table,
mtt->first_seg,
mtt->first_seg + (1 << mtt->order) - 1);
} else {
hns_roce_buddy_free(&mr_table->mtt_cqe_buddy, mtt->first_seg,
mtt->order);
hns_roce_table_put_range(hr_dev, &mr_table->mtt_cqe_table,
mtt->first_seg,
mtt->first_seg + (1 << mtt->order) - 1);
}
}
EXPORT_SYMBOL_GPL(hns_roce_mtt_cleanup);
static void hns_roce_loop_free(struct hns_roce_dev *hr_dev,
struct hns_roce_mr *mr, int err_loop_index,
int loop_i, int loop_j)
{
struct device *dev = hr_dev->dev;
u32 mhop_num;
u32 pbl_bt_sz;
u64 bt_idx;
int i, j;
pbl_bt_sz = 1 << (hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT);
mhop_num = hr_dev->caps.pbl_hop_num;
i = loop_i;
if (mhop_num == 3 && err_loop_index == 2) {
for (; i >= 0; i--) {
dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
mr->pbl_l1_dma_addr[i]);
for (j = 0; j < pbl_bt_sz / 8; j++) {
if (i == loop_i && j >= loop_j)
break;
bt_idx = i * pbl_bt_sz / 8 + j;
dma_free_coherent(dev, pbl_bt_sz,
mr->pbl_bt_l2[bt_idx],
mr->pbl_l2_dma_addr[bt_idx]);
}
}
} else if (mhop_num == 3 && err_loop_index == 1) {
for (i -= 1; i >= 0; i--) {
dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
mr->pbl_l1_dma_addr[i]);
for (j = 0; j < pbl_bt_sz / 8; j++) {
bt_idx = i * pbl_bt_sz / 8 + j;
dma_free_coherent(dev, pbl_bt_sz,
mr->pbl_bt_l2[bt_idx],
mr->pbl_l2_dma_addr[bt_idx]);
}
}
} else if (mhop_num == 2 && err_loop_index == 1) {
for (i -= 1; i >= 0; i--)
dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
mr->pbl_l1_dma_addr[i]);
} else {
dev_warn(dev, "not support: mhop_num=%d, err_loop_index=%d.",
mhop_num, err_loop_index);
return;
}
dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l0, mr->pbl_l0_dma_addr);
mr->pbl_bt_l0 = NULL;
mr->pbl_l0_dma_addr = 0;
}
/* PBL multi hop addressing */
static int hns_roce_mhop_alloc(struct hns_roce_dev *hr_dev, int npages,
struct hns_roce_mr *mr)
{
struct device *dev = hr_dev->dev;
int mr_alloc_done = 0;
int npages_allocated;
int i = 0, j = 0;
u32 pbl_bt_sz;
u32 mhop_num;
u64 pbl_last_bt_num;
u64 pbl_bt_cnt = 0;
u64 bt_idx;
u64 size;
mhop_num = hr_dev->caps.pbl_hop_num;
pbl_bt_sz = 1 << (hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT);
pbl_last_bt_num = (npages + pbl_bt_sz / 8 - 1) / (pbl_bt_sz / 8);
if (mhop_num == HNS_ROCE_HOP_NUM_0)
return 0;
/* hop_num = 1 */
if (mhop_num == 1) {
if (npages > pbl_bt_sz / 8) {
dev_err(dev, "npages %d is larger than buf_pg_sz!",
npages);
return -EINVAL;
}
mr->pbl_buf = dma_alloc_coherent(dev, npages * 8,
&(mr->pbl_dma_addr),
GFP_KERNEL);
if (!mr->pbl_buf)
return -ENOMEM;
mr->pbl_size = npages;
mr->pbl_ba = mr->pbl_dma_addr;
mr->pbl_hop_num = hr_dev->caps.pbl_hop_num;
mr->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
mr->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
return 0;
}
mr->pbl_l1_dma_addr = kcalloc(pbl_bt_sz / 8,
sizeof(*mr->pbl_l1_dma_addr),
GFP_KERNEL);
if (!mr->pbl_l1_dma_addr)
return -ENOMEM;
mr->pbl_bt_l1 = kcalloc(pbl_bt_sz / 8, sizeof(*mr->pbl_bt_l1),
GFP_KERNEL);
if (!mr->pbl_bt_l1)
goto err_kcalloc_bt_l1;
if (mhop_num == 3) {
mr->pbl_l2_dma_addr = kcalloc(pbl_last_bt_num,
sizeof(*mr->pbl_l2_dma_addr),
GFP_KERNEL);
if (!mr->pbl_l2_dma_addr)
goto err_kcalloc_l2_dma;
mr->pbl_bt_l2 = kcalloc(pbl_last_bt_num,
sizeof(*mr->pbl_bt_l2),
GFP_KERNEL);
if (!mr->pbl_bt_l2)
goto err_kcalloc_bt_l2;
}
/* alloc L0 BT */
mr->pbl_bt_l0 = dma_alloc_coherent(dev, pbl_bt_sz,
&(mr->pbl_l0_dma_addr),
GFP_KERNEL);
if (!mr->pbl_bt_l0)
goto err_dma_alloc_l0;
if (mhop_num == 2) {
/* alloc L1 BT */
for (i = 0; i < pbl_bt_sz / 8; i++) {
if (pbl_bt_cnt + 1 < pbl_last_bt_num) {
size = pbl_bt_sz;
} else {
npages_allocated = i * (pbl_bt_sz / 8);
size = (npages - npages_allocated) * 8;
}
mr->pbl_bt_l1[i] = dma_alloc_coherent(dev, size,
&(mr->pbl_l1_dma_addr[i]),
GFP_KERNEL);
if (!mr->pbl_bt_l1[i]) {
hns_roce_loop_free(hr_dev, mr, 1, i, 0);
goto err_dma_alloc_l0;
}
*(mr->pbl_bt_l0 + i) = mr->pbl_l1_dma_addr[i];
pbl_bt_cnt++;
if (pbl_bt_cnt >= pbl_last_bt_num)
break;
}
} else if (mhop_num == 3) {
/* alloc L1, L2 BT */
for (i = 0; i < pbl_bt_sz / 8; i++) {
mr->pbl_bt_l1[i] = dma_alloc_coherent(dev, pbl_bt_sz,
&(mr->pbl_l1_dma_addr[i]),
GFP_KERNEL);
if (!mr->pbl_bt_l1[i]) {
hns_roce_loop_free(hr_dev, mr, 1, i, 0);
goto err_dma_alloc_l0;
}
*(mr->pbl_bt_l0 + i) = mr->pbl_l1_dma_addr[i];
for (j = 0; j < pbl_bt_sz / 8; j++) {
bt_idx = i * pbl_bt_sz / 8 + j;
if (pbl_bt_cnt + 1 < pbl_last_bt_num) {
size = pbl_bt_sz;
} else {
npages_allocated = bt_idx *
(pbl_bt_sz / 8);
size = (npages - npages_allocated) * 8;
}
mr->pbl_bt_l2[bt_idx] = dma_alloc_coherent(
dev, size,
&(mr->pbl_l2_dma_addr[bt_idx]),
GFP_KERNEL);
if (!mr->pbl_bt_l2[bt_idx]) {
hns_roce_loop_free(hr_dev, mr, 2, i, j);
goto err_dma_alloc_l0;
}
*(mr->pbl_bt_l1[i] + j) =
mr->pbl_l2_dma_addr[bt_idx];
pbl_bt_cnt++;
if (pbl_bt_cnt >= pbl_last_bt_num) {
mr_alloc_done = 1;
break;
}
}
if (mr_alloc_done)
break;
}
}
mr->l0_chunk_last_num = i + 1;
if (mhop_num == 3)
mr->l1_chunk_last_num = j + 1;
mr->pbl_size = npages;
mr->pbl_ba = mr->pbl_l0_dma_addr;
mr->pbl_hop_num = hr_dev->caps.pbl_hop_num;
mr->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
mr->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
return 0;
err_dma_alloc_l0:
kfree(mr->pbl_bt_l2);
mr->pbl_bt_l2 = NULL;
err_kcalloc_bt_l2:
kfree(mr->pbl_l2_dma_addr);
mr->pbl_l2_dma_addr = NULL;
err_kcalloc_l2_dma:
kfree(mr->pbl_bt_l1);
mr->pbl_bt_l1 = NULL;
err_kcalloc_bt_l1:
kfree(mr->pbl_l1_dma_addr);
mr->pbl_l1_dma_addr = NULL;
return -ENOMEM;
}
static int hns_roce_mr_alloc(struct hns_roce_dev *hr_dev, u32 pd, u64 iova,
u64 size, u32 access, int npages,
struct hns_roce_mr *mr)
{
struct device *dev = hr_dev->dev;
unsigned long index = 0;
int ret = 0;
/* Allocate a key for mr from mr_table */
ret = hns_roce_bitmap_alloc(&hr_dev->mr_table.mtpt_bitmap, &index);
if (ret == -1)
return -ENOMEM;
mr->iova = iova; /* MR va starting addr */
mr->size = size; /* MR addr range */
mr->pd = pd; /* MR num */
mr->access = access; /* MR access permit */
mr->enabled = 0; /* MR active status */
mr->key = hw_index_to_key(index); /* MR key */
if (size == ~0ull) {
mr->type = MR_TYPE_DMA;
mr->pbl_buf = NULL;
mr->pbl_dma_addr = 0;
/* PBL multi-hop addressing parameters */
mr->pbl_bt_l2 = NULL;
mr->pbl_bt_l1 = NULL;
mr->pbl_bt_l0 = NULL;
mr->pbl_l2_dma_addr = NULL;
mr->pbl_l1_dma_addr = NULL;
mr->pbl_l0_dma_addr = 0;
} else {
mr->type = MR_TYPE_MR;
if (!hr_dev->caps.pbl_hop_num) {
mr->pbl_buf = dma_alloc_coherent(dev, npages * 8,
&(mr->pbl_dma_addr),
GFP_KERNEL);
if (!mr->pbl_buf)
return -ENOMEM;
} else {
ret = hns_roce_mhop_alloc(hr_dev, npages, mr);
}
}
return ret;
}
static void hns_roce_mhop_free(struct hns_roce_dev *hr_dev,
struct hns_roce_mr *mr)
{
struct device *dev = hr_dev->dev;
int npages_allocated;
int npages;
int i, j;
u32 pbl_bt_sz;
u32 mhop_num;
u64 bt_idx;
npages = ib_umem_page_count(mr->umem);
pbl_bt_sz = 1 << (hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT);
mhop_num = hr_dev->caps.pbl_hop_num;
if (mhop_num == HNS_ROCE_HOP_NUM_0)
return;
/* hop_num = 1 */
if (mhop_num == 1) {
dma_free_coherent(dev, (unsigned int)(npages * 8),
mr->pbl_buf, mr->pbl_dma_addr);
return;
}
dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l0,
mr->pbl_l0_dma_addr);
if (mhop_num == 2) {
for (i = 0; i < mr->l0_chunk_last_num; i++) {
if (i == mr->l0_chunk_last_num - 1) {
npages_allocated = i * (pbl_bt_sz / 8);
dma_free_coherent(dev,
(npages - npages_allocated) * 8,
mr->pbl_bt_l1[i],
mr->pbl_l1_dma_addr[i]);
break;
}
dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
mr->pbl_l1_dma_addr[i]);
}
} else if (mhop_num == 3) {
for (i = 0; i < mr->l0_chunk_last_num; i++) {
dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
mr->pbl_l1_dma_addr[i]);
for (j = 0; j < pbl_bt_sz / 8; j++) {
bt_idx = i * (pbl_bt_sz / 8) + j;
if ((i == mr->l0_chunk_last_num - 1)
&& j == mr->l1_chunk_last_num - 1) {
npages_allocated = bt_idx *
(pbl_bt_sz / 8);
dma_free_coherent(dev,
(npages - npages_allocated) * 8,
mr->pbl_bt_l2[bt_idx],
mr->pbl_l2_dma_addr[bt_idx]);
break;
}
dma_free_coherent(dev, pbl_bt_sz,
mr->pbl_bt_l2[bt_idx],
mr->pbl_l2_dma_addr[bt_idx]);
}
}
}
kfree(mr->pbl_bt_l1);
kfree(mr->pbl_l1_dma_addr);
mr->pbl_bt_l1 = NULL;
mr->pbl_l1_dma_addr = NULL;
if (mhop_num == 3) {
kfree(mr->pbl_bt_l2);
kfree(mr->pbl_l2_dma_addr);
mr->pbl_bt_l2 = NULL;
mr->pbl_l2_dma_addr = NULL;
}
}
static void hns_roce_mr_free(struct hns_roce_dev *hr_dev,
struct hns_roce_mr *mr)
{
struct device *dev = hr_dev->dev;
int npages = 0;
int ret;
if (mr->enabled) {
ret = hns_roce_hw2sw_mpt(hr_dev, NULL, key_to_hw_index(mr->key)
& (hr_dev->caps.num_mtpts - 1));
if (ret)
dev_warn(dev, "HW2SW_MPT failed (%d)\n", ret);
}
if (mr->size != ~0ULL) {
npages = ib_umem_page_count(mr->umem);
if (!hr_dev->caps.pbl_hop_num)
dma_free_coherent(dev, (unsigned int)(npages * 8),
mr->pbl_buf, mr->pbl_dma_addr);
else
hns_roce_mhop_free(hr_dev, mr);
}
if (mr->enabled)
hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table,
key_to_hw_index(mr->key));
hns_roce_bitmap_free(&hr_dev->mr_table.mtpt_bitmap,
key_to_hw_index(mr->key), BITMAP_NO_RR);
}
static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
struct hns_roce_mr *mr)
{
int ret;
unsigned long mtpt_idx = key_to_hw_index(mr->key);
struct device *dev = hr_dev->dev;
struct hns_roce_cmd_mailbox *mailbox;
struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
/* Prepare HEM entry memory */
ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
if (ret)
return ret;
/* Allocate mailbox memory */
mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
if (IS_ERR(mailbox)) {
ret = PTR_ERR(mailbox);
goto err_table;
}
ret = hr_dev->hw->write_mtpt(mailbox->buf, mr, mtpt_idx);
if (ret) {
dev_err(dev, "Write mtpt fail!\n");
goto err_page;
}
ret = hns_roce_sw2hw_mpt(hr_dev, mailbox,
mtpt_idx & (hr_dev->caps.num_mtpts - 1));
if (ret) {
dev_err(dev, "SW2HW_MPT failed (%d)\n", ret);
goto err_page;
}
mr->enabled = 1;
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
return 0;
err_page:
hns_roce_free_cmd_mailbox(hr_dev, mailbox);
err_table:
hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
return ret;
}
static int hns_roce_write_mtt_chunk(struct hns_roce_dev *hr_dev,
struct hns_roce_mtt *mtt, u32 start_index,
u32 npages, u64 *page_list)
{
struct hns_roce_hem_table *table;
dma_addr_t dma_handle;
__le64 *mtts;
u32 s = start_index * sizeof(u64);
u32 i;
/* All MTTs must fit in the same page */
if (start_index / (PAGE_SIZE / sizeof(u64)) !=
(start_index + npages - 1) / (PAGE_SIZE / sizeof(u64)))
return -EINVAL;
if (start_index & (HNS_ROCE_MTT_ENTRY_PER_SEG - 1))
return -EINVAL;
if (mtt->mtt_type == MTT_TYPE_WQE)
table = &hr_dev->mr_table.mtt_table;
else
table = &hr_dev->mr_table.mtt_cqe_table;
mtts = hns_roce_table_find(hr_dev, table,
mtt->first_seg + s / hr_dev->caps.mtt_entry_sz,
&dma_handle);
if (!mtts)
return -ENOMEM;
/* Save page addr, low 12 bits : 0 */
for (i = 0; i < npages; ++i) {
if (!hr_dev->caps.mtt_hop_num)
mtts[i] = cpu_to_le64(page_list[i] >> PAGE_ADDR_SHIFT);
else
mtts[i] = cpu_to_le64(page_list[i]);
}
return 0;
}
static int hns_roce_write_mtt(struct hns_roce_dev *hr_dev,
struct hns_roce_mtt *mtt, u32 start_index,
u32 npages, u64 *page_list)
{
int chunk;
int ret;
if (mtt->order < 0)
return -EINVAL;
while (npages > 0) {
chunk = min_t(int, PAGE_SIZE / sizeof(u64), npages);
ret = hns_roce_write_mtt_chunk(hr_dev, mtt, start_index, chunk,
page_list);
if (ret)
return ret;
npages -= chunk;
start_index += chunk;
page_list += chunk;
}
return 0;
}
int hns_roce_buf_write_mtt(struct hns_roce_dev *hr_dev,
struct hns_roce_mtt *mtt, struct hns_roce_buf *buf)
{
u64 *page_list;
int ret;
u32 i;
page_list = kmalloc_array(buf->npages, sizeof(*page_list), GFP_KERNEL);
if (!page_list)
return -ENOMEM;
for (i = 0; i < buf->npages; ++i) {
if (buf->nbufs == 1)
page_list[i] = buf->direct.map + (i << buf->page_shift);
else
page_list[i] = buf->page_list[i].map;
}
ret = hns_roce_write_mtt(hr_dev, mtt, 0, buf->npages, page_list);
kfree(page_list);
return ret;
}
int hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
{
struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
int ret;
ret = hns_roce_bitmap_init(&mr_table->mtpt_bitmap,
hr_dev->caps.num_mtpts,
hr_dev->caps.num_mtpts - 1,
hr_dev->caps.reserved_mrws, 0);
if (ret)
return ret;
ret = hns_roce_buddy_init(&mr_table->mtt_buddy,
ilog2(hr_dev->caps.num_mtt_segs));
if (ret)
goto err_buddy;
if (hns_roce_check_whether_mhop(hr_dev, HEM_TYPE_CQE)) {
ret = hns_roce_buddy_init(&mr_table->mtt_cqe_buddy,
ilog2(hr_dev->caps.num_cqe_segs));
if (ret)
goto err_buddy_cqe;
}
return 0;
err_buddy_cqe:
hns_roce_buddy_cleanup(&mr_table->mtt_buddy);
err_buddy:
hns_roce_bitmap_cleanup(&mr_table->mtpt_bitmap);
return ret;
}
void hns_roce_cleanup_mr_table(struct hns_roce_dev *hr_dev)
{
struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
hns_roce_buddy_cleanup(&mr_table->mtt_buddy);
if (hns_roce_check_whether_mhop(hr_dev, HEM_TYPE_CQE))
hns_roce_buddy_cleanup(&mr_table->mtt_cqe_buddy);
hns_roce_bitmap_cleanup(&mr_table->mtpt_bitmap);
}
struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
{
struct hns_roce_mr *mr;
int ret;
mr = kmalloc(sizeof(*mr), GFP_KERNEL);
if (mr == NULL)
return ERR_PTR(-ENOMEM);
/* Allocate memory region key */
ret = hns_roce_mr_alloc(to_hr_dev(pd->device), to_hr_pd(pd)->pdn, 0,
~0ULL, acc, 0, mr);
if (ret)
goto err_free;
ret = hns_roce_mr_enable(to_hr_dev(pd->device), mr);
if (ret)
goto err_mr;
mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
mr->umem = NULL;
return &mr->ibmr;
err_mr:
hns_roce_mr_free(to_hr_dev(pd->device), mr);
err_free:
kfree(mr);
return ERR_PTR(ret);
}
int hns_roce_ib_umem_write_mtt(struct hns_roce_dev *hr_dev,
struct hns_roce_mtt *mtt, struct ib_umem *umem)
{
struct scatterlist *sg;
int i, k, entry;
int ret = 0;
u64 *pages;
u32 n;
int len;
pages = (u64 *) __get_free_page(GFP_KERNEL);
if (!pages)
return -ENOMEM;
i = n = 0;
for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
len = sg_dma_len(sg) >> mtt->page_shift;
for (k = 0; k < len; ++k) {
pages[i++] = sg_dma_address(sg) +
(k << umem->page_shift);
if (i == PAGE_SIZE / sizeof(u64)) {
ret = hns_roce_write_mtt(hr_dev, mtt, n, i,
pages);
if (ret)
goto out;
n += i;
i = 0;
}
}
}
if (i)
ret = hns_roce_write_mtt(hr_dev, mtt, n, i, pages);
out:
free_page((unsigned long) pages);
return ret;
}
static int hns_roce_ib_umem_write_mr(struct hns_roce_dev *hr_dev,
struct hns_roce_mr *mr,
struct ib_umem *umem)
{
struct scatterlist *sg;
int i = 0, j = 0;
int entry;
if (hr_dev->caps.pbl_hop_num == HNS_ROCE_HOP_NUM_0)
return 0;
for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
if (!hr_dev->caps.pbl_hop_num) {
mr->pbl_buf[i] = ((u64)sg_dma_address(sg)) >> 12;
i++;
} else if (hr_dev->caps.pbl_hop_num == 1) {
mr->pbl_buf[i] = sg_dma_address(sg);
i++;
} else {
if (hr_dev->caps.pbl_hop_num == 2)
mr->pbl_bt_l1[i][j] = sg_dma_address(sg);
else if (hr_dev->caps.pbl_hop_num == 3)
mr->pbl_bt_l2[i][j] = sg_dma_address(sg);
j++;
if (j >= (PAGE_SIZE / 8)) {
i++;
j = 0;
}
}
}
/* Memory barrier */
mb();
return 0;
}
struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 virt_addr, int access_flags,
struct ib_udata *udata)
{
struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
struct device *dev = hr_dev->dev;
struct hns_roce_mr *mr;
int bt_size;
int ret;
int n;
int i;
mr = kmalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
mr->umem = ib_umem_get(pd->uobject->context, start, length,
access_flags, 0);
if (IS_ERR(mr->umem)) {
ret = PTR_ERR(mr->umem);
goto err_free;
}
n = ib_umem_page_count(mr->umem);
if (mr->umem->page_shift != HNS_ROCE_HEM_PAGE_SHIFT) {
dev_err(dev, "Just support 4K page size but is 0x%lx now!\n",
BIT(mr->umem->page_shift));
ret = -EINVAL;
goto err_umem;
}
if (!hr_dev->caps.pbl_hop_num) {
if (n > HNS_ROCE_MAX_MTPT_PBL_NUM) {
dev_err(dev,
" MR len %lld err. MR is limited to 4G at most!\n",
length);
ret = -EINVAL;
goto err_umem;
}
} else {
int pbl_size = 1;
bt_size = (1 << PAGE_SHIFT) / 8;
for (i = 0; i < hr_dev->caps.pbl_hop_num; i++)
pbl_size *= bt_size;
if (n > pbl_size) {
dev_err(dev,
" MR len %lld err. MR page num is limited to %d!\n",
length, pbl_size);
ret = -EINVAL;
goto err_umem;
}
}
ret = hns_roce_mr_alloc(hr_dev, to_hr_pd(pd)->pdn, virt_addr, length,
access_flags, n, mr);
if (ret)
goto err_umem;
ret = hns_roce_ib_umem_write_mr(hr_dev, mr, mr->umem);
if (ret)
goto err_mr;
ret = hns_roce_mr_enable(hr_dev, mr);
if (ret)
goto err_mr;
mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
return &mr->ibmr;
err_mr:
hns_roce_mr_free(hr_dev, mr);
err_umem:
ib_umem_release(mr->umem);
err_free:
kfree(mr);
return ERR_PTR(ret);
}
int hns_roce_dereg_mr(struct ib_mr *ibmr)
{
struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
struct hns_roce_mr *mr = to_hr_mr(ibmr);
int ret = 0;
if (hr_dev->hw->dereg_mr) {
ret = hr_dev->hw->dereg_mr(hr_dev, mr);
} else {
hns_roce_mr_free(hr_dev, mr);
if (mr->umem)
ib_umem_release(mr->umem);
kfree(mr);
}
return ret;
}