linux/include/net/page_pool.h
Yunsheng Lin 13b290f020 page_pool: fix inconsistency for page_pool_ring_[un]lock()
[ Upstream commit 368d3cb406 ]

page_pool_ring_[un]lock() use in_softirq() to decide which
spin lock variant to use, and when they are called in the
context with in_softirq() being false, spin_lock_bh() is
called in page_pool_ring_lock() while spin_unlock() is
called in page_pool_ring_unlock(), because spin_lock_bh()
has disabled the softirq in page_pool_ring_lock(), which
causes inconsistency for spin lock pair calling.

This patch fixes it by returning in_softirq state from
page_pool_producer_lock(), and use it to decide which
spin lock variant to use in page_pool_producer_unlock().

As pool->ring has both producer and consumer lock, so
rename it to page_pool_producer_[un]lock() to reflect
the actual usage. Also move them to page_pool.c as they
are only used there, and remove the 'inline' as the
compiler may have better idea to do inlining or not.

Fixes: 7886244736 ("net: page_pool: Add bulk support for ptr_ring")
Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Link: https://lore.kernel.org/r/20230522031714.5089-1-linyunsheng@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-05 09:21:22 +02:00

286 lines
8.4 KiB
C

/* SPDX-License-Identifier: GPL-2.0
*
* page_pool.h
* Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
* Copyright (C) 2016 Red Hat, Inc.
*/
/**
* DOC: page_pool allocator
*
* This page_pool allocator is optimized for the XDP mode that
* uses one-frame-per-page, but have fallbacks that act like the
* regular page allocator APIs.
*
* Basic use involve replacing alloc_pages() calls with the
* page_pool_alloc_pages() call. Drivers should likely use
* page_pool_dev_alloc_pages() replacing dev_alloc_pages().
*
* API keeps track of in-flight pages, in-order to let API user know
* when it is safe to dealloactor page_pool object. Thus, API users
* must make sure to call page_pool_release_page() when a page is
* "leaving" the page_pool. Or call page_pool_put_page() where
* appropiate. For maintaining correct accounting.
*
* API user must only call page_pool_put_page() once on a page, as it
* will either recycle the page, or in case of elevated refcnt, it
* will release the DMA mapping and in-flight state accounting. We
* hope to lift this requirement in the future.
*/
#ifndef _NET_PAGE_POOL_H
#define _NET_PAGE_POOL_H
#include <linux/mm.h> /* Needed by ptr_ring */
#include <linux/ptr_ring.h>
#include <linux/dma-direction.h>
#define PP_FLAG_DMA_MAP BIT(0) /* Should page_pool do the DMA
* map/unmap
*/
#define PP_FLAG_DMA_SYNC_DEV BIT(1) /* If set all pages that the driver gets
* from page_pool will be
* DMA-synced-for-device according to
* the length provided by the device
* driver.
* Please note DMA-sync-for-CPU is still
* device driver responsibility
*/
#define PP_FLAG_PAGE_FRAG BIT(2) /* for page frag feature */
#define PP_FLAG_ALL (PP_FLAG_DMA_MAP |\
PP_FLAG_DMA_SYNC_DEV |\
PP_FLAG_PAGE_FRAG)
/*
* Fast allocation side cache array/stack
*
* The cache size and refill watermark is related to the network
* use-case. The NAPI budget is 64 packets. After a NAPI poll the RX
* ring is usually refilled and the max consumed elements will be 64,
* thus a natural max size of objects needed in the cache.
*
* Keeping room for more objects, is due to XDP_DROP use-case. As
* XDP_DROP allows the opportunity to recycle objects directly into
* this array, as it shares the same softirq/NAPI protection. If
* cache is already full (or partly full) then the XDP_DROP recycles
* would have to take a slower code path.
*/
#define PP_ALLOC_CACHE_SIZE 128
#define PP_ALLOC_CACHE_REFILL 64
struct pp_alloc_cache {
u32 count;
struct page *cache[PP_ALLOC_CACHE_SIZE];
};
struct page_pool_params {
unsigned int flags;
unsigned int order;
unsigned int pool_size;
int nid; /* Numa node id to allocate from pages from */
struct device *dev; /* device, for DMA pre-mapping purposes */
enum dma_data_direction dma_dir; /* DMA mapping direction */
unsigned int max_len; /* max DMA sync memory size */
unsigned int offset; /* DMA addr offset */
};
struct page_pool {
struct page_pool_params p;
struct delayed_work release_dw;
void (*disconnect)(void *);
unsigned long defer_start;
unsigned long defer_warn;
u32 pages_state_hold_cnt;
unsigned int frag_offset;
struct page *frag_page;
long frag_users;
/*
* Data structure for allocation side
*
* Drivers allocation side usually already perform some kind
* of resource protection. Piggyback on this protection, and
* require driver to protect allocation side.
*
* For NIC drivers this means, allocate a page_pool per
* RX-queue. As the RX-queue is already protected by
* Softirq/BH scheduling and napi_schedule. NAPI schedule
* guarantee that a single napi_struct will only be scheduled
* on a single CPU (see napi_schedule).
*/
struct pp_alloc_cache alloc ____cacheline_aligned_in_smp;
/* Data structure for storing recycled pages.
*
* Returning/freeing pages is more complicated synchronization
* wise, because free's can happen on remote CPUs, with no
* association with allocation resource.
*
* Use ptr_ring, as it separates consumer and producer
* effeciently, it a way that doesn't bounce cache-lines.
*
* TODO: Implement bulk return pages into this structure.
*/
struct ptr_ring ring;
atomic_t pages_state_release_cnt;
/* A page_pool is strictly tied to a single RX-queue being
* protected by NAPI, due to above pp_alloc_cache. This
* refcnt serves purpose is to simplify drivers error handling.
*/
refcount_t user_cnt;
u64 destroy_cnt;
};
struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp);
static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool)
{
gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
return page_pool_alloc_pages(pool, gfp);
}
struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset,
unsigned int size, gfp_t gfp);
static inline struct page *page_pool_dev_alloc_frag(struct page_pool *pool,
unsigned int *offset,
unsigned int size)
{
gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
return page_pool_alloc_frag(pool, offset, size, gfp);
}
/* get the stored dma direction. A driver might decide to treat this locally and
* avoid the extra cache line from page_pool to determine the direction
*/
static
inline enum dma_data_direction page_pool_get_dma_dir(struct page_pool *pool)
{
return pool->p.dma_dir;
}
bool page_pool_return_skb_page(struct page *page);
struct page_pool *page_pool_create(const struct page_pool_params *params);
#ifdef CONFIG_PAGE_POOL
void page_pool_destroy(struct page_pool *pool);
void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *));
void page_pool_release_page(struct page_pool *pool, struct page *page);
void page_pool_put_page_bulk(struct page_pool *pool, void **data,
int count);
#else
static inline void page_pool_destroy(struct page_pool *pool)
{
}
static inline void page_pool_use_xdp_mem(struct page_pool *pool,
void (*disconnect)(void *))
{
}
static inline void page_pool_release_page(struct page_pool *pool,
struct page *page)
{
}
static inline void page_pool_put_page_bulk(struct page_pool *pool, void **data,
int count)
{
}
#endif
void page_pool_put_page(struct page_pool *pool, struct page *page,
unsigned int dma_sync_size, bool allow_direct);
/* Same as above but will try to sync the entire area pool->max_len */
static inline void page_pool_put_full_page(struct page_pool *pool,
struct page *page, bool allow_direct)
{
/* When page_pool isn't compiled-in, net/core/xdp.c doesn't
* allow registering MEM_TYPE_PAGE_POOL, but shield linker.
*/
#ifdef CONFIG_PAGE_POOL
page_pool_put_page(pool, page, -1, allow_direct);
#endif
}
/* Same as above but the caller must guarantee safe context. e.g NAPI */
static inline void page_pool_recycle_direct(struct page_pool *pool,
struct page *page)
{
page_pool_put_full_page(pool, page, true);
}
#define PAGE_POOL_DMA_USE_PP_FRAG_COUNT \
(sizeof(dma_addr_t) > sizeof(unsigned long))
static inline dma_addr_t page_pool_get_dma_addr(struct page *page)
{
dma_addr_t ret = page->dma_addr;
if (PAGE_POOL_DMA_USE_PP_FRAG_COUNT)
ret |= (dma_addr_t)page->dma_addr_upper << 16 << 16;
return ret;
}
static inline void page_pool_set_dma_addr(struct page *page, dma_addr_t addr)
{
page->dma_addr = addr;
if (PAGE_POOL_DMA_USE_PP_FRAG_COUNT)
page->dma_addr_upper = upper_32_bits(addr);
}
static inline void page_pool_set_frag_count(struct page *page, long nr)
{
atomic_long_set(&page->pp_frag_count, nr);
}
static inline long page_pool_atomic_sub_frag_count_return(struct page *page,
long nr)
{
long ret;
/* As suggested by Alexander, atomic_long_read() may cover up the
* reference count errors, so avoid calling atomic_long_read() in
* the cases of freeing or draining the page_frags, where we would
* not expect it to match or that are slowpath anyway.
*/
if (__builtin_constant_p(nr) &&
atomic_long_read(&page->pp_frag_count) == nr)
return 0;
ret = atomic_long_sub_return(nr, &page->pp_frag_count);
WARN_ON(ret < 0);
return ret;
}
static inline bool is_page_pool_compiled_in(void)
{
#ifdef CONFIG_PAGE_POOL
return true;
#else
return false;
#endif
}
static inline bool page_pool_put(struct page_pool *pool)
{
return refcount_dec_and_test(&pool->user_cnt);
}
/* Caller must provide appropriate safe context, e.g. NAPI. */
void page_pool_update_nid(struct page_pool *pool, int new_nid);
static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid)
{
if (unlikely(pool->p.nid != new_nid))
page_pool_update_nid(pool, new_nid);
}
#endif /* _NET_PAGE_POOL_H */