mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-22 18:44:44 +08:00
8ec456629d
For device mapper targets to take advantage of IMA's measurement capabilities, the status functions for the individual targets need to be updated to handle the status_type_t case for value STATUSTYPE_IMA. Update status functions for the following target types, to log their respective attributes to be measured using IMA. 01. cache 02. crypt 03. integrity 04. linear 05. mirror 06. multipath 07. raid 08. snapshot 09. striped 10. verity For rest of the targets, handle the STATUSTYPE_IMA case by setting the measurement buffer to NULL. For IMA to measure the data on a given system, the IMA policy on the system needs to be updated to have the following line, and the system needs to be restarted for the measurements to take effect. /etc/ima/ima-policy measure func=CRITICAL_DATA label=device-mapper template=ima-buf The measurements will be reflected in the IMA logs, which are located at: /sys/kernel/security/integrity/ima/ascii_runtime_measurements /sys/kernel/security/integrity/ima/binary_runtime_measurements These IMA logs can later be consumed by various attestation clients running on the system, and send them to external services for attesting the system. The DM target data measured by IMA subsystem can alternatively be queried from userspace by setting DM_IMA_MEASUREMENT_FLAG with DM_TABLE_STATUS_CMD. Signed-off-by: Tushar Sugandhi <tusharsu@linux.microsoft.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
366 lines
8.8 KiB
C
366 lines
8.8 KiB
C
/*
|
|
* Copyright (C) 2007-2009 NEC Corporation. All Rights Reserved.
|
|
*
|
|
* Module Author: Kiyoshi Ueda
|
|
*
|
|
* This file is released under the GPL.
|
|
*
|
|
* Throughput oriented path selector.
|
|
*/
|
|
|
|
#include "dm.h"
|
|
#include "dm-path-selector.h"
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
|
|
#define DM_MSG_PREFIX "multipath service-time"
|
|
#define ST_MIN_IO 1
|
|
#define ST_MAX_RELATIVE_THROUGHPUT 100
|
|
#define ST_MAX_RELATIVE_THROUGHPUT_SHIFT 7
|
|
#define ST_MAX_INFLIGHT_SIZE ((size_t)-1 >> ST_MAX_RELATIVE_THROUGHPUT_SHIFT)
|
|
#define ST_VERSION "0.3.0"
|
|
|
|
struct selector {
|
|
struct list_head valid_paths;
|
|
struct list_head failed_paths;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
struct path_info {
|
|
struct list_head list;
|
|
struct dm_path *path;
|
|
unsigned repeat_count;
|
|
unsigned relative_throughput;
|
|
atomic_t in_flight_size; /* Total size of in-flight I/Os */
|
|
};
|
|
|
|
static struct selector *alloc_selector(void)
|
|
{
|
|
struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
|
|
|
|
if (s) {
|
|
INIT_LIST_HEAD(&s->valid_paths);
|
|
INIT_LIST_HEAD(&s->failed_paths);
|
|
spin_lock_init(&s->lock);
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
static int st_create(struct path_selector *ps, unsigned argc, char **argv)
|
|
{
|
|
struct selector *s = alloc_selector();
|
|
|
|
if (!s)
|
|
return -ENOMEM;
|
|
|
|
ps->context = s;
|
|
return 0;
|
|
}
|
|
|
|
static void free_paths(struct list_head *paths)
|
|
{
|
|
struct path_info *pi, *next;
|
|
|
|
list_for_each_entry_safe(pi, next, paths, list) {
|
|
list_del(&pi->list);
|
|
kfree(pi);
|
|
}
|
|
}
|
|
|
|
static void st_destroy(struct path_selector *ps)
|
|
{
|
|
struct selector *s = ps->context;
|
|
|
|
free_paths(&s->valid_paths);
|
|
free_paths(&s->failed_paths);
|
|
kfree(s);
|
|
ps->context = NULL;
|
|
}
|
|
|
|
static int st_status(struct path_selector *ps, struct dm_path *path,
|
|
status_type_t type, char *result, unsigned maxlen)
|
|
{
|
|
unsigned sz = 0;
|
|
struct path_info *pi;
|
|
|
|
if (!path)
|
|
DMEMIT("0 ");
|
|
else {
|
|
pi = path->pscontext;
|
|
|
|
switch (type) {
|
|
case STATUSTYPE_INFO:
|
|
DMEMIT("%d %u ", atomic_read(&pi->in_flight_size),
|
|
pi->relative_throughput);
|
|
break;
|
|
case STATUSTYPE_TABLE:
|
|
DMEMIT("%u %u ", pi->repeat_count,
|
|
pi->relative_throughput);
|
|
break;
|
|
case STATUSTYPE_IMA:
|
|
result[0] = '\0';
|
|
break;
|
|
}
|
|
}
|
|
|
|
return sz;
|
|
}
|
|
|
|
static int st_add_path(struct path_selector *ps, struct dm_path *path,
|
|
int argc, char **argv, char **error)
|
|
{
|
|
struct selector *s = ps->context;
|
|
struct path_info *pi;
|
|
unsigned repeat_count = ST_MIN_IO;
|
|
unsigned relative_throughput = 1;
|
|
char dummy;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Arguments: [<repeat_count> [<relative_throughput>]]
|
|
* <repeat_count>: The number of I/Os before switching path.
|
|
* If not given, default (ST_MIN_IO) is used.
|
|
* <relative_throughput>: The relative throughput value of
|
|
* the path among all paths in the path-group.
|
|
* The valid range: 0-<ST_MAX_RELATIVE_THROUGHPUT>
|
|
* If not given, minimum value '1' is used.
|
|
* If '0' is given, the path isn't selected while
|
|
* other paths having a positive value are
|
|
* available.
|
|
*/
|
|
if (argc > 2) {
|
|
*error = "service-time ps: incorrect number of arguments";
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (argc && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) {
|
|
*error = "service-time ps: invalid repeat count";
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (repeat_count > 1) {
|
|
DMWARN_LIMIT("repeat_count > 1 is deprecated, using 1 instead");
|
|
repeat_count = 1;
|
|
}
|
|
|
|
if ((argc == 2) &&
|
|
(sscanf(argv[1], "%u%c", &relative_throughput, &dummy) != 1 ||
|
|
relative_throughput > ST_MAX_RELATIVE_THROUGHPUT)) {
|
|
*error = "service-time ps: invalid relative_throughput value";
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* allocate the path */
|
|
pi = kmalloc(sizeof(*pi), GFP_KERNEL);
|
|
if (!pi) {
|
|
*error = "service-time ps: Error allocating path context";
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pi->path = path;
|
|
pi->repeat_count = repeat_count;
|
|
pi->relative_throughput = relative_throughput;
|
|
atomic_set(&pi->in_flight_size, 0);
|
|
|
|
path->pscontext = pi;
|
|
|
|
spin_lock_irqsave(&s->lock, flags);
|
|
list_add_tail(&pi->list, &s->valid_paths);
|
|
spin_unlock_irqrestore(&s->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void st_fail_path(struct path_selector *ps, struct dm_path *path)
|
|
{
|
|
struct selector *s = ps->context;
|
|
struct path_info *pi = path->pscontext;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&s->lock, flags);
|
|
list_move(&pi->list, &s->failed_paths);
|
|
spin_unlock_irqrestore(&s->lock, flags);
|
|
}
|
|
|
|
static int st_reinstate_path(struct path_selector *ps, struct dm_path *path)
|
|
{
|
|
struct selector *s = ps->context;
|
|
struct path_info *pi = path->pscontext;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&s->lock, flags);
|
|
list_move_tail(&pi->list, &s->valid_paths);
|
|
spin_unlock_irqrestore(&s->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compare the estimated service time of 2 paths, pi1 and pi2,
|
|
* for the incoming I/O.
|
|
*
|
|
* Returns:
|
|
* < 0 : pi1 is better
|
|
* 0 : no difference between pi1 and pi2
|
|
* > 0 : pi2 is better
|
|
*
|
|
* Description:
|
|
* Basically, the service time is estimated by:
|
|
* ('pi->in-flight-size' + 'incoming') / 'pi->relative_throughput'
|
|
* To reduce the calculation, some optimizations are made.
|
|
* (See comments inline)
|
|
*/
|
|
static int st_compare_load(struct path_info *pi1, struct path_info *pi2,
|
|
size_t incoming)
|
|
{
|
|
size_t sz1, sz2, st1, st2;
|
|
|
|
sz1 = atomic_read(&pi1->in_flight_size);
|
|
sz2 = atomic_read(&pi2->in_flight_size);
|
|
|
|
/*
|
|
* Case 1: Both have same throughput value. Choose less loaded path.
|
|
*/
|
|
if (pi1->relative_throughput == pi2->relative_throughput)
|
|
return sz1 - sz2;
|
|
|
|
/*
|
|
* Case 2a: Both have same load. Choose higher throughput path.
|
|
* Case 2b: One path has no throughput value. Choose the other one.
|
|
*/
|
|
if (sz1 == sz2 ||
|
|
!pi1->relative_throughput || !pi2->relative_throughput)
|
|
return pi2->relative_throughput - pi1->relative_throughput;
|
|
|
|
/*
|
|
* Case 3: Calculate service time. Choose faster path.
|
|
* Service time using pi1:
|
|
* st1 = (sz1 + incoming) / pi1->relative_throughput
|
|
* Service time using pi2:
|
|
* st2 = (sz2 + incoming) / pi2->relative_throughput
|
|
*
|
|
* To avoid the division, transform the expression to use
|
|
* multiplication.
|
|
* Because ->relative_throughput > 0 here, if st1 < st2,
|
|
* the expressions below are the same meaning:
|
|
* (sz1 + incoming) / pi1->relative_throughput <
|
|
* (sz2 + incoming) / pi2->relative_throughput
|
|
* (sz1 + incoming) * pi2->relative_throughput <
|
|
* (sz2 + incoming) * pi1->relative_throughput
|
|
* So use the later one.
|
|
*/
|
|
sz1 += incoming;
|
|
sz2 += incoming;
|
|
if (unlikely(sz1 >= ST_MAX_INFLIGHT_SIZE ||
|
|
sz2 >= ST_MAX_INFLIGHT_SIZE)) {
|
|
/*
|
|
* Size may be too big for multiplying pi->relative_throughput
|
|
* and overflow.
|
|
* To avoid the overflow and mis-selection, shift down both.
|
|
*/
|
|
sz1 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
|
|
sz2 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
|
|
}
|
|
st1 = sz1 * pi2->relative_throughput;
|
|
st2 = sz2 * pi1->relative_throughput;
|
|
if (st1 != st2)
|
|
return st1 - st2;
|
|
|
|
/*
|
|
* Case 4: Service time is equal. Choose higher throughput path.
|
|
*/
|
|
return pi2->relative_throughput - pi1->relative_throughput;
|
|
}
|
|
|
|
static struct dm_path *st_select_path(struct path_selector *ps, size_t nr_bytes)
|
|
{
|
|
struct selector *s = ps->context;
|
|
struct path_info *pi = NULL, *best = NULL;
|
|
struct dm_path *ret = NULL;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&s->lock, flags);
|
|
if (list_empty(&s->valid_paths))
|
|
goto out;
|
|
|
|
list_for_each_entry(pi, &s->valid_paths, list)
|
|
if (!best || (st_compare_load(pi, best, nr_bytes) < 0))
|
|
best = pi;
|
|
|
|
if (!best)
|
|
goto out;
|
|
|
|
/* Move most recently used to least preferred to evenly balance. */
|
|
list_move_tail(&best->list, &s->valid_paths);
|
|
|
|
ret = best->path;
|
|
out:
|
|
spin_unlock_irqrestore(&s->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static int st_start_io(struct path_selector *ps, struct dm_path *path,
|
|
size_t nr_bytes)
|
|
{
|
|
struct path_info *pi = path->pscontext;
|
|
|
|
atomic_add(nr_bytes, &pi->in_flight_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int st_end_io(struct path_selector *ps, struct dm_path *path,
|
|
size_t nr_bytes, u64 start_time)
|
|
{
|
|
struct path_info *pi = path->pscontext;
|
|
|
|
atomic_sub(nr_bytes, &pi->in_flight_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct path_selector_type st_ps = {
|
|
.name = "service-time",
|
|
.module = THIS_MODULE,
|
|
.table_args = 2,
|
|
.info_args = 2,
|
|
.create = st_create,
|
|
.destroy = st_destroy,
|
|
.status = st_status,
|
|
.add_path = st_add_path,
|
|
.fail_path = st_fail_path,
|
|
.reinstate_path = st_reinstate_path,
|
|
.select_path = st_select_path,
|
|
.start_io = st_start_io,
|
|
.end_io = st_end_io,
|
|
};
|
|
|
|
static int __init dm_st_init(void)
|
|
{
|
|
int r = dm_register_path_selector(&st_ps);
|
|
|
|
if (r < 0)
|
|
DMERR("register failed %d", r);
|
|
|
|
DMINFO("version " ST_VERSION " loaded");
|
|
|
|
return r;
|
|
}
|
|
|
|
static void __exit dm_st_exit(void)
|
|
{
|
|
int r = dm_unregister_path_selector(&st_ps);
|
|
|
|
if (r < 0)
|
|
DMERR("unregister failed %d", r);
|
|
}
|
|
|
|
module_init(dm_st_init);
|
|
module_exit(dm_st_exit);
|
|
|
|
MODULE_DESCRIPTION(DM_NAME " throughput oriented path selector");
|
|
MODULE_AUTHOR("Kiyoshi Ueda <k-ueda@ct.jp.nec.com>");
|
|
MODULE_LICENSE("GPL");
|