mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-07 06:14:24 +08:00
5d337d6f64
drivers/net/wan/farsync.c: In function 'fst_intr_rx': drivers/net/wan/farsync.c:1312: warning: cast to pointer from integer of different size drivers/net/wan/farsync.c: In function 'do_bottom_half_tx': drivers/net/wan/farsync.c:1407: warning: cast to pointer from integer of different size The "skb" and "mem" arguments being passed here are DMA addresses being programmed into the hardware registers, so pass them as the type that they actually are. And use the correct printf formatting in debug logging statements for these things to match the type change. Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2677 lines
70 KiB
C
2677 lines
70 KiB
C
/*
|
|
* FarSync WAN driver for Linux (2.6.x kernel version)
|
|
*
|
|
* Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
|
|
*
|
|
* Copyright (C) 2001-2004 FarSite Communications Ltd.
|
|
* www.farsite.co.uk
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
|
|
* Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/version.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/init.h>
|
|
#include <linux/if.h>
|
|
#include <linux/hdlc.h>
|
|
#include <asm/io.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#include "farsync.h"
|
|
|
|
/*
|
|
* Module info
|
|
*/
|
|
MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
|
|
MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/* Driver configuration and global parameters
|
|
* ==========================================
|
|
*/
|
|
|
|
/* Number of ports (per card) and cards supported
|
|
*/
|
|
#define FST_MAX_PORTS 4
|
|
#define FST_MAX_CARDS 32
|
|
|
|
/* Default parameters for the link
|
|
*/
|
|
#define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
|
|
* useful */
|
|
#define FST_TXQ_DEPTH 16 /* This one is for the buffering
|
|
* of frames on the way down to the card
|
|
* so that we can keep the card busy
|
|
* and maximise throughput
|
|
*/
|
|
#define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
|
|
* network layer */
|
|
#define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
|
|
* control from network layer */
|
|
#define FST_MAX_MTU 8000 /* Huge but possible */
|
|
#define FST_DEF_MTU 1500 /* Common sane value */
|
|
|
|
#define FST_TX_TIMEOUT (2*HZ)
|
|
|
|
#ifdef ARPHRD_RAWHDLC
|
|
#define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
|
|
#else
|
|
#define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
|
|
#endif
|
|
|
|
/*
|
|
* Modules parameters and associated variables
|
|
*/
|
|
static int fst_txq_low = FST_LOW_WATER_MARK;
|
|
static int fst_txq_high = FST_HIGH_WATER_MARK;
|
|
static int fst_max_reads = 7;
|
|
static int fst_excluded_cards = 0;
|
|
static int fst_excluded_list[FST_MAX_CARDS];
|
|
|
|
module_param(fst_txq_low, int, 0);
|
|
module_param(fst_txq_high, int, 0);
|
|
module_param(fst_max_reads, int, 0);
|
|
module_param(fst_excluded_cards, int, 0);
|
|
module_param_array(fst_excluded_list, int, NULL, 0);
|
|
|
|
/* Card shared memory layout
|
|
* =========================
|
|
*/
|
|
#pragma pack(1)
|
|
|
|
/* This information is derived in part from the FarSite FarSync Smc.h
|
|
* file. Unfortunately various name clashes and the non-portability of the
|
|
* bit field declarations in that file have meant that I have chosen to
|
|
* recreate the information here.
|
|
*
|
|
* The SMC (Shared Memory Configuration) has a version number that is
|
|
* incremented every time there is a significant change. This number can
|
|
* be used to check that we have not got out of step with the firmware
|
|
* contained in the .CDE files.
|
|
*/
|
|
#define SMC_VERSION 24
|
|
|
|
#define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
|
|
|
|
#define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
|
|
* configuration structure */
|
|
#define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
|
|
* buffers */
|
|
|
|
#define LEN_TX_BUFFER 8192 /* Size of packet buffers */
|
|
#define LEN_RX_BUFFER 8192
|
|
|
|
#define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
|
|
#define LEN_SMALL_RX_BUFFER 256
|
|
|
|
#define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
|
|
#define NUM_RX_BUFFER 8
|
|
|
|
/* Interrupt retry time in milliseconds */
|
|
#define INT_RETRY_TIME 2
|
|
|
|
/* The Am186CH/CC processors support a SmartDMA mode using circular pools
|
|
* of buffer descriptors. The structure is almost identical to that used
|
|
* in the LANCE Ethernet controllers. Details available as PDF from the
|
|
* AMD web site: http://www.amd.com/products/epd/processors/\
|
|
* 2.16bitcont/3.am186cxfa/a21914/21914.pdf
|
|
*/
|
|
struct txdesc { /* Transmit descriptor */
|
|
volatile u16 ladr; /* Low order address of packet. This is a
|
|
* linear address in the Am186 memory space
|
|
*/
|
|
volatile u8 hadr; /* High order address. Low 4 bits only, high 4
|
|
* bits must be zero
|
|
*/
|
|
volatile u8 bits; /* Status and config */
|
|
volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
|
|
* Transmit terminal count interrupt enable in
|
|
* top bit.
|
|
*/
|
|
u16 unused; /* Not used in Tx */
|
|
};
|
|
|
|
struct rxdesc { /* Receive descriptor */
|
|
volatile u16 ladr; /* Low order address of packet */
|
|
volatile u8 hadr; /* High order address */
|
|
volatile u8 bits; /* Status and config */
|
|
volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
|
|
* Receive terminal count interrupt enable in
|
|
* top bit.
|
|
*/
|
|
volatile u16 mcnt; /* Message byte count (15 bits) */
|
|
};
|
|
|
|
/* Convert a length into the 15 bit 2's complement */
|
|
/* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
|
|
/* Since we need to set the high bit to enable the completion interrupt this
|
|
* can be made a lot simpler
|
|
*/
|
|
#define cnv_bcnt(len) (-(len))
|
|
|
|
/* Status and config bits for the above */
|
|
#define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
|
|
#define TX_STP 0x02 /* Tx: start of packet */
|
|
#define TX_ENP 0x01 /* Tx: end of packet */
|
|
#define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
|
|
#define RX_FRAM 0x20 /* Rx: framing error */
|
|
#define RX_OFLO 0x10 /* Rx: overflow error */
|
|
#define RX_CRC 0x08 /* Rx: CRC error */
|
|
#define RX_HBUF 0x04 /* Rx: buffer error */
|
|
#define RX_STP 0x02 /* Rx: start of packet */
|
|
#define RX_ENP 0x01 /* Rx: end of packet */
|
|
|
|
/* Interrupts from the card are caused by various events which are presented
|
|
* in a circular buffer as several events may be processed on one physical int
|
|
*/
|
|
#define MAX_CIRBUFF 32
|
|
|
|
struct cirbuff {
|
|
u8 rdindex; /* read, then increment and wrap */
|
|
u8 wrindex; /* write, then increment and wrap */
|
|
u8 evntbuff[MAX_CIRBUFF];
|
|
};
|
|
|
|
/* Interrupt event codes.
|
|
* Where appropriate the two low order bits indicate the port number
|
|
*/
|
|
#define CTLA_CHG 0x18 /* Control signal changed */
|
|
#define CTLB_CHG 0x19
|
|
#define CTLC_CHG 0x1A
|
|
#define CTLD_CHG 0x1B
|
|
|
|
#define INIT_CPLT 0x20 /* Initialisation complete */
|
|
#define INIT_FAIL 0x21 /* Initialisation failed */
|
|
|
|
#define ABTA_SENT 0x24 /* Abort sent */
|
|
#define ABTB_SENT 0x25
|
|
#define ABTC_SENT 0x26
|
|
#define ABTD_SENT 0x27
|
|
|
|
#define TXA_UNDF 0x28 /* Transmission underflow */
|
|
#define TXB_UNDF 0x29
|
|
#define TXC_UNDF 0x2A
|
|
#define TXD_UNDF 0x2B
|
|
|
|
#define F56_INT 0x2C
|
|
#define M32_INT 0x2D
|
|
|
|
#define TE1_ALMA 0x30
|
|
|
|
/* Port physical configuration. See farsync.h for field values */
|
|
struct port_cfg {
|
|
u16 lineInterface; /* Physical interface type */
|
|
u8 x25op; /* Unused at present */
|
|
u8 internalClock; /* 1 => internal clock, 0 => external */
|
|
u8 transparentMode; /* 1 => on, 0 => off */
|
|
u8 invertClock; /* 0 => normal, 1 => inverted */
|
|
u8 padBytes[6]; /* Padding */
|
|
u32 lineSpeed; /* Speed in bps */
|
|
};
|
|
|
|
/* TE1 port physical configuration */
|
|
struct su_config {
|
|
u32 dataRate;
|
|
u8 clocking;
|
|
u8 framing;
|
|
u8 structure;
|
|
u8 interface;
|
|
u8 coding;
|
|
u8 lineBuildOut;
|
|
u8 equalizer;
|
|
u8 transparentMode;
|
|
u8 loopMode;
|
|
u8 range;
|
|
u8 txBufferMode;
|
|
u8 rxBufferMode;
|
|
u8 startingSlot;
|
|
u8 losThreshold;
|
|
u8 enableIdleCode;
|
|
u8 idleCode;
|
|
u8 spare[44];
|
|
};
|
|
|
|
/* TE1 Status */
|
|
struct su_status {
|
|
u32 receiveBufferDelay;
|
|
u32 framingErrorCount;
|
|
u32 codeViolationCount;
|
|
u32 crcErrorCount;
|
|
u32 lineAttenuation;
|
|
u8 portStarted;
|
|
u8 lossOfSignal;
|
|
u8 receiveRemoteAlarm;
|
|
u8 alarmIndicationSignal;
|
|
u8 spare[40];
|
|
};
|
|
|
|
/* Finally sling all the above together into the shared memory structure.
|
|
* Sorry it's a hodge podge of arrays, structures and unused bits, it's been
|
|
* evolving under NT for some time so I guess we're stuck with it.
|
|
* The structure starts at offset SMC_BASE.
|
|
* See farsync.h for some field values.
|
|
*/
|
|
struct fst_shared {
|
|
/* DMA descriptor rings */
|
|
struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
|
|
struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
|
|
|
|
/* Obsolete small buffers */
|
|
u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
|
|
u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
|
|
|
|
u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
|
|
* 0xFF => halted
|
|
*/
|
|
|
|
u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
|
|
* set to 0xEE by host to acknowledge interrupt
|
|
*/
|
|
|
|
u16 smcVersion; /* Must match SMC_VERSION */
|
|
|
|
u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
|
|
* version, RR = revision and BB = build
|
|
*/
|
|
|
|
u16 txa_done; /* Obsolete completion flags */
|
|
u16 rxa_done;
|
|
u16 txb_done;
|
|
u16 rxb_done;
|
|
u16 txc_done;
|
|
u16 rxc_done;
|
|
u16 txd_done;
|
|
u16 rxd_done;
|
|
|
|
u16 mailbox[4]; /* Diagnostics mailbox. Not used */
|
|
|
|
struct cirbuff interruptEvent; /* interrupt causes */
|
|
|
|
u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
|
|
u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
|
|
|
|
struct port_cfg portConfig[FST_MAX_PORTS];
|
|
|
|
u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
|
|
|
|
u16 cableStatus; /* lsb: 0=> present, 1=> absent */
|
|
|
|
u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
|
|
u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
|
|
|
|
u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
|
|
u16 cardMailbox[4]; /* Not used */
|
|
|
|
/* Number of times the card thinks the host has
|
|
* missed an interrupt by not acknowledging
|
|
* within 2mS (I guess NT has problems)
|
|
*/
|
|
u32 interruptRetryCount;
|
|
|
|
/* Driver private data used as an ID. We'll not
|
|
* use this as I'd rather keep such things
|
|
* in main memory rather than on the PCI bus
|
|
*/
|
|
u32 portHandle[FST_MAX_PORTS];
|
|
|
|
/* Count of Tx underflows for stats */
|
|
u32 transmitBufferUnderflow[FST_MAX_PORTS];
|
|
|
|
/* Debounced V.24 control input status */
|
|
u32 v24DebouncedSts[FST_MAX_PORTS];
|
|
|
|
/* Adapter debounce timers. Don't touch */
|
|
u32 ctsTimer[FST_MAX_PORTS];
|
|
u32 ctsTimerRun[FST_MAX_PORTS];
|
|
u32 dcdTimer[FST_MAX_PORTS];
|
|
u32 dcdTimerRun[FST_MAX_PORTS];
|
|
|
|
u32 numberOfPorts; /* Number of ports detected at startup */
|
|
|
|
u16 _reserved[64];
|
|
|
|
u16 cardMode; /* Bit-mask to enable features:
|
|
* Bit 0: 1 enables LED identify mode
|
|
*/
|
|
|
|
u16 portScheduleOffset;
|
|
|
|
struct su_config suConfig; /* TE1 Bits */
|
|
struct su_status suStatus;
|
|
|
|
u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
|
|
* the structure and marks the end of shared
|
|
* memory. Adapter code initializes it as
|
|
* END_SIG.
|
|
*/
|
|
};
|
|
|
|
/* endOfSmcSignature value */
|
|
#define END_SIG 0x12345678
|
|
|
|
/* Mailbox values. (portMailbox) */
|
|
#define NOP 0 /* No operation */
|
|
#define ACK 1 /* Positive acknowledgement to PC driver */
|
|
#define NAK 2 /* Negative acknowledgement to PC driver */
|
|
#define STARTPORT 3 /* Start an HDLC port */
|
|
#define STOPPORT 4 /* Stop an HDLC port */
|
|
#define ABORTTX 5 /* Abort the transmitter for a port */
|
|
#define SETV24O 6 /* Set V24 outputs */
|
|
|
|
/* PLX Chip Register Offsets */
|
|
#define CNTRL_9052 0x50 /* Control Register */
|
|
#define CNTRL_9054 0x6c /* Control Register */
|
|
|
|
#define INTCSR_9052 0x4c /* Interrupt control/status register */
|
|
#define INTCSR_9054 0x68 /* Interrupt control/status register */
|
|
|
|
/* 9054 DMA Registers */
|
|
/*
|
|
* Note that we will be using DMA Channel 0 for copying rx data
|
|
* and Channel 1 for copying tx data
|
|
*/
|
|
#define DMAMODE0 0x80
|
|
#define DMAPADR0 0x84
|
|
#define DMALADR0 0x88
|
|
#define DMASIZ0 0x8c
|
|
#define DMADPR0 0x90
|
|
#define DMAMODE1 0x94
|
|
#define DMAPADR1 0x98
|
|
#define DMALADR1 0x9c
|
|
#define DMASIZ1 0xa0
|
|
#define DMADPR1 0xa4
|
|
#define DMACSR0 0xa8
|
|
#define DMACSR1 0xa9
|
|
#define DMAARB 0xac
|
|
#define DMATHR 0xb0
|
|
#define DMADAC0 0xb4
|
|
#define DMADAC1 0xb8
|
|
#define DMAMARBR 0xac
|
|
|
|
#define FST_MIN_DMA_LEN 64
|
|
#define FST_RX_DMA_INT 0x01
|
|
#define FST_TX_DMA_INT 0x02
|
|
#define FST_CARD_INT 0x04
|
|
|
|
/* Larger buffers are positioned in memory at offset BFM_BASE */
|
|
struct buf_window {
|
|
u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
|
|
u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
|
|
};
|
|
|
|
/* Calculate offset of a buffer object within the shared memory window */
|
|
#define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
|
|
|
|
#pragma pack()
|
|
|
|
/* Device driver private information
|
|
* =================================
|
|
*/
|
|
/* Per port (line or channel) information
|
|
*/
|
|
struct fst_port_info {
|
|
struct net_device *dev; /* Device struct - must be first */
|
|
struct fst_card_info *card; /* Card we're associated with */
|
|
int index; /* Port index on the card */
|
|
int hwif; /* Line hardware (lineInterface copy) */
|
|
int run; /* Port is running */
|
|
int mode; /* Normal or FarSync raw */
|
|
int rxpos; /* Next Rx buffer to use */
|
|
int txpos; /* Next Tx buffer to use */
|
|
int txipos; /* Next Tx buffer to check for free */
|
|
int start; /* Indication of start/stop to network */
|
|
/*
|
|
* A sixteen entry transmit queue
|
|
*/
|
|
int txqs; /* index to get next buffer to tx */
|
|
int txqe; /* index to queue next packet */
|
|
struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
|
|
int rxqdepth;
|
|
};
|
|
|
|
/* Per card information
|
|
*/
|
|
struct fst_card_info {
|
|
char __iomem *mem; /* Card memory mapped to kernel space */
|
|
char __iomem *ctlmem; /* Control memory for PCI cards */
|
|
unsigned int phys_mem; /* Physical memory window address */
|
|
unsigned int phys_ctlmem; /* Physical control memory address */
|
|
unsigned int irq; /* Interrupt request line number */
|
|
unsigned int nports; /* Number of serial ports */
|
|
unsigned int type; /* Type index of card */
|
|
unsigned int state; /* State of card */
|
|
spinlock_t card_lock; /* Lock for SMP access */
|
|
unsigned short pci_conf; /* PCI card config in I/O space */
|
|
/* Per port info */
|
|
struct fst_port_info ports[FST_MAX_PORTS];
|
|
struct pci_dev *device; /* Information about the pci device */
|
|
int card_no; /* Inst of the card on the system */
|
|
int family; /* TxP or TxU */
|
|
int dmarx_in_progress;
|
|
int dmatx_in_progress;
|
|
unsigned long int_count;
|
|
unsigned long int_time_ave;
|
|
void *rx_dma_handle_host;
|
|
dma_addr_t rx_dma_handle_card;
|
|
void *tx_dma_handle_host;
|
|
dma_addr_t tx_dma_handle_card;
|
|
struct sk_buff *dma_skb_rx;
|
|
struct fst_port_info *dma_port_rx;
|
|
struct fst_port_info *dma_port_tx;
|
|
int dma_len_rx;
|
|
int dma_len_tx;
|
|
int dma_txpos;
|
|
int dma_rxpos;
|
|
};
|
|
|
|
/* Convert an HDLC device pointer into a port info pointer and similar */
|
|
#define dev_to_port(D) (dev_to_hdlc(D)->priv)
|
|
#define port_to_dev(P) ((P)->dev)
|
|
|
|
|
|
/*
|
|
* Shared memory window access macros
|
|
*
|
|
* We have a nice memory based structure above, which could be directly
|
|
* mapped on i386 but might not work on other architectures unless we use
|
|
* the readb,w,l and writeb,w,l macros. Unfortunately these macros take
|
|
* physical offsets so we have to convert. The only saving grace is that
|
|
* this should all collapse back to a simple indirection eventually.
|
|
*/
|
|
#define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
|
|
|
|
#define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
|
|
#define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
|
|
#define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
|
|
|
|
#define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
|
|
#define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
|
|
#define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
|
|
|
|
/*
|
|
* Debug support
|
|
*/
|
|
#if FST_DEBUG
|
|
|
|
static int fst_debug_mask = { FST_DEBUG };
|
|
|
|
/* Most common debug activity is to print something if the corresponding bit
|
|
* is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
|
|
* support variable numbers of macro parameters. The inverted if prevents us
|
|
* eating someone else's else clause.
|
|
*/
|
|
#define dbg(F, fmt, args...) \
|
|
do { \
|
|
if (fst_debug_mask & (F)) \
|
|
printk(KERN_DEBUG pr_fmt(fmt), ##args); \
|
|
} while (0)
|
|
#else
|
|
#define dbg(F, fmt, args...) \
|
|
do { \
|
|
if (0) \
|
|
printk(KERN_DEBUG pr_fmt(fmt), ##args); \
|
|
} while (0)
|
|
#endif
|
|
|
|
/*
|
|
* PCI ID lookup table
|
|
*/
|
|
static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id) = {
|
|
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
|
|
PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
|
|
|
|
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
|
|
PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
|
|
|
|
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
|
|
PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
|
|
|
|
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
|
|
PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
|
|
|
|
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
|
|
PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
|
|
|
|
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
|
|
PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
|
|
|
|
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
|
|
PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
|
|
{0,} /* End */
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
|
|
|
|
/*
|
|
* Device Driver Work Queues
|
|
*
|
|
* So that we don't spend too much time processing events in the
|
|
* Interrupt Service routine, we will declare a work queue per Card
|
|
* and make the ISR schedule a task in the queue for later execution.
|
|
* In the 2.4 Kernel we used to use the immediate queue for BH's
|
|
* Now that they are gone, tasklets seem to be much better than work
|
|
* queues.
|
|
*/
|
|
|
|
static void do_bottom_half_tx(struct fst_card_info *card);
|
|
static void do_bottom_half_rx(struct fst_card_info *card);
|
|
static void fst_process_tx_work_q(unsigned long work_q);
|
|
static void fst_process_int_work_q(unsigned long work_q);
|
|
|
|
static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
|
|
static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
|
|
|
|
static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
|
|
static spinlock_t fst_work_q_lock;
|
|
static u64 fst_work_txq;
|
|
static u64 fst_work_intq;
|
|
|
|
static void
|
|
fst_q_work_item(u64 * queue, int card_index)
|
|
{
|
|
unsigned long flags;
|
|
u64 mask;
|
|
|
|
/*
|
|
* Grab the queue exclusively
|
|
*/
|
|
spin_lock_irqsave(&fst_work_q_lock, flags);
|
|
|
|
/*
|
|
* Making an entry in the queue is simply a matter of setting
|
|
* a bit for the card indicating that there is work to do in the
|
|
* bottom half for the card. Note the limitation of 64 cards.
|
|
* That ought to be enough
|
|
*/
|
|
mask = 1 << card_index;
|
|
*queue |= mask;
|
|
spin_unlock_irqrestore(&fst_work_q_lock, flags);
|
|
}
|
|
|
|
static void
|
|
fst_process_tx_work_q(unsigned long /*void **/work_q)
|
|
{
|
|
unsigned long flags;
|
|
u64 work_txq;
|
|
int i;
|
|
|
|
/*
|
|
* Grab the queue exclusively
|
|
*/
|
|
dbg(DBG_TX, "fst_process_tx_work_q\n");
|
|
spin_lock_irqsave(&fst_work_q_lock, flags);
|
|
work_txq = fst_work_txq;
|
|
fst_work_txq = 0;
|
|
spin_unlock_irqrestore(&fst_work_q_lock, flags);
|
|
|
|
/*
|
|
* Call the bottom half for each card with work waiting
|
|
*/
|
|
for (i = 0; i < FST_MAX_CARDS; i++) {
|
|
if (work_txq & 0x01) {
|
|
if (fst_card_array[i] != NULL) {
|
|
dbg(DBG_TX, "Calling tx bh for card %d\n", i);
|
|
do_bottom_half_tx(fst_card_array[i]);
|
|
}
|
|
}
|
|
work_txq = work_txq >> 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
fst_process_int_work_q(unsigned long /*void **/work_q)
|
|
{
|
|
unsigned long flags;
|
|
u64 work_intq;
|
|
int i;
|
|
|
|
/*
|
|
* Grab the queue exclusively
|
|
*/
|
|
dbg(DBG_INTR, "fst_process_int_work_q\n");
|
|
spin_lock_irqsave(&fst_work_q_lock, flags);
|
|
work_intq = fst_work_intq;
|
|
fst_work_intq = 0;
|
|
spin_unlock_irqrestore(&fst_work_q_lock, flags);
|
|
|
|
/*
|
|
* Call the bottom half for each card with work waiting
|
|
*/
|
|
for (i = 0; i < FST_MAX_CARDS; i++) {
|
|
if (work_intq & 0x01) {
|
|
if (fst_card_array[i] != NULL) {
|
|
dbg(DBG_INTR,
|
|
"Calling rx & tx bh for card %d\n", i);
|
|
do_bottom_half_rx(fst_card_array[i]);
|
|
do_bottom_half_tx(fst_card_array[i]);
|
|
}
|
|
}
|
|
work_intq = work_intq >> 1;
|
|
}
|
|
}
|
|
|
|
/* Card control functions
|
|
* ======================
|
|
*/
|
|
/* Place the processor in reset state
|
|
*
|
|
* Used to be a simple write to card control space but a glitch in the latest
|
|
* AMD Am186CH processor means that we now have to do it by asserting and de-
|
|
* asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
|
|
* at offset 9052_CNTRL. Note the updates for the TXU.
|
|
*/
|
|
static inline void
|
|
fst_cpureset(struct fst_card_info *card)
|
|
{
|
|
unsigned char interrupt_line_register;
|
|
unsigned long j = jiffies + 1;
|
|
unsigned int regval;
|
|
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
if (pci_read_config_byte
|
|
(card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
|
|
dbg(DBG_ASS,
|
|
"Error in reading interrupt line register\n");
|
|
}
|
|
/*
|
|
* Assert PLX software reset and Am186 hardware reset
|
|
* and then deassert the PLX software reset but 186 still in reset
|
|
*/
|
|
outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
|
|
outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
|
|
/*
|
|
* We are delaying here to allow the 9054 to reset itself
|
|
*/
|
|
j = jiffies + 1;
|
|
while (jiffies < j)
|
|
/* Do nothing */ ;
|
|
outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
|
|
/*
|
|
* We are delaying here to allow the 9054 to reload its eeprom
|
|
*/
|
|
j = jiffies + 1;
|
|
while (jiffies < j)
|
|
/* Do nothing */ ;
|
|
outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
|
|
|
|
if (pci_write_config_byte
|
|
(card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
|
|
dbg(DBG_ASS,
|
|
"Error in writing interrupt line register\n");
|
|
}
|
|
|
|
} else {
|
|
regval = inl(card->pci_conf + CNTRL_9052);
|
|
|
|
outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
|
|
outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
|
|
}
|
|
}
|
|
|
|
/* Release the processor from reset
|
|
*/
|
|
static inline void
|
|
fst_cpurelease(struct fst_card_info *card)
|
|
{
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
/*
|
|
* Force posted writes to complete
|
|
*/
|
|
(void) readb(card->mem);
|
|
|
|
/*
|
|
* Release LRESET DO = 1
|
|
* Then release Local Hold, DO = 1
|
|
*/
|
|
outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
|
|
outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
|
|
} else {
|
|
(void) readb(card->ctlmem);
|
|
}
|
|
}
|
|
|
|
/* Clear the cards interrupt flag
|
|
*/
|
|
static inline void
|
|
fst_clear_intr(struct fst_card_info *card)
|
|
{
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
(void) readb(card->ctlmem);
|
|
} else {
|
|
/* Poke the appropriate PLX chip register (same as enabling interrupts)
|
|
*/
|
|
outw(0x0543, card->pci_conf + INTCSR_9052);
|
|
}
|
|
}
|
|
|
|
/* Enable card interrupts
|
|
*/
|
|
static inline void
|
|
fst_enable_intr(struct fst_card_info *card)
|
|
{
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
|
|
} else {
|
|
outw(0x0543, card->pci_conf + INTCSR_9052);
|
|
}
|
|
}
|
|
|
|
/* Disable card interrupts
|
|
*/
|
|
static inline void
|
|
fst_disable_intr(struct fst_card_info *card)
|
|
{
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
outl(0x00000000, card->pci_conf + INTCSR_9054);
|
|
} else {
|
|
outw(0x0000, card->pci_conf + INTCSR_9052);
|
|
}
|
|
}
|
|
|
|
/* Process the result of trying to pass a received frame up the stack
|
|
*/
|
|
static void
|
|
fst_process_rx_status(int rx_status, char *name)
|
|
{
|
|
switch (rx_status) {
|
|
case NET_RX_SUCCESS:
|
|
{
|
|
/*
|
|
* Nothing to do here
|
|
*/
|
|
break;
|
|
}
|
|
case NET_RX_DROP:
|
|
{
|
|
dbg(DBG_ASS, "%s: Received packet dropped\n", name);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Initilaise DMA for PLX 9054
|
|
*/
|
|
static inline void
|
|
fst_init_dma(struct fst_card_info *card)
|
|
{
|
|
/*
|
|
* This is only required for the PLX 9054
|
|
*/
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
pci_set_master(card->device);
|
|
outl(0x00020441, card->pci_conf + DMAMODE0);
|
|
outl(0x00020441, card->pci_conf + DMAMODE1);
|
|
outl(0x0, card->pci_conf + DMATHR);
|
|
}
|
|
}
|
|
|
|
/* Tx dma complete interrupt
|
|
*/
|
|
static void
|
|
fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
|
|
int len, int txpos)
|
|
{
|
|
struct net_device *dev = port_to_dev(port);
|
|
|
|
/*
|
|
* Everything is now set, just tell the card to go
|
|
*/
|
|
dbg(DBG_TX, "fst_tx_dma_complete\n");
|
|
FST_WRB(card, txDescrRing[port->index][txpos].bits,
|
|
DMA_OWN | TX_STP | TX_ENP);
|
|
dev->stats.tx_packets++;
|
|
dev->stats.tx_bytes += len;
|
|
dev->trans_start = jiffies;
|
|
}
|
|
|
|
/*
|
|
* Mark it for our own raw sockets interface
|
|
*/
|
|
static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
skb->dev = dev;
|
|
skb_reset_mac_header(skb);
|
|
skb->pkt_type = PACKET_HOST;
|
|
return htons(ETH_P_CUST);
|
|
}
|
|
|
|
/* Rx dma complete interrupt
|
|
*/
|
|
static void
|
|
fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
|
|
int len, struct sk_buff *skb, int rxp)
|
|
{
|
|
struct net_device *dev = port_to_dev(port);
|
|
int pi;
|
|
int rx_status;
|
|
|
|
dbg(DBG_TX, "fst_rx_dma_complete\n");
|
|
pi = port->index;
|
|
memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
|
|
|
|
/* Reset buffer descriptor */
|
|
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
|
|
|
|
/* Update stats */
|
|
dev->stats.rx_packets++;
|
|
dev->stats.rx_bytes += len;
|
|
|
|
/* Push upstream */
|
|
dbg(DBG_RX, "Pushing the frame up the stack\n");
|
|
if (port->mode == FST_RAW)
|
|
skb->protocol = farsync_type_trans(skb, dev);
|
|
else
|
|
skb->protocol = hdlc_type_trans(skb, dev);
|
|
rx_status = netif_rx(skb);
|
|
fst_process_rx_status(rx_status, port_to_dev(port)->name);
|
|
if (rx_status == NET_RX_DROP)
|
|
dev->stats.rx_dropped++;
|
|
}
|
|
|
|
/*
|
|
* Receive a frame through the DMA
|
|
*/
|
|
static inline void
|
|
fst_rx_dma(struct fst_card_info *card, dma_addr_t skb,
|
|
dma_addr_t mem, int len)
|
|
{
|
|
/*
|
|
* This routine will setup the DMA and start it
|
|
*/
|
|
|
|
dbg(DBG_RX, "In fst_rx_dma %lx %lx %d\n",
|
|
(unsigned long) skb, (unsigned long) mem, len);
|
|
if (card->dmarx_in_progress) {
|
|
dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
|
|
}
|
|
|
|
outl(skb, card->pci_conf + DMAPADR0); /* Copy to here */
|
|
outl(mem, card->pci_conf + DMALADR0); /* from here */
|
|
outl(len, card->pci_conf + DMASIZ0); /* for this length */
|
|
outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
|
|
|
|
/*
|
|
* We use the dmarx_in_progress flag to flag the channel as busy
|
|
*/
|
|
card->dmarx_in_progress = 1;
|
|
outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
|
|
}
|
|
|
|
/*
|
|
* Send a frame through the DMA
|
|
*/
|
|
static inline void
|
|
fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
|
|
unsigned char *mem, int len)
|
|
{
|
|
/*
|
|
* This routine will setup the DMA and start it.
|
|
*/
|
|
|
|
dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
|
|
if (card->dmatx_in_progress) {
|
|
dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
|
|
}
|
|
|
|
outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */
|
|
outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */
|
|
outl(len, card->pci_conf + DMASIZ1); /* for this length */
|
|
outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
|
|
|
|
/*
|
|
* We use the dmatx_in_progress to flag the channel as busy
|
|
*/
|
|
card->dmatx_in_progress = 1;
|
|
outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
|
|
}
|
|
|
|
/* Issue a Mailbox command for a port.
|
|
* Note we issue them on a fire and forget basis, not expecting to see an
|
|
* error and not waiting for completion.
|
|
*/
|
|
static void
|
|
fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
|
|
{
|
|
struct fst_card_info *card;
|
|
unsigned short mbval;
|
|
unsigned long flags;
|
|
int safety;
|
|
|
|
card = port->card;
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
mbval = FST_RDW(card, portMailbox[port->index][0]);
|
|
|
|
safety = 0;
|
|
/* Wait for any previous command to complete */
|
|
while (mbval > NAK) {
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
schedule_timeout_uninterruptible(1);
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
|
|
if (++safety > 2000) {
|
|
pr_err("Mailbox safety timeout\n");
|
|
break;
|
|
}
|
|
|
|
mbval = FST_RDW(card, portMailbox[port->index][0]);
|
|
}
|
|
if (safety > 0) {
|
|
dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
|
|
}
|
|
if (mbval == NAK) {
|
|
dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
|
|
}
|
|
|
|
FST_WRW(card, portMailbox[port->index][0], cmd);
|
|
|
|
if (cmd == ABORTTX || cmd == STARTPORT) {
|
|
port->txpos = 0;
|
|
port->txipos = 0;
|
|
port->start = 0;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
}
|
|
|
|
/* Port output signals control
|
|
*/
|
|
static inline void
|
|
fst_op_raise(struct fst_port_info *port, unsigned int outputs)
|
|
{
|
|
outputs |= FST_RDL(port->card, v24OpSts[port->index]);
|
|
FST_WRL(port->card, v24OpSts[port->index], outputs);
|
|
|
|
if (port->run)
|
|
fst_issue_cmd(port, SETV24O);
|
|
}
|
|
|
|
static inline void
|
|
fst_op_lower(struct fst_port_info *port, unsigned int outputs)
|
|
{
|
|
outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
|
|
FST_WRL(port->card, v24OpSts[port->index], outputs);
|
|
|
|
if (port->run)
|
|
fst_issue_cmd(port, SETV24O);
|
|
}
|
|
|
|
/*
|
|
* Setup port Rx buffers
|
|
*/
|
|
static void
|
|
fst_rx_config(struct fst_port_info *port)
|
|
{
|
|
int i;
|
|
int pi;
|
|
unsigned int offset;
|
|
unsigned long flags;
|
|
struct fst_card_info *card;
|
|
|
|
pi = port->index;
|
|
card = port->card;
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
for (i = 0; i < NUM_RX_BUFFER; i++) {
|
|
offset = BUF_OFFSET(rxBuffer[pi][i][0]);
|
|
|
|
FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
|
|
FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
|
|
FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
|
|
FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
|
|
FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
|
|
}
|
|
port->rxpos = 0;
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Setup port Tx buffers
|
|
*/
|
|
static void
|
|
fst_tx_config(struct fst_port_info *port)
|
|
{
|
|
int i;
|
|
int pi;
|
|
unsigned int offset;
|
|
unsigned long flags;
|
|
struct fst_card_info *card;
|
|
|
|
pi = port->index;
|
|
card = port->card;
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
for (i = 0; i < NUM_TX_BUFFER; i++) {
|
|
offset = BUF_OFFSET(txBuffer[pi][i][0]);
|
|
|
|
FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
|
|
FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
|
|
FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
|
|
FST_WRB(card, txDescrRing[pi][i].bits, 0);
|
|
}
|
|
port->txpos = 0;
|
|
port->txipos = 0;
|
|
port->start = 0;
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
}
|
|
|
|
/* TE1 Alarm change interrupt event
|
|
*/
|
|
static void
|
|
fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
|
|
{
|
|
u8 los;
|
|
u8 rra;
|
|
u8 ais;
|
|
|
|
los = FST_RDB(card, suStatus.lossOfSignal);
|
|
rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
|
|
ais = FST_RDB(card, suStatus.alarmIndicationSignal);
|
|
|
|
if (los) {
|
|
/*
|
|
* Lost the link
|
|
*/
|
|
if (netif_carrier_ok(port_to_dev(port))) {
|
|
dbg(DBG_INTR, "Net carrier off\n");
|
|
netif_carrier_off(port_to_dev(port));
|
|
}
|
|
} else {
|
|
/*
|
|
* Link available
|
|
*/
|
|
if (!netif_carrier_ok(port_to_dev(port))) {
|
|
dbg(DBG_INTR, "Net carrier on\n");
|
|
netif_carrier_on(port_to_dev(port));
|
|
}
|
|
}
|
|
|
|
if (los)
|
|
dbg(DBG_INTR, "Assert LOS Alarm\n");
|
|
else
|
|
dbg(DBG_INTR, "De-assert LOS Alarm\n");
|
|
if (rra)
|
|
dbg(DBG_INTR, "Assert RRA Alarm\n");
|
|
else
|
|
dbg(DBG_INTR, "De-assert RRA Alarm\n");
|
|
|
|
if (ais)
|
|
dbg(DBG_INTR, "Assert AIS Alarm\n");
|
|
else
|
|
dbg(DBG_INTR, "De-assert AIS Alarm\n");
|
|
}
|
|
|
|
/* Control signal change interrupt event
|
|
*/
|
|
static void
|
|
fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
|
|
{
|
|
int signals;
|
|
|
|
signals = FST_RDL(card, v24DebouncedSts[port->index]);
|
|
|
|
if (signals & (((port->hwif == X21) || (port->hwif == X21D))
|
|
? IPSTS_INDICATE : IPSTS_DCD)) {
|
|
if (!netif_carrier_ok(port_to_dev(port))) {
|
|
dbg(DBG_INTR, "DCD active\n");
|
|
netif_carrier_on(port_to_dev(port));
|
|
}
|
|
} else {
|
|
if (netif_carrier_ok(port_to_dev(port))) {
|
|
dbg(DBG_INTR, "DCD lost\n");
|
|
netif_carrier_off(port_to_dev(port));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Log Rx Errors
|
|
*/
|
|
static void
|
|
fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
|
|
unsigned char dmabits, int rxp, unsigned short len)
|
|
{
|
|
struct net_device *dev = port_to_dev(port);
|
|
|
|
/*
|
|
* Increment the appropriate error counter
|
|
*/
|
|
dev->stats.rx_errors++;
|
|
if (dmabits & RX_OFLO) {
|
|
dev->stats.rx_fifo_errors++;
|
|
dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
|
|
card->card_no, port->index, rxp);
|
|
}
|
|
if (dmabits & RX_CRC) {
|
|
dev->stats.rx_crc_errors++;
|
|
dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
|
|
card->card_no, port->index);
|
|
}
|
|
if (dmabits & RX_FRAM) {
|
|
dev->stats.rx_frame_errors++;
|
|
dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
|
|
card->card_no, port->index);
|
|
}
|
|
if (dmabits == (RX_STP | RX_ENP)) {
|
|
dev->stats.rx_length_errors++;
|
|
dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
|
|
len, card->card_no, port->index);
|
|
}
|
|
}
|
|
|
|
/* Rx Error Recovery
|
|
*/
|
|
static void
|
|
fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
|
|
unsigned char dmabits, int rxp, unsigned short len)
|
|
{
|
|
int i;
|
|
int pi;
|
|
|
|
pi = port->index;
|
|
/*
|
|
* Discard buffer descriptors until we see the start of the
|
|
* next frame. Note that for long frames this could be in
|
|
* a subsequent interrupt.
|
|
*/
|
|
i = 0;
|
|
while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
|
|
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
|
|
rxp = (rxp+1) % NUM_RX_BUFFER;
|
|
if (++i > NUM_RX_BUFFER) {
|
|
dbg(DBG_ASS, "intr_rx: Discarding more bufs"
|
|
" than we have\n");
|
|
break;
|
|
}
|
|
dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
|
|
dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
|
|
}
|
|
dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
|
|
|
|
/* Discard the terminal buffer */
|
|
if (!(dmabits & DMA_OWN)) {
|
|
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
|
|
rxp = (rxp+1) % NUM_RX_BUFFER;
|
|
}
|
|
port->rxpos = rxp;
|
|
return;
|
|
|
|
}
|
|
|
|
/* Rx complete interrupt
|
|
*/
|
|
static void
|
|
fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
|
|
{
|
|
unsigned char dmabits;
|
|
int pi;
|
|
int rxp;
|
|
int rx_status;
|
|
unsigned short len;
|
|
struct sk_buff *skb;
|
|
struct net_device *dev = port_to_dev(port);
|
|
|
|
/* Check we have a buffer to process */
|
|
pi = port->index;
|
|
rxp = port->rxpos;
|
|
dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
|
|
if (dmabits & DMA_OWN) {
|
|
dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
|
|
pi, rxp);
|
|
return;
|
|
}
|
|
if (card->dmarx_in_progress) {
|
|
return;
|
|
}
|
|
|
|
/* Get buffer length */
|
|
len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
|
|
/* Discard the CRC */
|
|
len -= 2;
|
|
if (len == 0) {
|
|
/*
|
|
* This seems to happen on the TE1 interface sometimes
|
|
* so throw the frame away and log the event.
|
|
*/
|
|
pr_err("Frame received with 0 length. Card %d Port %d\n",
|
|
card->card_no, port->index);
|
|
/* Return descriptor to card */
|
|
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
|
|
|
|
rxp = (rxp+1) % NUM_RX_BUFFER;
|
|
port->rxpos = rxp;
|
|
return;
|
|
}
|
|
|
|
/* Check buffer length and for other errors. We insist on one packet
|
|
* in one buffer. This simplifies things greatly and since we've
|
|
* allocated 8K it shouldn't be a real world limitation
|
|
*/
|
|
dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
|
|
if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
|
|
fst_log_rx_error(card, port, dmabits, rxp, len);
|
|
fst_recover_rx_error(card, port, dmabits, rxp, len);
|
|
return;
|
|
}
|
|
|
|
/* Allocate SKB */
|
|
if ((skb = dev_alloc_skb(len)) == NULL) {
|
|
dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
|
|
|
|
dev->stats.rx_dropped++;
|
|
|
|
/* Return descriptor to card */
|
|
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
|
|
|
|
rxp = (rxp+1) % NUM_RX_BUFFER;
|
|
port->rxpos = rxp;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We know the length we need to receive, len.
|
|
* It's not worth using the DMA for reads of less than
|
|
* FST_MIN_DMA_LEN
|
|
*/
|
|
|
|
if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
|
|
memcpy_fromio(skb_put(skb, len),
|
|
card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
|
|
len);
|
|
|
|
/* Reset buffer descriptor */
|
|
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
|
|
|
|
/* Update stats */
|
|
dev->stats.rx_packets++;
|
|
dev->stats.rx_bytes += len;
|
|
|
|
/* Push upstream */
|
|
dbg(DBG_RX, "Pushing frame up the stack\n");
|
|
if (port->mode == FST_RAW)
|
|
skb->protocol = farsync_type_trans(skb, dev);
|
|
else
|
|
skb->protocol = hdlc_type_trans(skb, dev);
|
|
rx_status = netif_rx(skb);
|
|
fst_process_rx_status(rx_status, port_to_dev(port)->name);
|
|
if (rx_status == NET_RX_DROP)
|
|
dev->stats.rx_dropped++;
|
|
} else {
|
|
card->dma_skb_rx = skb;
|
|
card->dma_port_rx = port;
|
|
card->dma_len_rx = len;
|
|
card->dma_rxpos = rxp;
|
|
fst_rx_dma(card, card->rx_dma_handle_card,
|
|
BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
|
|
}
|
|
if (rxp != port->rxpos) {
|
|
dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
|
|
dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
|
|
}
|
|
rxp = (rxp+1) % NUM_RX_BUFFER;
|
|
port->rxpos = rxp;
|
|
}
|
|
|
|
/*
|
|
* The bottom halfs to the ISR
|
|
*
|
|
*/
|
|
|
|
static void
|
|
do_bottom_half_tx(struct fst_card_info *card)
|
|
{
|
|
struct fst_port_info *port;
|
|
int pi;
|
|
int txq_length;
|
|
struct sk_buff *skb;
|
|
unsigned long flags;
|
|
struct net_device *dev;
|
|
|
|
/*
|
|
* Find a free buffer for the transmit
|
|
* Step through each port on this card
|
|
*/
|
|
|
|
dbg(DBG_TX, "do_bottom_half_tx\n");
|
|
for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
|
|
if (!port->run)
|
|
continue;
|
|
|
|
dev = port_to_dev(port);
|
|
while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
|
|
DMA_OWN) &&
|
|
!(card->dmatx_in_progress)) {
|
|
/*
|
|
* There doesn't seem to be a txdone event per-se
|
|
* We seem to have to deduce it, by checking the DMA_OWN
|
|
* bit on the next buffer we think we can use
|
|
*/
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
if ((txq_length = port->txqe - port->txqs) < 0) {
|
|
/*
|
|
* This is the case where one has wrapped and the
|
|
* maths gives us a negative number
|
|
*/
|
|
txq_length = txq_length + FST_TXQ_DEPTH;
|
|
}
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
if (txq_length > 0) {
|
|
/*
|
|
* There is something to send
|
|
*/
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
skb = port->txq[port->txqs];
|
|
port->txqs++;
|
|
if (port->txqs == FST_TXQ_DEPTH) {
|
|
port->txqs = 0;
|
|
}
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
/*
|
|
* copy the data and set the required indicators on the
|
|
* card.
|
|
*/
|
|
FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
|
|
cnv_bcnt(skb->len));
|
|
if ((skb->len < FST_MIN_DMA_LEN) ||
|
|
(card->family == FST_FAMILY_TXP)) {
|
|
/* Enqueue the packet with normal io */
|
|
memcpy_toio(card->mem +
|
|
BUF_OFFSET(txBuffer[pi]
|
|
[port->
|
|
txpos][0]),
|
|
skb->data, skb->len);
|
|
FST_WRB(card,
|
|
txDescrRing[pi][port->txpos].
|
|
bits,
|
|
DMA_OWN | TX_STP | TX_ENP);
|
|
dev->stats.tx_packets++;
|
|
dev->stats.tx_bytes += skb->len;
|
|
dev->trans_start = jiffies;
|
|
} else {
|
|
/* Or do it through dma */
|
|
memcpy(card->tx_dma_handle_host,
|
|
skb->data, skb->len);
|
|
card->dma_port_tx = port;
|
|
card->dma_len_tx = skb->len;
|
|
card->dma_txpos = port->txpos;
|
|
fst_tx_dma(card,
|
|
(char *) card->
|
|
tx_dma_handle_card,
|
|
(char *)
|
|
BUF_OFFSET(txBuffer[pi]
|
|
[port->txpos][0]),
|
|
skb->len);
|
|
}
|
|
if (++port->txpos >= NUM_TX_BUFFER)
|
|
port->txpos = 0;
|
|
/*
|
|
* If we have flow control on, can we now release it?
|
|
*/
|
|
if (port->start) {
|
|
if (txq_length < fst_txq_low) {
|
|
netif_wake_queue(port_to_dev
|
|
(port));
|
|
port->start = 0;
|
|
}
|
|
}
|
|
dev_kfree_skb(skb);
|
|
} else {
|
|
/*
|
|
* Nothing to send so break out of the while loop
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
do_bottom_half_rx(struct fst_card_info *card)
|
|
{
|
|
struct fst_port_info *port;
|
|
int pi;
|
|
int rx_count = 0;
|
|
|
|
/* Check for rx completions on all ports on this card */
|
|
dbg(DBG_RX, "do_bottom_half_rx\n");
|
|
for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
|
|
if (!port->run)
|
|
continue;
|
|
|
|
while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
|
|
& DMA_OWN) && !(card->dmarx_in_progress)) {
|
|
if (rx_count > fst_max_reads) {
|
|
/*
|
|
* Don't spend forever in receive processing
|
|
* Schedule another event
|
|
*/
|
|
fst_q_work_item(&fst_work_intq, card->card_no);
|
|
tasklet_schedule(&fst_int_task);
|
|
break; /* Leave the loop */
|
|
}
|
|
fst_intr_rx(card, port);
|
|
rx_count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The interrupt service routine
|
|
* Dev_id is our fst_card_info pointer
|
|
*/
|
|
static irqreturn_t
|
|
fst_intr(int dummy, void *dev_id)
|
|
{
|
|
struct fst_card_info *card = dev_id;
|
|
struct fst_port_info *port;
|
|
int rdidx; /* Event buffer indices */
|
|
int wridx;
|
|
int event; /* Actual event for processing */
|
|
unsigned int dma_intcsr = 0;
|
|
unsigned int do_card_interrupt;
|
|
unsigned int int_retry_count;
|
|
|
|
/*
|
|
* Check to see if the interrupt was for this card
|
|
* return if not
|
|
* Note that the call to clear the interrupt is important
|
|
*/
|
|
dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
|
|
if (card->state != FST_RUNNING) {
|
|
pr_err("Interrupt received for card %d in a non running state (%d)\n",
|
|
card->card_no, card->state);
|
|
|
|
/*
|
|
* It is possible to really be running, i.e. we have re-loaded
|
|
* a running card
|
|
* Clear and reprime the interrupt source
|
|
*/
|
|
fst_clear_intr(card);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Clear and reprime the interrupt source */
|
|
fst_clear_intr(card);
|
|
|
|
/*
|
|
* Is the interrupt for this card (handshake == 1)
|
|
*/
|
|
do_card_interrupt = 0;
|
|
if (FST_RDB(card, interruptHandshake) == 1) {
|
|
do_card_interrupt += FST_CARD_INT;
|
|
/* Set the software acknowledge */
|
|
FST_WRB(card, interruptHandshake, 0xEE);
|
|
}
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
/*
|
|
* Is it a DMA Interrupt
|
|
*/
|
|
dma_intcsr = inl(card->pci_conf + INTCSR_9054);
|
|
if (dma_intcsr & 0x00200000) {
|
|
/*
|
|
* DMA Channel 0 (Rx transfer complete)
|
|
*/
|
|
dbg(DBG_RX, "DMA Rx xfer complete\n");
|
|
outb(0x8, card->pci_conf + DMACSR0);
|
|
fst_rx_dma_complete(card, card->dma_port_rx,
|
|
card->dma_len_rx, card->dma_skb_rx,
|
|
card->dma_rxpos);
|
|
card->dmarx_in_progress = 0;
|
|
do_card_interrupt += FST_RX_DMA_INT;
|
|
}
|
|
if (dma_intcsr & 0x00400000) {
|
|
/*
|
|
* DMA Channel 1 (Tx transfer complete)
|
|
*/
|
|
dbg(DBG_TX, "DMA Tx xfer complete\n");
|
|
outb(0x8, card->pci_conf + DMACSR1);
|
|
fst_tx_dma_complete(card, card->dma_port_tx,
|
|
card->dma_len_tx, card->dma_txpos);
|
|
card->dmatx_in_progress = 0;
|
|
do_card_interrupt += FST_TX_DMA_INT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Have we been missing Interrupts
|
|
*/
|
|
int_retry_count = FST_RDL(card, interruptRetryCount);
|
|
if (int_retry_count) {
|
|
dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
|
|
card->card_no, int_retry_count);
|
|
FST_WRL(card, interruptRetryCount, 0);
|
|
}
|
|
|
|
if (!do_card_interrupt) {
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Scehdule the bottom half of the ISR */
|
|
fst_q_work_item(&fst_work_intq, card->card_no);
|
|
tasklet_schedule(&fst_int_task);
|
|
|
|
/* Drain the event queue */
|
|
rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
|
|
wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
|
|
while (rdidx != wridx) {
|
|
event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
|
|
port = &card->ports[event & 0x03];
|
|
|
|
dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
|
|
|
|
switch (event) {
|
|
case TE1_ALMA:
|
|
dbg(DBG_INTR, "TE1 Alarm intr\n");
|
|
if (port->run)
|
|
fst_intr_te1_alarm(card, port);
|
|
break;
|
|
|
|
case CTLA_CHG:
|
|
case CTLB_CHG:
|
|
case CTLC_CHG:
|
|
case CTLD_CHG:
|
|
if (port->run)
|
|
fst_intr_ctlchg(card, port);
|
|
break;
|
|
|
|
case ABTA_SENT:
|
|
case ABTB_SENT:
|
|
case ABTC_SENT:
|
|
case ABTD_SENT:
|
|
dbg(DBG_TX, "Abort complete port %d\n", port->index);
|
|
break;
|
|
|
|
case TXA_UNDF:
|
|
case TXB_UNDF:
|
|
case TXC_UNDF:
|
|
case TXD_UNDF:
|
|
/* Difficult to see how we'd get this given that we
|
|
* always load up the entire packet for DMA.
|
|
*/
|
|
dbg(DBG_TX, "Tx underflow port %d\n", port->index);
|
|
port_to_dev(port)->stats.tx_errors++;
|
|
port_to_dev(port)->stats.tx_fifo_errors++;
|
|
dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
|
|
card->card_no, port->index);
|
|
break;
|
|
|
|
case INIT_CPLT:
|
|
dbg(DBG_INIT, "Card init OK intr\n");
|
|
break;
|
|
|
|
case INIT_FAIL:
|
|
dbg(DBG_INIT, "Card init FAILED intr\n");
|
|
card->state = FST_IFAILED;
|
|
break;
|
|
|
|
default:
|
|
pr_err("intr: unknown card event %d. ignored\n", event);
|
|
break;
|
|
}
|
|
|
|
/* Bump and wrap the index */
|
|
if (++rdidx >= MAX_CIRBUFF)
|
|
rdidx = 0;
|
|
}
|
|
FST_WRB(card, interruptEvent.rdindex, rdidx);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Check that the shared memory configuration is one that we can handle
|
|
* and that some basic parameters are correct
|
|
*/
|
|
static void
|
|
check_started_ok(struct fst_card_info *card)
|
|
{
|
|
int i;
|
|
|
|
/* Check structure version and end marker */
|
|
if (FST_RDW(card, smcVersion) != SMC_VERSION) {
|
|
pr_err("Bad shared memory version %d expected %d\n",
|
|
FST_RDW(card, smcVersion), SMC_VERSION);
|
|
card->state = FST_BADVERSION;
|
|
return;
|
|
}
|
|
if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
|
|
pr_err("Missing shared memory signature\n");
|
|
card->state = FST_BADVERSION;
|
|
return;
|
|
}
|
|
/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
|
|
if ((i = FST_RDB(card, taskStatus)) == 0x01) {
|
|
card->state = FST_RUNNING;
|
|
} else if (i == 0xFF) {
|
|
pr_err("Firmware initialisation failed. Card halted\n");
|
|
card->state = FST_HALTED;
|
|
return;
|
|
} else if (i != 0x00) {
|
|
pr_err("Unknown firmware status 0x%x\n", i);
|
|
card->state = FST_HALTED;
|
|
return;
|
|
}
|
|
|
|
/* Finally check the number of ports reported by firmware against the
|
|
* number we assumed at card detection. Should never happen with
|
|
* existing firmware etc so we just report it for the moment.
|
|
*/
|
|
if (FST_RDL(card, numberOfPorts) != card->nports) {
|
|
pr_warning("Port count mismatch on card %d. "
|
|
"Firmware thinks %d we say %d\n",
|
|
card->card_no,
|
|
FST_RDL(card, numberOfPorts), card->nports);
|
|
}
|
|
}
|
|
|
|
static int
|
|
set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
|
|
struct fstioc_info *info)
|
|
{
|
|
int err;
|
|
unsigned char my_framing;
|
|
|
|
/* Set things according to the user set valid flags
|
|
* Several of the old options have been invalidated/replaced by the
|
|
* generic hdlc package.
|
|
*/
|
|
err = 0;
|
|
if (info->valid & FSTVAL_PROTO) {
|
|
if (info->proto == FST_RAW)
|
|
port->mode = FST_RAW;
|
|
else
|
|
port->mode = FST_GEN_HDLC;
|
|
}
|
|
|
|
if (info->valid & FSTVAL_CABLE)
|
|
err = -EINVAL;
|
|
|
|
if (info->valid & FSTVAL_SPEED)
|
|
err = -EINVAL;
|
|
|
|
if (info->valid & FSTVAL_PHASE)
|
|
FST_WRB(card, portConfig[port->index].invertClock,
|
|
info->invertClock);
|
|
if (info->valid & FSTVAL_MODE)
|
|
FST_WRW(card, cardMode, info->cardMode);
|
|
if (info->valid & FSTVAL_TE1) {
|
|
FST_WRL(card, suConfig.dataRate, info->lineSpeed);
|
|
FST_WRB(card, suConfig.clocking, info->clockSource);
|
|
my_framing = FRAMING_E1;
|
|
if (info->framing == E1)
|
|
my_framing = FRAMING_E1;
|
|
if (info->framing == T1)
|
|
my_framing = FRAMING_T1;
|
|
if (info->framing == J1)
|
|
my_framing = FRAMING_J1;
|
|
FST_WRB(card, suConfig.framing, my_framing);
|
|
FST_WRB(card, suConfig.structure, info->structure);
|
|
FST_WRB(card, suConfig.interface, info->interface);
|
|
FST_WRB(card, suConfig.coding, info->coding);
|
|
FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
|
|
FST_WRB(card, suConfig.equalizer, info->equalizer);
|
|
FST_WRB(card, suConfig.transparentMode, info->transparentMode);
|
|
FST_WRB(card, suConfig.loopMode, info->loopMode);
|
|
FST_WRB(card, suConfig.range, info->range);
|
|
FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
|
|
FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
|
|
FST_WRB(card, suConfig.startingSlot, info->startingSlot);
|
|
FST_WRB(card, suConfig.losThreshold, info->losThreshold);
|
|
if (info->idleCode)
|
|
FST_WRB(card, suConfig.enableIdleCode, 1);
|
|
else
|
|
FST_WRB(card, suConfig.enableIdleCode, 0);
|
|
FST_WRB(card, suConfig.idleCode, info->idleCode);
|
|
#if FST_DEBUG
|
|
if (info->valid & FSTVAL_TE1) {
|
|
printk("Setting TE1 data\n");
|
|
printk("Line Speed = %d\n", info->lineSpeed);
|
|
printk("Start slot = %d\n", info->startingSlot);
|
|
printk("Clock source = %d\n", info->clockSource);
|
|
printk("Framing = %d\n", my_framing);
|
|
printk("Structure = %d\n", info->structure);
|
|
printk("interface = %d\n", info->interface);
|
|
printk("Coding = %d\n", info->coding);
|
|
printk("Line build out = %d\n", info->lineBuildOut);
|
|
printk("Equaliser = %d\n", info->equalizer);
|
|
printk("Transparent mode = %d\n",
|
|
info->transparentMode);
|
|
printk("Loop mode = %d\n", info->loopMode);
|
|
printk("Range = %d\n", info->range);
|
|
printk("Tx Buffer mode = %d\n", info->txBufferMode);
|
|
printk("Rx Buffer mode = %d\n", info->rxBufferMode);
|
|
printk("LOS Threshold = %d\n", info->losThreshold);
|
|
printk("Idle Code = %d\n", info->idleCode);
|
|
}
|
|
#endif
|
|
}
|
|
#if FST_DEBUG
|
|
if (info->valid & FSTVAL_DEBUG) {
|
|
fst_debug_mask = info->debug;
|
|
}
|
|
#endif
|
|
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
|
|
struct fstioc_info *info)
|
|
{
|
|
int i;
|
|
|
|
memset(info, 0, sizeof (struct fstioc_info));
|
|
|
|
i = port->index;
|
|
info->kernelVersion = LINUX_VERSION_CODE;
|
|
info->nports = card->nports;
|
|
info->type = card->type;
|
|
info->state = card->state;
|
|
info->proto = FST_GEN_HDLC;
|
|
info->index = i;
|
|
#if FST_DEBUG
|
|
info->debug = fst_debug_mask;
|
|
#endif
|
|
|
|
/* Only mark information as valid if card is running.
|
|
* Copy the data anyway in case it is useful for diagnostics
|
|
*/
|
|
info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
|
|
#if FST_DEBUG
|
|
| FSTVAL_DEBUG
|
|
#endif
|
|
;
|
|
|
|
info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
|
|
info->internalClock = FST_RDB(card, portConfig[i].internalClock);
|
|
info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
|
|
info->invertClock = FST_RDB(card, portConfig[i].invertClock);
|
|
info->v24IpSts = FST_RDL(card, v24IpSts[i]);
|
|
info->v24OpSts = FST_RDL(card, v24OpSts[i]);
|
|
info->clockStatus = FST_RDW(card, clockStatus[i]);
|
|
info->cableStatus = FST_RDW(card, cableStatus);
|
|
info->cardMode = FST_RDW(card, cardMode);
|
|
info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
|
|
|
|
/*
|
|
* The T2U can report cable presence for both A or B
|
|
* in bits 0 and 1 of cableStatus. See which port we are and
|
|
* do the mapping.
|
|
*/
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
if (port->index == 0) {
|
|
/*
|
|
* Port A
|
|
*/
|
|
info->cableStatus = info->cableStatus & 1;
|
|
} else {
|
|
/*
|
|
* Port B
|
|
*/
|
|
info->cableStatus = info->cableStatus >> 1;
|
|
info->cableStatus = info->cableStatus & 1;
|
|
}
|
|
}
|
|
/*
|
|
* Some additional bits if we are TE1
|
|
*/
|
|
if (card->type == FST_TYPE_TE1) {
|
|
info->lineSpeed = FST_RDL(card, suConfig.dataRate);
|
|
info->clockSource = FST_RDB(card, suConfig.clocking);
|
|
info->framing = FST_RDB(card, suConfig.framing);
|
|
info->structure = FST_RDB(card, suConfig.structure);
|
|
info->interface = FST_RDB(card, suConfig.interface);
|
|
info->coding = FST_RDB(card, suConfig.coding);
|
|
info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
|
|
info->equalizer = FST_RDB(card, suConfig.equalizer);
|
|
info->loopMode = FST_RDB(card, suConfig.loopMode);
|
|
info->range = FST_RDB(card, suConfig.range);
|
|
info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
|
|
info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
|
|
info->startingSlot = FST_RDB(card, suConfig.startingSlot);
|
|
info->losThreshold = FST_RDB(card, suConfig.losThreshold);
|
|
if (FST_RDB(card, suConfig.enableIdleCode))
|
|
info->idleCode = FST_RDB(card, suConfig.idleCode);
|
|
else
|
|
info->idleCode = 0;
|
|
info->receiveBufferDelay =
|
|
FST_RDL(card, suStatus.receiveBufferDelay);
|
|
info->framingErrorCount =
|
|
FST_RDL(card, suStatus.framingErrorCount);
|
|
info->codeViolationCount =
|
|
FST_RDL(card, suStatus.codeViolationCount);
|
|
info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
|
|
info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
|
|
info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
|
|
info->receiveRemoteAlarm =
|
|
FST_RDB(card, suStatus.receiveRemoteAlarm);
|
|
info->alarmIndicationSignal =
|
|
FST_RDB(card, suStatus.alarmIndicationSignal);
|
|
}
|
|
}
|
|
|
|
static int
|
|
fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
|
|
struct ifreq *ifr)
|
|
{
|
|
sync_serial_settings sync;
|
|
int i;
|
|
|
|
if (ifr->ifr_settings.size != sizeof (sync)) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (copy_from_user
|
|
(&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (sync.loopback)
|
|
return -EINVAL;
|
|
|
|
i = port->index;
|
|
|
|
switch (ifr->ifr_settings.type) {
|
|
case IF_IFACE_V35:
|
|
FST_WRW(card, portConfig[i].lineInterface, V35);
|
|
port->hwif = V35;
|
|
break;
|
|
|
|
case IF_IFACE_V24:
|
|
FST_WRW(card, portConfig[i].lineInterface, V24);
|
|
port->hwif = V24;
|
|
break;
|
|
|
|
case IF_IFACE_X21:
|
|
FST_WRW(card, portConfig[i].lineInterface, X21);
|
|
port->hwif = X21;
|
|
break;
|
|
|
|
case IF_IFACE_X21D:
|
|
FST_WRW(card, portConfig[i].lineInterface, X21D);
|
|
port->hwif = X21D;
|
|
break;
|
|
|
|
case IF_IFACE_T1:
|
|
FST_WRW(card, portConfig[i].lineInterface, T1);
|
|
port->hwif = T1;
|
|
break;
|
|
|
|
case IF_IFACE_E1:
|
|
FST_WRW(card, portConfig[i].lineInterface, E1);
|
|
port->hwif = E1;
|
|
break;
|
|
|
|
case IF_IFACE_SYNC_SERIAL:
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (sync.clock_type) {
|
|
case CLOCK_EXT:
|
|
FST_WRB(card, portConfig[i].internalClock, EXTCLK);
|
|
break;
|
|
|
|
case CLOCK_INT:
|
|
FST_WRB(card, portConfig[i].internalClock, INTCLK);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
|
|
struct ifreq *ifr)
|
|
{
|
|
sync_serial_settings sync;
|
|
int i;
|
|
|
|
/* First check what line type is set, we'll default to reporting X.21
|
|
* if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
|
|
* changed
|
|
*/
|
|
switch (port->hwif) {
|
|
case E1:
|
|
ifr->ifr_settings.type = IF_IFACE_E1;
|
|
break;
|
|
case T1:
|
|
ifr->ifr_settings.type = IF_IFACE_T1;
|
|
break;
|
|
case V35:
|
|
ifr->ifr_settings.type = IF_IFACE_V35;
|
|
break;
|
|
case V24:
|
|
ifr->ifr_settings.type = IF_IFACE_V24;
|
|
break;
|
|
case X21D:
|
|
ifr->ifr_settings.type = IF_IFACE_X21D;
|
|
break;
|
|
case X21:
|
|
default:
|
|
ifr->ifr_settings.type = IF_IFACE_X21;
|
|
break;
|
|
}
|
|
if (ifr->ifr_settings.size == 0) {
|
|
return 0; /* only type requested */
|
|
}
|
|
if (ifr->ifr_settings.size < sizeof (sync)) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
i = port->index;
|
|
sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
|
|
/* Lucky card and linux use same encoding here */
|
|
sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
|
|
INTCLK ? CLOCK_INT : CLOCK_EXT;
|
|
sync.loopback = 0;
|
|
|
|
if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
|
|
return -EFAULT;
|
|
}
|
|
|
|
ifr->ifr_settings.size = sizeof (sync);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
|
|
{
|
|
struct fst_card_info *card;
|
|
struct fst_port_info *port;
|
|
struct fstioc_write wrthdr;
|
|
struct fstioc_info info;
|
|
unsigned long flags;
|
|
void *buf;
|
|
|
|
dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
|
|
|
|
port = dev_to_port(dev);
|
|
card = port->card;
|
|
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
|
|
switch (cmd) {
|
|
case FSTCPURESET:
|
|
fst_cpureset(card);
|
|
card->state = FST_RESET;
|
|
return 0;
|
|
|
|
case FSTCPURELEASE:
|
|
fst_cpurelease(card);
|
|
card->state = FST_STARTING;
|
|
return 0;
|
|
|
|
case FSTWRITE: /* Code write (download) */
|
|
|
|
/* First copy in the header with the length and offset of data
|
|
* to write
|
|
*/
|
|
if (ifr->ifr_data == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
if (copy_from_user(&wrthdr, ifr->ifr_data,
|
|
sizeof (struct fstioc_write))) {
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Sanity check the parameters. We don't support partial writes
|
|
* when going over the top
|
|
*/
|
|
if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
|
|
wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* Now copy the data to the card. */
|
|
|
|
buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
|
|
wrthdr.size);
|
|
if (IS_ERR(buf))
|
|
return PTR_ERR(buf);
|
|
|
|
memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
|
|
kfree(buf);
|
|
|
|
/* Writes to the memory of a card in the reset state constitute
|
|
* a download
|
|
*/
|
|
if (card->state == FST_RESET) {
|
|
card->state = FST_DOWNLOAD;
|
|
}
|
|
return 0;
|
|
|
|
case FSTGETCONF:
|
|
|
|
/* If card has just been started check the shared memory config
|
|
* version and marker
|
|
*/
|
|
if (card->state == FST_STARTING) {
|
|
check_started_ok(card);
|
|
|
|
/* If everything checked out enable card interrupts */
|
|
if (card->state == FST_RUNNING) {
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
fst_enable_intr(card);
|
|
FST_WRB(card, interruptHandshake, 0xEE);
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
}
|
|
}
|
|
|
|
if (ifr->ifr_data == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
gather_conf_info(card, port, &info);
|
|
|
|
if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
|
|
return -EFAULT;
|
|
}
|
|
return 0;
|
|
|
|
case FSTSETCONF:
|
|
|
|
/*
|
|
* Most of the settings have been moved to the generic ioctls
|
|
* this just covers debug and board ident now
|
|
*/
|
|
|
|
if (card->state != FST_RUNNING) {
|
|
pr_err("Attempt to configure card %d in non-running state (%d)\n",
|
|
card->card_no, card->state);
|
|
return -EIO;
|
|
}
|
|
if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
|
|
return -EFAULT;
|
|
}
|
|
|
|
return set_conf_from_info(card, port, &info);
|
|
|
|
case SIOCWANDEV:
|
|
switch (ifr->ifr_settings.type) {
|
|
case IF_GET_IFACE:
|
|
return fst_get_iface(card, port, ifr);
|
|
|
|
case IF_IFACE_SYNC_SERIAL:
|
|
case IF_IFACE_V35:
|
|
case IF_IFACE_V24:
|
|
case IF_IFACE_X21:
|
|
case IF_IFACE_X21D:
|
|
case IF_IFACE_T1:
|
|
case IF_IFACE_E1:
|
|
return fst_set_iface(card, port, ifr);
|
|
|
|
case IF_PROTO_RAW:
|
|
port->mode = FST_RAW;
|
|
return 0;
|
|
|
|
case IF_GET_PROTO:
|
|
if (port->mode == FST_RAW) {
|
|
ifr->ifr_settings.type = IF_PROTO_RAW;
|
|
return 0;
|
|
}
|
|
return hdlc_ioctl(dev, ifr, cmd);
|
|
|
|
default:
|
|
port->mode = FST_GEN_HDLC;
|
|
dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
|
|
ifr->ifr_settings.type);
|
|
return hdlc_ioctl(dev, ifr, cmd);
|
|
}
|
|
|
|
default:
|
|
/* Not one of ours. Pass through to HDLC package */
|
|
return hdlc_ioctl(dev, ifr, cmd);
|
|
}
|
|
}
|
|
|
|
static void
|
|
fst_openport(struct fst_port_info *port)
|
|
{
|
|
int signals;
|
|
int txq_length;
|
|
|
|
/* Only init things if card is actually running. This allows open to
|
|
* succeed for downloads etc.
|
|
*/
|
|
if (port->card->state == FST_RUNNING) {
|
|
if (port->run) {
|
|
dbg(DBG_OPEN, "open: found port already running\n");
|
|
|
|
fst_issue_cmd(port, STOPPORT);
|
|
port->run = 0;
|
|
}
|
|
|
|
fst_rx_config(port);
|
|
fst_tx_config(port);
|
|
fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
|
|
|
|
fst_issue_cmd(port, STARTPORT);
|
|
port->run = 1;
|
|
|
|
signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
|
|
if (signals & (((port->hwif == X21) || (port->hwif == X21D))
|
|
? IPSTS_INDICATE : IPSTS_DCD))
|
|
netif_carrier_on(port_to_dev(port));
|
|
else
|
|
netif_carrier_off(port_to_dev(port));
|
|
|
|
txq_length = port->txqe - port->txqs;
|
|
port->txqe = 0;
|
|
port->txqs = 0;
|
|
}
|
|
|
|
}
|
|
|
|
static void
|
|
fst_closeport(struct fst_port_info *port)
|
|
{
|
|
if (port->card->state == FST_RUNNING) {
|
|
if (port->run) {
|
|
port->run = 0;
|
|
fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
|
|
|
|
fst_issue_cmd(port, STOPPORT);
|
|
} else {
|
|
dbg(DBG_OPEN, "close: port not running\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
fst_open(struct net_device *dev)
|
|
{
|
|
int err;
|
|
struct fst_port_info *port;
|
|
|
|
port = dev_to_port(dev);
|
|
if (!try_module_get(THIS_MODULE))
|
|
return -EBUSY;
|
|
|
|
if (port->mode != FST_RAW) {
|
|
err = hdlc_open(dev);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
fst_openport(port);
|
|
netif_wake_queue(dev);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fst_close(struct net_device *dev)
|
|
{
|
|
struct fst_port_info *port;
|
|
struct fst_card_info *card;
|
|
unsigned char tx_dma_done;
|
|
unsigned char rx_dma_done;
|
|
|
|
port = dev_to_port(dev);
|
|
card = port->card;
|
|
|
|
tx_dma_done = inb(card->pci_conf + DMACSR1);
|
|
rx_dma_done = inb(card->pci_conf + DMACSR0);
|
|
dbg(DBG_OPEN,
|
|
"Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
|
|
card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
|
|
rx_dma_done);
|
|
|
|
netif_stop_queue(dev);
|
|
fst_closeport(dev_to_port(dev));
|
|
if (port->mode != FST_RAW) {
|
|
hdlc_close(dev);
|
|
}
|
|
module_put(THIS_MODULE);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
|
|
{
|
|
/*
|
|
* Setting currently fixed in FarSync card so we check and forget
|
|
*/
|
|
if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
fst_tx_timeout(struct net_device *dev)
|
|
{
|
|
struct fst_port_info *port;
|
|
struct fst_card_info *card;
|
|
|
|
port = dev_to_port(dev);
|
|
card = port->card;
|
|
dev->stats.tx_errors++;
|
|
dev->stats.tx_aborted_errors++;
|
|
dbg(DBG_ASS, "Tx timeout card %d port %d\n",
|
|
card->card_no, port->index);
|
|
fst_issue_cmd(port, ABORTTX);
|
|
|
|
dev->trans_start = jiffies;
|
|
netif_wake_queue(dev);
|
|
port->start = 0;
|
|
}
|
|
|
|
static netdev_tx_t
|
|
fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct fst_card_info *card;
|
|
struct fst_port_info *port;
|
|
unsigned long flags;
|
|
int txq_length;
|
|
|
|
port = dev_to_port(dev);
|
|
card = port->card;
|
|
dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
|
|
|
|
/* Drop packet with error if we don't have carrier */
|
|
if (!netif_carrier_ok(dev)) {
|
|
dev_kfree_skb(skb);
|
|
dev->stats.tx_errors++;
|
|
dev->stats.tx_carrier_errors++;
|
|
dbg(DBG_ASS,
|
|
"Tried to transmit but no carrier on card %d port %d\n",
|
|
card->card_no, port->index);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Drop it if it's too big! MTU failure ? */
|
|
if (skb->len > LEN_TX_BUFFER) {
|
|
dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
|
|
LEN_TX_BUFFER);
|
|
dev_kfree_skb(skb);
|
|
dev->stats.tx_errors++;
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/*
|
|
* We are always going to queue the packet
|
|
* so that the bottom half is the only place we tx from
|
|
* Check there is room in the port txq
|
|
*/
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
if ((txq_length = port->txqe - port->txqs) < 0) {
|
|
/*
|
|
* This is the case where the next free has wrapped but the
|
|
* last used hasn't
|
|
*/
|
|
txq_length = txq_length + FST_TXQ_DEPTH;
|
|
}
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
if (txq_length > fst_txq_high) {
|
|
/*
|
|
* We have got enough buffers in the pipeline. Ask the network
|
|
* layer to stop sending frames down
|
|
*/
|
|
netif_stop_queue(dev);
|
|
port->start = 1; /* I'm using this to signal stop sent up */
|
|
}
|
|
|
|
if (txq_length == FST_TXQ_DEPTH - 1) {
|
|
/*
|
|
* This shouldn't have happened but such is life
|
|
*/
|
|
dev_kfree_skb(skb);
|
|
dev->stats.tx_errors++;
|
|
dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
|
|
card->card_no, port->index);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/*
|
|
* queue the buffer
|
|
*/
|
|
spin_lock_irqsave(&card->card_lock, flags);
|
|
port->txq[port->txqe] = skb;
|
|
port->txqe++;
|
|
if (port->txqe == FST_TXQ_DEPTH)
|
|
port->txqe = 0;
|
|
spin_unlock_irqrestore(&card->card_lock, flags);
|
|
|
|
/* Scehdule the bottom half which now does transmit processing */
|
|
fst_q_work_item(&fst_work_txq, card->card_no);
|
|
tasklet_schedule(&fst_tx_task);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/*
|
|
* Card setup having checked hardware resources.
|
|
* Should be pretty bizarre if we get an error here (kernel memory
|
|
* exhaustion is one possibility). If we do see a problem we report it
|
|
* via a printk and leave the corresponding interface and all that follow
|
|
* disabled.
|
|
*/
|
|
static char *type_strings[] __devinitdata = {
|
|
"no hardware", /* Should never be seen */
|
|
"FarSync T2P",
|
|
"FarSync T4P",
|
|
"FarSync T1U",
|
|
"FarSync T2U",
|
|
"FarSync T4U",
|
|
"FarSync TE1"
|
|
};
|
|
|
|
static void __devinit
|
|
fst_init_card(struct fst_card_info *card)
|
|
{
|
|
int i;
|
|
int err;
|
|
|
|
/* We're working on a number of ports based on the card ID. If the
|
|
* firmware detects something different later (should never happen)
|
|
* we'll have to revise it in some way then.
|
|
*/
|
|
for (i = 0; i < card->nports; i++) {
|
|
err = register_hdlc_device(card->ports[i].dev);
|
|
if (err < 0) {
|
|
int j;
|
|
pr_err("Cannot register HDLC device for port %d (errno %d)\n",
|
|
i, -err);
|
|
for (j = i; j < card->nports; j++) {
|
|
free_netdev(card->ports[j].dev);
|
|
card->ports[j].dev = NULL;
|
|
}
|
|
card->nports = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
pr_info("%s-%s: %s IRQ%d, %d ports\n",
|
|
port_to_dev(&card->ports[0])->name,
|
|
port_to_dev(&card->ports[card->nports - 1])->name,
|
|
type_strings[card->type], card->irq, card->nports);
|
|
}
|
|
|
|
static const struct net_device_ops fst_ops = {
|
|
.ndo_open = fst_open,
|
|
.ndo_stop = fst_close,
|
|
.ndo_change_mtu = hdlc_change_mtu,
|
|
.ndo_start_xmit = hdlc_start_xmit,
|
|
.ndo_do_ioctl = fst_ioctl,
|
|
.ndo_tx_timeout = fst_tx_timeout,
|
|
};
|
|
|
|
/*
|
|
* Initialise card when detected.
|
|
* Returns 0 to indicate success, or errno otherwise.
|
|
*/
|
|
static int __devinit
|
|
fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
static int no_of_cards_added = 0;
|
|
struct fst_card_info *card;
|
|
int err = 0;
|
|
int i;
|
|
|
|
printk_once(KERN_INFO
|
|
pr_fmt("FarSync WAN driver " FST_USER_VERSION
|
|
" (c) 2001-2004 FarSite Communications Ltd.\n"));
|
|
#if FST_DEBUG
|
|
dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
|
|
#endif
|
|
/*
|
|
* We are going to be clever and allow certain cards not to be
|
|
* configured. An exclude list can be provided in /etc/modules.conf
|
|
*/
|
|
if (fst_excluded_cards != 0) {
|
|
/*
|
|
* There are cards to exclude
|
|
*
|
|
*/
|
|
for (i = 0; i < fst_excluded_cards; i++) {
|
|
if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
|
|
pr_info("FarSync PCI device %d not assigned\n",
|
|
(pdev->devfn) >> 3);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Allocate driver private data */
|
|
card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
|
|
if (card == NULL) {
|
|
pr_err("FarSync card found but insufficient memory for driver storage\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Try to enable the device */
|
|
if ((err = pci_enable_device(pdev)) != 0) {
|
|
pr_err("Failed to enable card. Err %d\n", -err);
|
|
kfree(card);
|
|
return err;
|
|
}
|
|
|
|
if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
|
|
pr_err("Failed to allocate regions. Err %d\n", -err);
|
|
pci_disable_device(pdev);
|
|
kfree(card);
|
|
return err;
|
|
}
|
|
|
|
/* Get virtual addresses of memory regions */
|
|
card->pci_conf = pci_resource_start(pdev, 1);
|
|
card->phys_mem = pci_resource_start(pdev, 2);
|
|
card->phys_ctlmem = pci_resource_start(pdev, 3);
|
|
if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
|
|
pr_err("Physical memory remap failed\n");
|
|
pci_release_regions(pdev);
|
|
pci_disable_device(pdev);
|
|
kfree(card);
|
|
return -ENODEV;
|
|
}
|
|
if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
|
|
pr_err("Control memory remap failed\n");
|
|
pci_release_regions(pdev);
|
|
pci_disable_device(pdev);
|
|
kfree(card);
|
|
return -ENODEV;
|
|
}
|
|
dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
|
|
|
|
/* Register the interrupt handler */
|
|
if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
|
|
pr_err("Unable to register interrupt %d\n", card->irq);
|
|
pci_release_regions(pdev);
|
|
pci_disable_device(pdev);
|
|
iounmap(card->ctlmem);
|
|
iounmap(card->mem);
|
|
kfree(card);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Record info we need */
|
|
card->irq = pdev->irq;
|
|
card->type = ent->driver_data;
|
|
card->family = ((ent->driver_data == FST_TYPE_T2P) ||
|
|
(ent->driver_data == FST_TYPE_T4P))
|
|
? FST_FAMILY_TXP : FST_FAMILY_TXU;
|
|
if ((ent->driver_data == FST_TYPE_T1U) ||
|
|
(ent->driver_data == FST_TYPE_TE1))
|
|
card->nports = 1;
|
|
else
|
|
card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
|
|
(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
|
|
|
|
card->state = FST_UNINIT;
|
|
spin_lock_init ( &card->card_lock );
|
|
|
|
for ( i = 0 ; i < card->nports ; i++ ) {
|
|
struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
|
|
hdlc_device *hdlc;
|
|
if (!dev) {
|
|
while (i--)
|
|
free_netdev(card->ports[i].dev);
|
|
pr_err("FarSync: out of memory\n");
|
|
free_irq(card->irq, card);
|
|
pci_release_regions(pdev);
|
|
pci_disable_device(pdev);
|
|
iounmap(card->ctlmem);
|
|
iounmap(card->mem);
|
|
kfree(card);
|
|
return -ENODEV;
|
|
}
|
|
card->ports[i].dev = dev;
|
|
card->ports[i].card = card;
|
|
card->ports[i].index = i;
|
|
card->ports[i].run = 0;
|
|
|
|
hdlc = dev_to_hdlc(dev);
|
|
|
|
/* Fill in the net device info */
|
|
/* Since this is a PCI setup this is purely
|
|
* informational. Give them the buffer addresses
|
|
* and basic card I/O.
|
|
*/
|
|
dev->mem_start = card->phys_mem
|
|
+ BUF_OFFSET ( txBuffer[i][0][0]);
|
|
dev->mem_end = card->phys_mem
|
|
+ BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
|
|
dev->base_addr = card->pci_conf;
|
|
dev->irq = card->irq;
|
|
|
|
dev->netdev_ops = &fst_ops;
|
|
dev->tx_queue_len = FST_TX_QUEUE_LEN;
|
|
dev->watchdog_timeo = FST_TX_TIMEOUT;
|
|
hdlc->attach = fst_attach;
|
|
hdlc->xmit = fst_start_xmit;
|
|
}
|
|
|
|
card->device = pdev;
|
|
|
|
dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
|
|
card->nports, card->irq);
|
|
dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
|
|
card->pci_conf, card->phys_mem, card->phys_ctlmem);
|
|
|
|
/* Reset the card's processor */
|
|
fst_cpureset(card);
|
|
card->state = FST_RESET;
|
|
|
|
/* Initialise DMA (if required) */
|
|
fst_init_dma(card);
|
|
|
|
/* Record driver data for later use */
|
|
pci_set_drvdata(pdev, card);
|
|
|
|
/* Remainder of card setup */
|
|
fst_card_array[no_of_cards_added] = card;
|
|
card->card_no = no_of_cards_added++; /* Record instance and bump it */
|
|
fst_init_card(card);
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
/*
|
|
* Allocate a dma buffer for transmit and receives
|
|
*/
|
|
card->rx_dma_handle_host =
|
|
pci_alloc_consistent(card->device, FST_MAX_MTU,
|
|
&card->rx_dma_handle_card);
|
|
if (card->rx_dma_handle_host == NULL) {
|
|
pr_err("Could not allocate rx dma buffer\n");
|
|
fst_disable_intr(card);
|
|
pci_release_regions(pdev);
|
|
pci_disable_device(pdev);
|
|
iounmap(card->ctlmem);
|
|
iounmap(card->mem);
|
|
kfree(card);
|
|
return -ENOMEM;
|
|
}
|
|
card->tx_dma_handle_host =
|
|
pci_alloc_consistent(card->device, FST_MAX_MTU,
|
|
&card->tx_dma_handle_card);
|
|
if (card->tx_dma_handle_host == NULL) {
|
|
pr_err("Could not allocate tx dma buffer\n");
|
|
fst_disable_intr(card);
|
|
pci_release_regions(pdev);
|
|
pci_disable_device(pdev);
|
|
iounmap(card->ctlmem);
|
|
iounmap(card->mem);
|
|
kfree(card);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
return 0; /* Success */
|
|
}
|
|
|
|
/*
|
|
* Cleanup and close down a card
|
|
*/
|
|
static void __devexit
|
|
fst_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct fst_card_info *card;
|
|
int i;
|
|
|
|
card = pci_get_drvdata(pdev);
|
|
|
|
for (i = 0; i < card->nports; i++) {
|
|
struct net_device *dev = port_to_dev(&card->ports[i]);
|
|
unregister_hdlc_device(dev);
|
|
}
|
|
|
|
fst_disable_intr(card);
|
|
free_irq(card->irq, card);
|
|
|
|
iounmap(card->ctlmem);
|
|
iounmap(card->mem);
|
|
pci_release_regions(pdev);
|
|
if (card->family == FST_FAMILY_TXU) {
|
|
/*
|
|
* Free dma buffers
|
|
*/
|
|
pci_free_consistent(card->device, FST_MAX_MTU,
|
|
card->rx_dma_handle_host,
|
|
card->rx_dma_handle_card);
|
|
pci_free_consistent(card->device, FST_MAX_MTU,
|
|
card->tx_dma_handle_host,
|
|
card->tx_dma_handle_card);
|
|
}
|
|
fst_card_array[card->card_no] = NULL;
|
|
}
|
|
|
|
static struct pci_driver fst_driver = {
|
|
.name = FST_NAME,
|
|
.id_table = fst_pci_dev_id,
|
|
.probe = fst_add_one,
|
|
.remove = __devexit_p(fst_remove_one),
|
|
.suspend = NULL,
|
|
.resume = NULL,
|
|
};
|
|
|
|
static int __init
|
|
fst_init(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < FST_MAX_CARDS; i++)
|
|
fst_card_array[i] = NULL;
|
|
spin_lock_init(&fst_work_q_lock);
|
|
return pci_register_driver(&fst_driver);
|
|
}
|
|
|
|
static void __exit
|
|
fst_cleanup_module(void)
|
|
{
|
|
pr_info("FarSync WAN driver unloading\n");
|
|
pci_unregister_driver(&fst_driver);
|
|
}
|
|
|
|
module_init(fst_init);
|
|
module_exit(fst_cleanup_module);
|