linux/drivers/spi/spi-pic32.c
Thomas Gleixner 04dc82e116 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 445
Based on 1 normalized pattern(s):

  this program is free software you can distribute it and or modify it
  under the terms of the gnu general public license version 2 as
  published by the free software foundation this program is
  distributed in the hope it will be useful but without any warranty
  without even the implied warranty of merchantability or fitness for
  a particular purpose see the gnu general public license for more
  details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 24 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531190115.872212424@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:37:18 +02:00

872 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Microchip PIC32 SPI controller driver.
*
* Purna Chandra Mandal <purna.mandal@microchip.com>
* Copyright (c) 2016, Microchip Technology Inc.
*/
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_gpio.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
/* SPI controller registers */
struct pic32_spi_regs {
u32 ctrl;
u32 ctrl_clr;
u32 ctrl_set;
u32 ctrl_inv;
u32 status;
u32 status_clr;
u32 status_set;
u32 status_inv;
u32 buf;
u32 dontuse[3];
u32 baud;
u32 dontuse2[3];
u32 ctrl2;
u32 ctrl2_clr;
u32 ctrl2_set;
u32 ctrl2_inv;
};
/* Bit fields of SPI Control Register */
#define CTRL_RX_INT_SHIFT 0 /* Rx interrupt generation */
#define RX_FIFO_EMPTY 0
#define RX_FIFO_NOT_EMPTY 1 /* not empty */
#define RX_FIFO_HALF_FULL 2 /* full by half or more */
#define RX_FIFO_FULL 3 /* completely full */
#define CTRL_TX_INT_SHIFT 2 /* TX interrupt generation */
#define TX_FIFO_ALL_EMPTY 0 /* completely empty */
#define TX_FIFO_EMPTY 1 /* empty */
#define TX_FIFO_HALF_EMPTY 2 /* empty by half or more */
#define TX_FIFO_NOT_FULL 3 /* atleast one empty */
#define CTRL_MSTEN BIT(5) /* enable master mode */
#define CTRL_CKP BIT(6) /* active low */
#define CTRL_CKE BIT(8) /* Tx on falling edge */
#define CTRL_SMP BIT(9) /* Rx at middle or end of tx */
#define CTRL_BPW_MASK 0x03 /* bits per word/sample */
#define CTRL_BPW_SHIFT 10
#define PIC32_BPW_8 0
#define PIC32_BPW_16 1
#define PIC32_BPW_32 2
#define CTRL_SIDL BIT(13) /* sleep when idle */
#define CTRL_ON BIT(15) /* enable macro */
#define CTRL_ENHBUF BIT(16) /* enable enhanced buffering */
#define CTRL_MCLKSEL BIT(23) /* select clock source */
#define CTRL_MSSEN BIT(28) /* macro driven /SS */
#define CTRL_FRMEN BIT(31) /* enable framing mode */
/* Bit fields of SPI Status Register */
#define STAT_RF_EMPTY BIT(5) /* RX Fifo empty */
#define STAT_RX_OV BIT(6) /* err, s/w needs to clear */
#define STAT_TX_UR BIT(8) /* UR in Framed SPI modes */
#define STAT_FRM_ERR BIT(12) /* Multiple Frame Sync pulse */
#define STAT_TF_LVL_MASK 0x1F
#define STAT_TF_LVL_SHIFT 16
#define STAT_RF_LVL_MASK 0x1F
#define STAT_RF_LVL_SHIFT 24
/* Bit fields of SPI Baud Register */
#define BAUD_MASK 0x1ff
/* Bit fields of SPI Control2 Register */
#define CTRL2_TX_UR_EN BIT(10) /* Enable int on Tx under-run */
#define CTRL2_RX_OV_EN BIT(11) /* Enable int on Rx over-run */
#define CTRL2_FRM_ERR_EN BIT(12) /* Enable frame err int */
/* Minimum DMA transfer size */
#define PIC32_DMA_LEN_MIN 64
struct pic32_spi {
dma_addr_t dma_base;
struct pic32_spi_regs __iomem *regs;
int fault_irq;
int rx_irq;
int tx_irq;
u32 fifo_n_byte; /* FIFO depth in bytes */
struct clk *clk;
struct spi_master *master;
/* Current controller setting */
u32 speed_hz; /* spi-clk rate */
u32 mode;
u32 bits_per_word;
u32 fifo_n_elm; /* FIFO depth in words */
#define PIC32F_DMA_PREP 0 /* DMA chnls configured */
unsigned long flags;
/* Current transfer state */
struct completion xfer_done;
/* PIO transfer specific */
const void *tx;
const void *tx_end;
const void *rx;
const void *rx_end;
int len;
void (*rx_fifo)(struct pic32_spi *);
void (*tx_fifo)(struct pic32_spi *);
};
static inline void pic32_spi_enable(struct pic32_spi *pic32s)
{
writel(CTRL_ON | CTRL_SIDL, &pic32s->regs->ctrl_set);
}
static inline void pic32_spi_disable(struct pic32_spi *pic32s)
{
writel(CTRL_ON | CTRL_SIDL, &pic32s->regs->ctrl_clr);
/* avoid SPI registers read/write at immediate next CPU clock */
ndelay(20);
}
static void pic32_spi_set_clk_rate(struct pic32_spi *pic32s, u32 spi_ck)
{
u32 div;
/* div = (clk_in / 2 * spi_ck) - 1 */
div = DIV_ROUND_CLOSEST(clk_get_rate(pic32s->clk), 2 * spi_ck) - 1;
writel(div & BAUD_MASK, &pic32s->regs->baud);
}
static inline u32 pic32_rx_fifo_level(struct pic32_spi *pic32s)
{
u32 sr = readl(&pic32s->regs->status);
return (sr >> STAT_RF_LVL_SHIFT) & STAT_RF_LVL_MASK;
}
static inline u32 pic32_tx_fifo_level(struct pic32_spi *pic32s)
{
u32 sr = readl(&pic32s->regs->status);
return (sr >> STAT_TF_LVL_SHIFT) & STAT_TF_LVL_MASK;
}
/* Return the max entries we can fill into tx fifo */
static u32 pic32_tx_max(struct pic32_spi *pic32s, int n_bytes)
{
u32 tx_left, tx_room, rxtx_gap;
tx_left = (pic32s->tx_end - pic32s->tx) / n_bytes;
tx_room = pic32s->fifo_n_elm - pic32_tx_fifo_level(pic32s);
/*
* Another concern is about the tx/rx mismatch, we
* though to use (pic32s->fifo_n_byte - rxfl - txfl) as
* one maximum value for tx, but it doesn't cover the
* data which is out of tx/rx fifo and inside the
* shift registers. So a ctrl from sw point of
* view is taken.
*/
rxtx_gap = ((pic32s->rx_end - pic32s->rx) -
(pic32s->tx_end - pic32s->tx)) / n_bytes;
return min3(tx_left, tx_room, (u32)(pic32s->fifo_n_elm - rxtx_gap));
}
/* Return the max entries we should read out of rx fifo */
static u32 pic32_rx_max(struct pic32_spi *pic32s, int n_bytes)
{
u32 rx_left = (pic32s->rx_end - pic32s->rx) / n_bytes;
return min_t(u32, rx_left, pic32_rx_fifo_level(pic32s));
}
#define BUILD_SPI_FIFO_RW(__name, __type, __bwl) \
static void pic32_spi_rx_##__name(struct pic32_spi *pic32s) \
{ \
__type v; \
u32 mx = pic32_rx_max(pic32s, sizeof(__type)); \
for (; mx; mx--) { \
v = read##__bwl(&pic32s->regs->buf); \
if (pic32s->rx_end - pic32s->len) \
*(__type *)(pic32s->rx) = v; \
pic32s->rx += sizeof(__type); \
} \
} \
\
static void pic32_spi_tx_##__name(struct pic32_spi *pic32s) \
{ \
__type v; \
u32 mx = pic32_tx_max(pic32s, sizeof(__type)); \
for (; mx ; mx--) { \
v = (__type)~0U; \
if (pic32s->tx_end - pic32s->len) \
v = *(__type *)(pic32s->tx); \
write##__bwl(v, &pic32s->regs->buf); \
pic32s->tx += sizeof(__type); \
} \
}
BUILD_SPI_FIFO_RW(byte, u8, b);
BUILD_SPI_FIFO_RW(word, u16, w);
BUILD_SPI_FIFO_RW(dword, u32, l);
static void pic32_err_stop(struct pic32_spi *pic32s, const char *msg)
{
/* disable all interrupts */
disable_irq_nosync(pic32s->fault_irq);
disable_irq_nosync(pic32s->rx_irq);
disable_irq_nosync(pic32s->tx_irq);
/* Show err message and abort xfer with err */
dev_err(&pic32s->master->dev, "%s\n", msg);
if (pic32s->master->cur_msg)
pic32s->master->cur_msg->status = -EIO;
complete(&pic32s->xfer_done);
}
static irqreturn_t pic32_spi_fault_irq(int irq, void *dev_id)
{
struct pic32_spi *pic32s = dev_id;
u32 status;
status = readl(&pic32s->regs->status);
/* Error handling */
if (status & (STAT_RX_OV | STAT_TX_UR)) {
writel(STAT_RX_OV, &pic32s->regs->status_clr);
writel(STAT_TX_UR, &pic32s->regs->status_clr);
pic32_err_stop(pic32s, "err_irq: fifo ov/ur-run\n");
return IRQ_HANDLED;
}
if (status & STAT_FRM_ERR) {
pic32_err_stop(pic32s, "err_irq: frame error");
return IRQ_HANDLED;
}
if (!pic32s->master->cur_msg) {
pic32_err_stop(pic32s, "err_irq: no mesg");
return IRQ_NONE;
}
return IRQ_NONE;
}
static irqreturn_t pic32_spi_rx_irq(int irq, void *dev_id)
{
struct pic32_spi *pic32s = dev_id;
pic32s->rx_fifo(pic32s);
/* rx complete ? */
if (pic32s->rx_end == pic32s->rx) {
/* disable all interrupts */
disable_irq_nosync(pic32s->fault_irq);
disable_irq_nosync(pic32s->rx_irq);
/* complete current xfer */
complete(&pic32s->xfer_done);
}
return IRQ_HANDLED;
}
static irqreturn_t pic32_spi_tx_irq(int irq, void *dev_id)
{
struct pic32_spi *pic32s = dev_id;
pic32s->tx_fifo(pic32s);
/* tx complete? disable tx interrupt */
if (pic32s->tx_end == pic32s->tx)
disable_irq_nosync(pic32s->tx_irq);
return IRQ_HANDLED;
}
static void pic32_spi_dma_rx_notify(void *data)
{
struct pic32_spi *pic32s = data;
complete(&pic32s->xfer_done);
}
static int pic32_spi_dma_transfer(struct pic32_spi *pic32s,
struct spi_transfer *xfer)
{
struct spi_master *master = pic32s->master;
struct dma_async_tx_descriptor *desc_rx;
struct dma_async_tx_descriptor *desc_tx;
dma_cookie_t cookie;
int ret;
if (!master->dma_rx || !master->dma_tx)
return -ENODEV;
desc_rx = dmaengine_prep_slave_sg(master->dma_rx,
xfer->rx_sg.sgl,
xfer->rx_sg.nents,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_rx) {
ret = -EINVAL;
goto err_dma;
}
desc_tx = dmaengine_prep_slave_sg(master->dma_tx,
xfer->tx_sg.sgl,
xfer->tx_sg.nents,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_tx) {
ret = -EINVAL;
goto err_dma;
}
/* Put callback on the RX transfer, that should finish last */
desc_rx->callback = pic32_spi_dma_rx_notify;
desc_rx->callback_param = pic32s;
cookie = dmaengine_submit(desc_rx);
ret = dma_submit_error(cookie);
if (ret)
goto err_dma;
cookie = dmaengine_submit(desc_tx);
ret = dma_submit_error(cookie);
if (ret)
goto err_dma_tx;
dma_async_issue_pending(master->dma_rx);
dma_async_issue_pending(master->dma_tx);
return 0;
err_dma_tx:
dmaengine_terminate_all(master->dma_rx);
err_dma:
return ret;
}
static int pic32_spi_dma_config(struct pic32_spi *pic32s, u32 dma_width)
{
int buf_offset = offsetof(struct pic32_spi_regs, buf);
struct spi_master *master = pic32s->master;
struct dma_slave_config cfg;
int ret;
cfg.device_fc = true;
cfg.src_addr = pic32s->dma_base + buf_offset;
cfg.dst_addr = pic32s->dma_base + buf_offset;
cfg.src_maxburst = pic32s->fifo_n_elm / 2; /* fill one-half */
cfg.dst_maxburst = pic32s->fifo_n_elm / 2; /* drain one-half */
cfg.src_addr_width = dma_width;
cfg.dst_addr_width = dma_width;
/* tx channel */
cfg.slave_id = pic32s->tx_irq;
cfg.direction = DMA_MEM_TO_DEV;
ret = dmaengine_slave_config(master->dma_tx, &cfg);
if (ret) {
dev_err(&master->dev, "tx channel setup failed\n");
return ret;
}
/* rx channel */
cfg.slave_id = pic32s->rx_irq;
cfg.direction = DMA_DEV_TO_MEM;
ret = dmaengine_slave_config(master->dma_rx, &cfg);
if (ret)
dev_err(&master->dev, "rx channel setup failed\n");
return ret;
}
static int pic32_spi_set_word_size(struct pic32_spi *pic32s, u8 bits_per_word)
{
enum dma_slave_buswidth dmawidth;
u32 buswidth, v;
switch (bits_per_word) {
case 8:
pic32s->rx_fifo = pic32_spi_rx_byte;
pic32s->tx_fifo = pic32_spi_tx_byte;
buswidth = PIC32_BPW_8;
dmawidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
break;
case 16:
pic32s->rx_fifo = pic32_spi_rx_word;
pic32s->tx_fifo = pic32_spi_tx_word;
buswidth = PIC32_BPW_16;
dmawidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
break;
case 32:
pic32s->rx_fifo = pic32_spi_rx_dword;
pic32s->tx_fifo = pic32_spi_tx_dword;
buswidth = PIC32_BPW_32;
dmawidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
break;
default:
/* not supported */
return -EINVAL;
}
/* calculate maximum number of words fifos can hold */
pic32s->fifo_n_elm = DIV_ROUND_UP(pic32s->fifo_n_byte,
bits_per_word / 8);
/* set word size */
v = readl(&pic32s->regs->ctrl);
v &= ~(CTRL_BPW_MASK << CTRL_BPW_SHIFT);
v |= buswidth << CTRL_BPW_SHIFT;
writel(v, &pic32s->regs->ctrl);
/* re-configure dma width, if required */
if (test_bit(PIC32F_DMA_PREP, &pic32s->flags))
pic32_spi_dma_config(pic32s, dmawidth);
return 0;
}
static int pic32_spi_prepare_hardware(struct spi_master *master)
{
struct pic32_spi *pic32s = spi_master_get_devdata(master);
pic32_spi_enable(pic32s);
return 0;
}
static int pic32_spi_prepare_message(struct spi_master *master,
struct spi_message *msg)
{
struct pic32_spi *pic32s = spi_master_get_devdata(master);
struct spi_device *spi = msg->spi;
u32 val;
/* set device specific bits_per_word */
if (pic32s->bits_per_word != spi->bits_per_word) {
pic32_spi_set_word_size(pic32s, spi->bits_per_word);
pic32s->bits_per_word = spi->bits_per_word;
}
/* device specific speed change */
if (pic32s->speed_hz != spi->max_speed_hz) {
pic32_spi_set_clk_rate(pic32s, spi->max_speed_hz);
pic32s->speed_hz = spi->max_speed_hz;
}
/* device specific mode change */
if (pic32s->mode != spi->mode) {
val = readl(&pic32s->regs->ctrl);
/* active low */
if (spi->mode & SPI_CPOL)
val |= CTRL_CKP;
else
val &= ~CTRL_CKP;
/* tx on rising edge */
if (spi->mode & SPI_CPHA)
val &= ~CTRL_CKE;
else
val |= CTRL_CKE;
/* rx at end of tx */
val |= CTRL_SMP;
writel(val, &pic32s->regs->ctrl);
pic32s->mode = spi->mode;
}
return 0;
}
static bool pic32_spi_can_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct pic32_spi *pic32s = spi_master_get_devdata(master);
/* skip using DMA on small size transfer to avoid overhead.*/
return (xfer->len >= PIC32_DMA_LEN_MIN) &&
test_bit(PIC32F_DMA_PREP, &pic32s->flags);
}
static int pic32_spi_one_transfer(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *transfer)
{
struct pic32_spi *pic32s;
bool dma_issued = false;
unsigned long timeout;
int ret;
pic32s = spi_master_get_devdata(master);
/* handle transfer specific word size change */
if (transfer->bits_per_word &&
(transfer->bits_per_word != pic32s->bits_per_word)) {
ret = pic32_spi_set_word_size(pic32s, transfer->bits_per_word);
if (ret)
return ret;
pic32s->bits_per_word = transfer->bits_per_word;
}
/* handle transfer specific speed change */
if (transfer->speed_hz && (transfer->speed_hz != pic32s->speed_hz)) {
pic32_spi_set_clk_rate(pic32s, transfer->speed_hz);
pic32s->speed_hz = transfer->speed_hz;
}
reinit_completion(&pic32s->xfer_done);
/* transact by DMA mode */
if (transfer->rx_sg.nents && transfer->tx_sg.nents) {
ret = pic32_spi_dma_transfer(pic32s, transfer);
if (ret) {
dev_err(&spi->dev, "dma submit error\n");
return ret;
}
/* DMA issued */
dma_issued = true;
} else {
/* set current transfer information */
pic32s->tx = (const void *)transfer->tx_buf;
pic32s->rx = (const void *)transfer->rx_buf;
pic32s->tx_end = pic32s->tx + transfer->len;
pic32s->rx_end = pic32s->rx + transfer->len;
pic32s->len = transfer->len;
/* transact by interrupt driven PIO */
enable_irq(pic32s->fault_irq);
enable_irq(pic32s->rx_irq);
enable_irq(pic32s->tx_irq);
}
/* wait for completion */
timeout = wait_for_completion_timeout(&pic32s->xfer_done, 2 * HZ);
if (timeout == 0) {
dev_err(&spi->dev, "wait error/timedout\n");
if (dma_issued) {
dmaengine_terminate_all(master->dma_rx);
dmaengine_terminate_all(master->dma_tx);
}
ret = -ETIMEDOUT;
} else {
ret = 0;
}
return ret;
}
static int pic32_spi_unprepare_message(struct spi_master *master,
struct spi_message *msg)
{
/* nothing to do */
return 0;
}
static int pic32_spi_unprepare_hardware(struct spi_master *master)
{
struct pic32_spi *pic32s = spi_master_get_devdata(master);
pic32_spi_disable(pic32s);
return 0;
}
/* This may be called multiple times by same spi dev */
static int pic32_spi_setup(struct spi_device *spi)
{
if (!spi->max_speed_hz) {
dev_err(&spi->dev, "No max speed HZ parameter\n");
return -EINVAL;
}
/* PIC32 spi controller can drive /CS during transfer depending
* on tx fifo fill-level. /CS will stay asserted as long as TX
* fifo is non-empty, else will be deasserted indicating
* completion of the ongoing transfer. This might result into
* unreliable/erroneous SPI transactions.
* To avoid that we will always handle /CS by toggling GPIO.
*/
if (!gpio_is_valid(spi->cs_gpio))
return -EINVAL;
gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
return 0;
}
static void pic32_spi_cleanup(struct spi_device *spi)
{
/* de-activate cs-gpio */
gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
}
static void pic32_spi_dma_prep(struct pic32_spi *pic32s, struct device *dev)
{
struct spi_master *master = pic32s->master;
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
master->dma_rx = dma_request_slave_channel_compat(mask, NULL, NULL,
dev, "spi-rx");
if (!master->dma_rx) {
dev_warn(dev, "RX channel not found.\n");
goto out_err;
}
master->dma_tx = dma_request_slave_channel_compat(mask, NULL, NULL,
dev, "spi-tx");
if (!master->dma_tx) {
dev_warn(dev, "TX channel not found.\n");
goto out_err;
}
if (pic32_spi_dma_config(pic32s, DMA_SLAVE_BUSWIDTH_1_BYTE))
goto out_err;
/* DMA chnls allocated and prepared */
set_bit(PIC32F_DMA_PREP, &pic32s->flags);
return;
out_err:
if (master->dma_rx)
dma_release_channel(master->dma_rx);
if (master->dma_tx)
dma_release_channel(master->dma_tx);
}
static void pic32_spi_dma_unprep(struct pic32_spi *pic32s)
{
if (!test_bit(PIC32F_DMA_PREP, &pic32s->flags))
return;
clear_bit(PIC32F_DMA_PREP, &pic32s->flags);
if (pic32s->master->dma_rx)
dma_release_channel(pic32s->master->dma_rx);
if (pic32s->master->dma_tx)
dma_release_channel(pic32s->master->dma_tx);
}
static void pic32_spi_hw_init(struct pic32_spi *pic32s)
{
u32 ctrl;
/* disable hardware */
pic32_spi_disable(pic32s);
ctrl = readl(&pic32s->regs->ctrl);
/* enable enhanced fifo of 128bit deep */
ctrl |= CTRL_ENHBUF;
pic32s->fifo_n_byte = 16;
/* disable framing mode */
ctrl &= ~CTRL_FRMEN;
/* enable master mode while disabled */
ctrl |= CTRL_MSTEN;
/* set tx fifo threshold interrupt */
ctrl &= ~(0x3 << CTRL_TX_INT_SHIFT);
ctrl |= (TX_FIFO_HALF_EMPTY << CTRL_TX_INT_SHIFT);
/* set rx fifo threshold interrupt */
ctrl &= ~(0x3 << CTRL_RX_INT_SHIFT);
ctrl |= (RX_FIFO_NOT_EMPTY << CTRL_RX_INT_SHIFT);
/* select clk source */
ctrl &= ~CTRL_MCLKSEL;
/* set manual /CS mode */
ctrl &= ~CTRL_MSSEN;
writel(ctrl, &pic32s->regs->ctrl);
/* enable error reporting */
ctrl = CTRL2_TX_UR_EN | CTRL2_RX_OV_EN | CTRL2_FRM_ERR_EN;
writel(ctrl, &pic32s->regs->ctrl2_set);
}
static int pic32_spi_hw_probe(struct platform_device *pdev,
struct pic32_spi *pic32s)
{
struct resource *mem;
int ret;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
pic32s->regs = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(pic32s->regs))
return PTR_ERR(pic32s->regs);
pic32s->dma_base = mem->start;
/* get irq resources: err-irq, rx-irq, tx-irq */
pic32s->fault_irq = platform_get_irq_byname(pdev, "fault");
if (pic32s->fault_irq < 0) {
dev_err(&pdev->dev, "fault-irq not found\n");
return pic32s->fault_irq;
}
pic32s->rx_irq = platform_get_irq_byname(pdev, "rx");
if (pic32s->rx_irq < 0) {
dev_err(&pdev->dev, "rx-irq not found\n");
return pic32s->rx_irq;
}
pic32s->tx_irq = platform_get_irq_byname(pdev, "tx");
if (pic32s->tx_irq < 0) {
dev_err(&pdev->dev, "tx-irq not found\n");
return pic32s->tx_irq;
}
/* get clock */
pic32s->clk = devm_clk_get(&pdev->dev, "mck0");
if (IS_ERR(pic32s->clk)) {
dev_err(&pdev->dev, "clk not found\n");
ret = PTR_ERR(pic32s->clk);
goto err_unmap_mem;
}
ret = clk_prepare_enable(pic32s->clk);
if (ret)
goto err_unmap_mem;
pic32_spi_hw_init(pic32s);
return 0;
err_unmap_mem:
dev_err(&pdev->dev, "%s failed, err %d\n", __func__, ret);
return ret;
}
static int pic32_spi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct pic32_spi *pic32s;
int ret;
master = spi_alloc_master(&pdev->dev, sizeof(*pic32s));
if (!master)
return -ENOMEM;
pic32s = spi_master_get_devdata(master);
pic32s->master = master;
ret = pic32_spi_hw_probe(pdev, pic32s);
if (ret)
goto err_master;
master->dev.of_node = pdev->dev.of_node;
master->mode_bits = SPI_MODE_3 | SPI_MODE_0 | SPI_CS_HIGH;
master->num_chipselect = 1; /* single chip-select */
master->max_speed_hz = clk_get_rate(pic32s->clk);
master->setup = pic32_spi_setup;
master->cleanup = pic32_spi_cleanup;
master->flags = SPI_MASTER_MUST_TX | SPI_MASTER_MUST_RX;
master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
SPI_BPW_MASK(32);
master->transfer_one = pic32_spi_one_transfer;
master->prepare_message = pic32_spi_prepare_message;
master->unprepare_message = pic32_spi_unprepare_message;
master->prepare_transfer_hardware = pic32_spi_prepare_hardware;
master->unprepare_transfer_hardware = pic32_spi_unprepare_hardware;
/* optional DMA support */
pic32_spi_dma_prep(pic32s, &pdev->dev);
if (test_bit(PIC32F_DMA_PREP, &pic32s->flags))
master->can_dma = pic32_spi_can_dma;
init_completion(&pic32s->xfer_done);
pic32s->mode = -1;
/* install irq handlers (with irq-disabled) */
irq_set_status_flags(pic32s->fault_irq, IRQ_NOAUTOEN);
ret = devm_request_irq(&pdev->dev, pic32s->fault_irq,
pic32_spi_fault_irq, IRQF_NO_THREAD,
dev_name(&pdev->dev), pic32s);
if (ret < 0) {
dev_err(&pdev->dev, "request fault-irq %d\n", pic32s->rx_irq);
goto err_bailout;
}
/* receive interrupt handler */
irq_set_status_flags(pic32s->rx_irq, IRQ_NOAUTOEN);
ret = devm_request_irq(&pdev->dev, pic32s->rx_irq,
pic32_spi_rx_irq, IRQF_NO_THREAD,
dev_name(&pdev->dev), pic32s);
if (ret < 0) {
dev_err(&pdev->dev, "request rx-irq %d\n", pic32s->rx_irq);
goto err_bailout;
}
/* transmit interrupt handler */
irq_set_status_flags(pic32s->tx_irq, IRQ_NOAUTOEN);
ret = devm_request_irq(&pdev->dev, pic32s->tx_irq,
pic32_spi_tx_irq, IRQF_NO_THREAD,
dev_name(&pdev->dev), pic32s);
if (ret < 0) {
dev_err(&pdev->dev, "request tx-irq %d\n", pic32s->tx_irq);
goto err_bailout;
}
/* register master */
ret = devm_spi_register_master(&pdev->dev, master);
if (ret) {
dev_err(&master->dev, "failed registering spi master\n");
goto err_bailout;
}
platform_set_drvdata(pdev, pic32s);
return 0;
err_bailout:
clk_disable_unprepare(pic32s->clk);
err_master:
spi_master_put(master);
return ret;
}
static int pic32_spi_remove(struct platform_device *pdev)
{
struct pic32_spi *pic32s;
pic32s = platform_get_drvdata(pdev);
pic32_spi_disable(pic32s);
clk_disable_unprepare(pic32s->clk);
pic32_spi_dma_unprep(pic32s);
return 0;
}
static const struct of_device_id pic32_spi_of_match[] = {
{.compatible = "microchip,pic32mzda-spi",},
{},
};
MODULE_DEVICE_TABLE(of, pic32_spi_of_match);
static struct platform_driver pic32_spi_driver = {
.driver = {
.name = "spi-pic32",
.of_match_table = of_match_ptr(pic32_spi_of_match),
},
.probe = pic32_spi_probe,
.remove = pic32_spi_remove,
};
module_platform_driver(pic32_spi_driver);
MODULE_AUTHOR("Purna Chandra Mandal <purna.mandal@microchip.com>");
MODULE_DESCRIPTION("Microchip SPI driver for PIC32 SPI controller.");
MODULE_LICENSE("GPL v2");