linux/fs/inode.c
Jan Kara 730633f0b7 mm: Protect operations adding pages to page cache with invalidate_lock
Currently, serializing operations such as page fault, read, or readahead
against hole punching is rather difficult. The basic race scheme is
like:

fallocate(FALLOC_FL_PUNCH_HOLE)			read / fault / ..
  truncate_inode_pages_range()
						  <create pages in page
						   cache here>
  <update fs block mapping and free blocks>

Now the problem is in this way read / page fault / readahead can
instantiate pages in page cache with potentially stale data (if blocks
get quickly reused). Avoiding this race is not simple - page locks do
not work because we want to make sure there are *no* pages in given
range. inode->i_rwsem does not work because page fault happens under
mmap_sem which ranks below inode->i_rwsem. Also using it for reads makes
the performance for mixed read-write workloads suffer.

So create a new rw_semaphore in the address_space - invalidate_lock -
that protects adding of pages to page cache for page faults / reads /
readahead.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
2021-07-13 13:14:27 +02:00

2325 lines
62 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* (C) 1997 Linus Torvalds
* (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
*/
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/backing-dev.h>
#include <linux/hash.h>
#include <linux/swap.h>
#include <linux/security.h>
#include <linux/cdev.h>
#include <linux/memblock.h>
#include <linux/fsnotify.h>
#include <linux/mount.h>
#include <linux/posix_acl.h>
#include <linux/prefetch.h>
#include <linux/buffer_head.h> /* for inode_has_buffers */
#include <linux/ratelimit.h>
#include <linux/list_lru.h>
#include <linux/iversion.h>
#include <trace/events/writeback.h>
#include "internal.h"
/*
* Inode locking rules:
*
* inode->i_lock protects:
* inode->i_state, inode->i_hash, __iget()
* Inode LRU list locks protect:
* inode->i_sb->s_inode_lru, inode->i_lru
* inode->i_sb->s_inode_list_lock protects:
* inode->i_sb->s_inodes, inode->i_sb_list
* bdi->wb.list_lock protects:
* bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
* inode_hash_lock protects:
* inode_hashtable, inode->i_hash
*
* Lock ordering:
*
* inode->i_sb->s_inode_list_lock
* inode->i_lock
* Inode LRU list locks
*
* bdi->wb.list_lock
* inode->i_lock
*
* inode_hash_lock
* inode->i_sb->s_inode_list_lock
* inode->i_lock
*
* iunique_lock
* inode_hash_lock
*/
static unsigned int i_hash_mask __read_mostly;
static unsigned int i_hash_shift __read_mostly;
static struct hlist_head *inode_hashtable __read_mostly;
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
/*
* Empty aops. Can be used for the cases where the user does not
* define any of the address_space operations.
*/
const struct address_space_operations empty_aops = {
};
EXPORT_SYMBOL(empty_aops);
/*
* Statistics gathering..
*/
struct inodes_stat_t inodes_stat;
static DEFINE_PER_CPU(unsigned long, nr_inodes);
static DEFINE_PER_CPU(unsigned long, nr_unused);
static struct kmem_cache *inode_cachep __read_mostly;
static long get_nr_inodes(void)
{
int i;
long sum = 0;
for_each_possible_cpu(i)
sum += per_cpu(nr_inodes, i);
return sum < 0 ? 0 : sum;
}
static inline long get_nr_inodes_unused(void)
{
int i;
long sum = 0;
for_each_possible_cpu(i)
sum += per_cpu(nr_unused, i);
return sum < 0 ? 0 : sum;
}
long get_nr_dirty_inodes(void)
{
/* not actually dirty inodes, but a wild approximation */
long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
return nr_dirty > 0 ? nr_dirty : 0;
}
/*
* Handle nr_inode sysctl
*/
#ifdef CONFIG_SYSCTL
int proc_nr_inodes(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
inodes_stat.nr_inodes = get_nr_inodes();
inodes_stat.nr_unused = get_nr_inodes_unused();
return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
}
#endif
static int no_open(struct inode *inode, struct file *file)
{
return -ENXIO;
}
/**
* inode_init_always - perform inode structure initialisation
* @sb: superblock inode belongs to
* @inode: inode to initialise
*
* These are initializations that need to be done on every inode
* allocation as the fields are not initialised by slab allocation.
*/
int inode_init_always(struct super_block *sb, struct inode *inode)
{
static const struct inode_operations empty_iops;
static const struct file_operations no_open_fops = {.open = no_open};
struct address_space *const mapping = &inode->i_data;
inode->i_sb = sb;
inode->i_blkbits = sb->s_blocksize_bits;
inode->i_flags = 0;
atomic64_set(&inode->i_sequence, 0);
atomic_set(&inode->i_count, 1);
inode->i_op = &empty_iops;
inode->i_fop = &no_open_fops;
inode->i_ino = 0;
inode->__i_nlink = 1;
inode->i_opflags = 0;
if (sb->s_xattr)
inode->i_opflags |= IOP_XATTR;
i_uid_write(inode, 0);
i_gid_write(inode, 0);
atomic_set(&inode->i_writecount, 0);
inode->i_size = 0;
inode->i_write_hint = WRITE_LIFE_NOT_SET;
inode->i_blocks = 0;
inode->i_bytes = 0;
inode->i_generation = 0;
inode->i_pipe = NULL;
inode->i_cdev = NULL;
inode->i_link = NULL;
inode->i_dir_seq = 0;
inode->i_rdev = 0;
inode->dirtied_when = 0;
#ifdef CONFIG_CGROUP_WRITEBACK
inode->i_wb_frn_winner = 0;
inode->i_wb_frn_avg_time = 0;
inode->i_wb_frn_history = 0;
#endif
if (security_inode_alloc(inode))
goto out;
spin_lock_init(&inode->i_lock);
lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
init_rwsem(&inode->i_rwsem);
lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
atomic_set(&inode->i_dio_count, 0);
mapping->a_ops = &empty_aops;
mapping->host = inode;
mapping->flags = 0;
if (sb->s_type->fs_flags & FS_THP_SUPPORT)
__set_bit(AS_THP_SUPPORT, &mapping->flags);
mapping->wb_err = 0;
atomic_set(&mapping->i_mmap_writable, 0);
#ifdef CONFIG_READ_ONLY_THP_FOR_FS
atomic_set(&mapping->nr_thps, 0);
#endif
mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
mapping->private_data = NULL;
mapping->writeback_index = 0;
__init_rwsem(&mapping->invalidate_lock, "mapping.invalidate_lock",
&sb->s_type->invalidate_lock_key);
inode->i_private = NULL;
inode->i_mapping = mapping;
INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
#ifdef CONFIG_FS_POSIX_ACL
inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
#endif
#ifdef CONFIG_FSNOTIFY
inode->i_fsnotify_mask = 0;
#endif
inode->i_flctx = NULL;
this_cpu_inc(nr_inodes);
return 0;
out:
return -ENOMEM;
}
EXPORT_SYMBOL(inode_init_always);
void free_inode_nonrcu(struct inode *inode)
{
kmem_cache_free(inode_cachep, inode);
}
EXPORT_SYMBOL(free_inode_nonrcu);
static void i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
if (inode->free_inode)
inode->free_inode(inode);
else
free_inode_nonrcu(inode);
}
static struct inode *alloc_inode(struct super_block *sb)
{
const struct super_operations *ops = sb->s_op;
struct inode *inode;
if (ops->alloc_inode)
inode = ops->alloc_inode(sb);
else
inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
if (!inode)
return NULL;
if (unlikely(inode_init_always(sb, inode))) {
if (ops->destroy_inode) {
ops->destroy_inode(inode);
if (!ops->free_inode)
return NULL;
}
inode->free_inode = ops->free_inode;
i_callback(&inode->i_rcu);
return NULL;
}
return inode;
}
void __destroy_inode(struct inode *inode)
{
BUG_ON(inode_has_buffers(inode));
inode_detach_wb(inode);
security_inode_free(inode);
fsnotify_inode_delete(inode);
locks_free_lock_context(inode);
if (!inode->i_nlink) {
WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
atomic_long_dec(&inode->i_sb->s_remove_count);
}
#ifdef CONFIG_FS_POSIX_ACL
if (inode->i_acl && !is_uncached_acl(inode->i_acl))
posix_acl_release(inode->i_acl);
if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
posix_acl_release(inode->i_default_acl);
#endif
this_cpu_dec(nr_inodes);
}
EXPORT_SYMBOL(__destroy_inode);
static void destroy_inode(struct inode *inode)
{
const struct super_operations *ops = inode->i_sb->s_op;
BUG_ON(!list_empty(&inode->i_lru));
__destroy_inode(inode);
if (ops->destroy_inode) {
ops->destroy_inode(inode);
if (!ops->free_inode)
return;
}
inode->free_inode = ops->free_inode;
call_rcu(&inode->i_rcu, i_callback);
}
/**
* drop_nlink - directly drop an inode's link count
* @inode: inode
*
* This is a low-level filesystem helper to replace any
* direct filesystem manipulation of i_nlink. In cases
* where we are attempting to track writes to the
* filesystem, a decrement to zero means an imminent
* write when the file is truncated and actually unlinked
* on the filesystem.
*/
void drop_nlink(struct inode *inode)
{
WARN_ON(inode->i_nlink == 0);
inode->__i_nlink--;
if (!inode->i_nlink)
atomic_long_inc(&inode->i_sb->s_remove_count);
}
EXPORT_SYMBOL(drop_nlink);
/**
* clear_nlink - directly zero an inode's link count
* @inode: inode
*
* This is a low-level filesystem helper to replace any
* direct filesystem manipulation of i_nlink. See
* drop_nlink() for why we care about i_nlink hitting zero.
*/
void clear_nlink(struct inode *inode)
{
if (inode->i_nlink) {
inode->__i_nlink = 0;
atomic_long_inc(&inode->i_sb->s_remove_count);
}
}
EXPORT_SYMBOL(clear_nlink);
/**
* set_nlink - directly set an inode's link count
* @inode: inode
* @nlink: new nlink (should be non-zero)
*
* This is a low-level filesystem helper to replace any
* direct filesystem manipulation of i_nlink.
*/
void set_nlink(struct inode *inode, unsigned int nlink)
{
if (!nlink) {
clear_nlink(inode);
} else {
/* Yes, some filesystems do change nlink from zero to one */
if (inode->i_nlink == 0)
atomic_long_dec(&inode->i_sb->s_remove_count);
inode->__i_nlink = nlink;
}
}
EXPORT_SYMBOL(set_nlink);
/**
* inc_nlink - directly increment an inode's link count
* @inode: inode
*
* This is a low-level filesystem helper to replace any
* direct filesystem manipulation of i_nlink. Currently,
* it is only here for parity with dec_nlink().
*/
void inc_nlink(struct inode *inode)
{
if (unlikely(inode->i_nlink == 0)) {
WARN_ON(!(inode->i_state & I_LINKABLE));
atomic_long_dec(&inode->i_sb->s_remove_count);
}
inode->__i_nlink++;
}
EXPORT_SYMBOL(inc_nlink);
static void __address_space_init_once(struct address_space *mapping)
{
xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
init_rwsem(&mapping->i_mmap_rwsem);
INIT_LIST_HEAD(&mapping->private_list);
spin_lock_init(&mapping->private_lock);
mapping->i_mmap = RB_ROOT_CACHED;
}
void address_space_init_once(struct address_space *mapping)
{
memset(mapping, 0, sizeof(*mapping));
__address_space_init_once(mapping);
}
EXPORT_SYMBOL(address_space_init_once);
/*
* These are initializations that only need to be done
* once, because the fields are idempotent across use
* of the inode, so let the slab aware of that.
*/
void inode_init_once(struct inode *inode)
{
memset(inode, 0, sizeof(*inode));
INIT_HLIST_NODE(&inode->i_hash);
INIT_LIST_HEAD(&inode->i_devices);
INIT_LIST_HEAD(&inode->i_io_list);
INIT_LIST_HEAD(&inode->i_wb_list);
INIT_LIST_HEAD(&inode->i_lru);
__address_space_init_once(&inode->i_data);
i_size_ordered_init(inode);
}
EXPORT_SYMBOL(inode_init_once);
static void init_once(void *foo)
{
struct inode *inode = (struct inode *) foo;
inode_init_once(inode);
}
/*
* inode->i_lock must be held
*/
void __iget(struct inode *inode)
{
atomic_inc(&inode->i_count);
}
/*
* get additional reference to inode; caller must already hold one.
*/
void ihold(struct inode *inode)
{
WARN_ON(atomic_inc_return(&inode->i_count) < 2);
}
EXPORT_SYMBOL(ihold);
static void inode_lru_list_add(struct inode *inode)
{
if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
this_cpu_inc(nr_unused);
else
inode->i_state |= I_REFERENCED;
}
/*
* Add inode to LRU if needed (inode is unused and clean).
*
* Needs inode->i_lock held.
*/
void inode_add_lru(struct inode *inode)
{
if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
I_FREEING | I_WILL_FREE)) &&
!atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
inode_lru_list_add(inode);
}
static void inode_lru_list_del(struct inode *inode)
{
if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
this_cpu_dec(nr_unused);
}
/**
* inode_sb_list_add - add inode to the superblock list of inodes
* @inode: inode to add
*/
void inode_sb_list_add(struct inode *inode)
{
spin_lock(&inode->i_sb->s_inode_list_lock);
list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
spin_unlock(&inode->i_sb->s_inode_list_lock);
}
EXPORT_SYMBOL_GPL(inode_sb_list_add);
static inline void inode_sb_list_del(struct inode *inode)
{
if (!list_empty(&inode->i_sb_list)) {
spin_lock(&inode->i_sb->s_inode_list_lock);
list_del_init(&inode->i_sb_list);
spin_unlock(&inode->i_sb->s_inode_list_lock);
}
}
static unsigned long hash(struct super_block *sb, unsigned long hashval)
{
unsigned long tmp;
tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
L1_CACHE_BYTES;
tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
return tmp & i_hash_mask;
}
/**
* __insert_inode_hash - hash an inode
* @inode: unhashed inode
* @hashval: unsigned long value used to locate this object in the
* inode_hashtable.
*
* Add an inode to the inode hash for this superblock.
*/
void __insert_inode_hash(struct inode *inode, unsigned long hashval)
{
struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
spin_lock(&inode_hash_lock);
spin_lock(&inode->i_lock);
hlist_add_head_rcu(&inode->i_hash, b);
spin_unlock(&inode->i_lock);
spin_unlock(&inode_hash_lock);
}
EXPORT_SYMBOL(__insert_inode_hash);
/**
* __remove_inode_hash - remove an inode from the hash
* @inode: inode to unhash
*
* Remove an inode from the superblock.
*/
void __remove_inode_hash(struct inode *inode)
{
spin_lock(&inode_hash_lock);
spin_lock(&inode->i_lock);
hlist_del_init_rcu(&inode->i_hash);
spin_unlock(&inode->i_lock);
spin_unlock(&inode_hash_lock);
}
EXPORT_SYMBOL(__remove_inode_hash);
void clear_inode(struct inode *inode)
{
/*
* We have to cycle the i_pages lock here because reclaim can be in the
* process of removing the last page (in __delete_from_page_cache())
* and we must not free the mapping under it.
*/
xa_lock_irq(&inode->i_data.i_pages);
BUG_ON(inode->i_data.nrpages);
/*
* Almost always, mapping_empty(&inode->i_data) here; but there are
* two known and long-standing ways in which nodes may get left behind
* (when deep radix-tree node allocation failed partway; or when THP
* collapse_file() failed). Until those two known cases are cleaned up,
* or a cleanup function is called here, do not BUG_ON(!mapping_empty),
* nor even WARN_ON(!mapping_empty).
*/
xa_unlock_irq(&inode->i_data.i_pages);
BUG_ON(!list_empty(&inode->i_data.private_list));
BUG_ON(!(inode->i_state & I_FREEING));
BUG_ON(inode->i_state & I_CLEAR);
BUG_ON(!list_empty(&inode->i_wb_list));
/* don't need i_lock here, no concurrent mods to i_state */
inode->i_state = I_FREEING | I_CLEAR;
}
EXPORT_SYMBOL(clear_inode);
/*
* Free the inode passed in, removing it from the lists it is still connected
* to. We remove any pages still attached to the inode and wait for any IO that
* is still in progress before finally destroying the inode.
*
* An inode must already be marked I_FREEING so that we avoid the inode being
* moved back onto lists if we race with other code that manipulates the lists
* (e.g. writeback_single_inode). The caller is responsible for setting this.
*
* An inode must already be removed from the LRU list before being evicted from
* the cache. This should occur atomically with setting the I_FREEING state
* flag, so no inodes here should ever be on the LRU when being evicted.
*/
static void evict(struct inode *inode)
{
const struct super_operations *op = inode->i_sb->s_op;
BUG_ON(!(inode->i_state & I_FREEING));
BUG_ON(!list_empty(&inode->i_lru));
if (!list_empty(&inode->i_io_list))
inode_io_list_del(inode);
inode_sb_list_del(inode);
/*
* Wait for flusher thread to be done with the inode so that filesystem
* does not start destroying it while writeback is still running. Since
* the inode has I_FREEING set, flusher thread won't start new work on
* the inode. We just have to wait for running writeback to finish.
*/
inode_wait_for_writeback(inode);
if (op->evict_inode) {
op->evict_inode(inode);
} else {
truncate_inode_pages_final(&inode->i_data);
clear_inode(inode);
}
if (S_ISCHR(inode->i_mode) && inode->i_cdev)
cd_forget(inode);
remove_inode_hash(inode);
spin_lock(&inode->i_lock);
wake_up_bit(&inode->i_state, __I_NEW);
BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
spin_unlock(&inode->i_lock);
destroy_inode(inode);
}
/*
* dispose_list - dispose of the contents of a local list
* @head: the head of the list to free
*
* Dispose-list gets a local list with local inodes in it, so it doesn't
* need to worry about list corruption and SMP locks.
*/
static void dispose_list(struct list_head *head)
{
while (!list_empty(head)) {
struct inode *inode;
inode = list_first_entry(head, struct inode, i_lru);
list_del_init(&inode->i_lru);
evict(inode);
cond_resched();
}
}
/**
* evict_inodes - evict all evictable inodes for a superblock
* @sb: superblock to operate on
*
* Make sure that no inodes with zero refcount are retained. This is
* called by superblock shutdown after having SB_ACTIVE flag removed,
* so any inode reaching zero refcount during or after that call will
* be immediately evicted.
*/
void evict_inodes(struct super_block *sb)
{
struct inode *inode, *next;
LIST_HEAD(dispose);
again:
spin_lock(&sb->s_inode_list_lock);
list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
if (atomic_read(&inode->i_count))
continue;
spin_lock(&inode->i_lock);
if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
spin_unlock(&inode->i_lock);
continue;
}
inode->i_state |= I_FREEING;
inode_lru_list_del(inode);
spin_unlock(&inode->i_lock);
list_add(&inode->i_lru, &dispose);
/*
* We can have a ton of inodes to evict at unmount time given
* enough memory, check to see if we need to go to sleep for a
* bit so we don't livelock.
*/
if (need_resched()) {
spin_unlock(&sb->s_inode_list_lock);
cond_resched();
dispose_list(&dispose);
goto again;
}
}
spin_unlock(&sb->s_inode_list_lock);
dispose_list(&dispose);
}
EXPORT_SYMBOL_GPL(evict_inodes);
/**
* invalidate_inodes - attempt to free all inodes on a superblock
* @sb: superblock to operate on
* @kill_dirty: flag to guide handling of dirty inodes
*
* Attempts to free all inodes for a given superblock. If there were any
* busy inodes return a non-zero value, else zero.
* If @kill_dirty is set, discard dirty inodes too, otherwise treat
* them as busy.
*/
int invalidate_inodes(struct super_block *sb, bool kill_dirty)
{
int busy = 0;
struct inode *inode, *next;
LIST_HEAD(dispose);
again:
spin_lock(&sb->s_inode_list_lock);
list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
spin_lock(&inode->i_lock);
if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
spin_unlock(&inode->i_lock);
continue;
}
if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
spin_unlock(&inode->i_lock);
busy = 1;
continue;
}
if (atomic_read(&inode->i_count)) {
spin_unlock(&inode->i_lock);
busy = 1;
continue;
}
inode->i_state |= I_FREEING;
inode_lru_list_del(inode);
spin_unlock(&inode->i_lock);
list_add(&inode->i_lru, &dispose);
if (need_resched()) {
spin_unlock(&sb->s_inode_list_lock);
cond_resched();
dispose_list(&dispose);
goto again;
}
}
spin_unlock(&sb->s_inode_list_lock);
dispose_list(&dispose);
return busy;
}
/*
* Isolate the inode from the LRU in preparation for freeing it.
*
* Any inodes which are pinned purely because of attached pagecache have their
* pagecache removed. If the inode has metadata buffers attached to
* mapping->private_list then try to remove them.
*
* If the inode has the I_REFERENCED flag set, then it means that it has been
* used recently - the flag is set in iput_final(). When we encounter such an
* inode, clear the flag and move it to the back of the LRU so it gets another
* pass through the LRU before it gets reclaimed. This is necessary because of
* the fact we are doing lazy LRU updates to minimise lock contention so the
* LRU does not have strict ordering. Hence we don't want to reclaim inodes
* with this flag set because they are the inodes that are out of order.
*/
static enum lru_status inode_lru_isolate(struct list_head *item,
struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
{
struct list_head *freeable = arg;
struct inode *inode = container_of(item, struct inode, i_lru);
/*
* we are inverting the lru lock/inode->i_lock here, so use a trylock.
* If we fail to get the lock, just skip it.
*/
if (!spin_trylock(&inode->i_lock))
return LRU_SKIP;
/*
* Referenced or dirty inodes are still in use. Give them another pass
* through the LRU as we canot reclaim them now.
*/
if (atomic_read(&inode->i_count) ||
(inode->i_state & ~I_REFERENCED)) {
list_lru_isolate(lru, &inode->i_lru);
spin_unlock(&inode->i_lock);
this_cpu_dec(nr_unused);
return LRU_REMOVED;
}
/* recently referenced inodes get one more pass */
if (inode->i_state & I_REFERENCED) {
inode->i_state &= ~I_REFERENCED;
spin_unlock(&inode->i_lock);
return LRU_ROTATE;
}
if (inode_has_buffers(inode) || inode->i_data.nrpages) {
__iget(inode);
spin_unlock(&inode->i_lock);
spin_unlock(lru_lock);
if (remove_inode_buffers(inode)) {
unsigned long reap;
reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
if (current_is_kswapd())
__count_vm_events(KSWAPD_INODESTEAL, reap);
else
__count_vm_events(PGINODESTEAL, reap);
if (current->reclaim_state)
current->reclaim_state->reclaimed_slab += reap;
}
iput(inode);
spin_lock(lru_lock);
return LRU_RETRY;
}
WARN_ON(inode->i_state & I_NEW);
inode->i_state |= I_FREEING;
list_lru_isolate_move(lru, &inode->i_lru, freeable);
spin_unlock(&inode->i_lock);
this_cpu_dec(nr_unused);
return LRU_REMOVED;
}
/*
* Walk the superblock inode LRU for freeable inodes and attempt to free them.
* This is called from the superblock shrinker function with a number of inodes
* to trim from the LRU. Inodes to be freed are moved to a temporary list and
* then are freed outside inode_lock by dispose_list().
*/
long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
{
LIST_HEAD(freeable);
long freed;
freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
inode_lru_isolate, &freeable);
dispose_list(&freeable);
return freed;
}
static void __wait_on_freeing_inode(struct inode *inode);
/*
* Called with the inode lock held.
*/
static struct inode *find_inode(struct super_block *sb,
struct hlist_head *head,
int (*test)(struct inode *, void *),
void *data)
{
struct inode *inode = NULL;
repeat:
hlist_for_each_entry(inode, head, i_hash) {
if (inode->i_sb != sb)
continue;
if (!test(inode, data))
continue;
spin_lock(&inode->i_lock);
if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
__wait_on_freeing_inode(inode);
goto repeat;
}
if (unlikely(inode->i_state & I_CREATING)) {
spin_unlock(&inode->i_lock);
return ERR_PTR(-ESTALE);
}
__iget(inode);
spin_unlock(&inode->i_lock);
return inode;
}
return NULL;
}
/*
* find_inode_fast is the fast path version of find_inode, see the comment at
* iget_locked for details.
*/
static struct inode *find_inode_fast(struct super_block *sb,
struct hlist_head *head, unsigned long ino)
{
struct inode *inode = NULL;
repeat:
hlist_for_each_entry(inode, head, i_hash) {
if (inode->i_ino != ino)
continue;
if (inode->i_sb != sb)
continue;
spin_lock(&inode->i_lock);
if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
__wait_on_freeing_inode(inode);
goto repeat;
}
if (unlikely(inode->i_state & I_CREATING)) {
spin_unlock(&inode->i_lock);
return ERR_PTR(-ESTALE);
}
__iget(inode);
spin_unlock(&inode->i_lock);
return inode;
}
return NULL;
}
/*
* Each cpu owns a range of LAST_INO_BATCH numbers.
* 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
* to renew the exhausted range.
*
* This does not significantly increase overflow rate because every CPU can
* consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
* NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
* 2^32 range, and is a worst-case. Even a 50% wastage would only increase
* overflow rate by 2x, which does not seem too significant.
*
* On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
* error if st_ino won't fit in target struct field. Use 32bit counter
* here to attempt to avoid that.
*/
#define LAST_INO_BATCH 1024
static DEFINE_PER_CPU(unsigned int, last_ino);
unsigned int get_next_ino(void)
{
unsigned int *p = &get_cpu_var(last_ino);
unsigned int res = *p;
#ifdef CONFIG_SMP
if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
static atomic_t shared_last_ino;
int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
res = next - LAST_INO_BATCH;
}
#endif
res++;
/* get_next_ino should not provide a 0 inode number */
if (unlikely(!res))
res++;
*p = res;
put_cpu_var(last_ino);
return res;
}
EXPORT_SYMBOL(get_next_ino);
/**
* new_inode_pseudo - obtain an inode
* @sb: superblock
*
* Allocates a new inode for given superblock.
* Inode wont be chained in superblock s_inodes list
* This means :
* - fs can't be unmount
* - quotas, fsnotify, writeback can't work
*/
struct inode *new_inode_pseudo(struct super_block *sb)
{
struct inode *inode = alloc_inode(sb);
if (inode) {
spin_lock(&inode->i_lock);
inode->i_state = 0;
spin_unlock(&inode->i_lock);
INIT_LIST_HEAD(&inode->i_sb_list);
}
return inode;
}
/**
* new_inode - obtain an inode
* @sb: superblock
*
* Allocates a new inode for given superblock. The default gfp_mask
* for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
* If HIGHMEM pages are unsuitable or it is known that pages allocated
* for the page cache are not reclaimable or migratable,
* mapping_set_gfp_mask() must be called with suitable flags on the
* newly created inode's mapping
*
*/
struct inode *new_inode(struct super_block *sb)
{
struct inode *inode;
spin_lock_prefetch(&sb->s_inode_list_lock);
inode = new_inode_pseudo(sb);
if (inode)
inode_sb_list_add(inode);
return inode;
}
EXPORT_SYMBOL(new_inode);
#ifdef CONFIG_DEBUG_LOCK_ALLOC
void lockdep_annotate_inode_mutex_key(struct inode *inode)
{
if (S_ISDIR(inode->i_mode)) {
struct file_system_type *type = inode->i_sb->s_type;
/* Set new key only if filesystem hasn't already changed it */
if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
/*
* ensure nobody is actually holding i_mutex
*/
// mutex_destroy(&inode->i_mutex);
init_rwsem(&inode->i_rwsem);
lockdep_set_class(&inode->i_rwsem,
&type->i_mutex_dir_key);
}
}
}
EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
#endif
/**
* unlock_new_inode - clear the I_NEW state and wake up any waiters
* @inode: new inode to unlock
*
* Called when the inode is fully initialised to clear the new state of the
* inode and wake up anyone waiting for the inode to finish initialisation.
*/
void unlock_new_inode(struct inode *inode)
{
lockdep_annotate_inode_mutex_key(inode);
spin_lock(&inode->i_lock);
WARN_ON(!(inode->i_state & I_NEW));
inode->i_state &= ~I_NEW & ~I_CREATING;
smp_mb();
wake_up_bit(&inode->i_state, __I_NEW);
spin_unlock(&inode->i_lock);
}
EXPORT_SYMBOL(unlock_new_inode);
void discard_new_inode(struct inode *inode)
{
lockdep_annotate_inode_mutex_key(inode);
spin_lock(&inode->i_lock);
WARN_ON(!(inode->i_state & I_NEW));
inode->i_state &= ~I_NEW;
smp_mb();
wake_up_bit(&inode->i_state, __I_NEW);
spin_unlock(&inode->i_lock);
iput(inode);
}
EXPORT_SYMBOL(discard_new_inode);
/**
* lock_two_nondirectories - take two i_mutexes on non-directory objects
*
* Lock any non-NULL argument that is not a directory.
* Zero, one or two objects may be locked by this function.
*
* @inode1: first inode to lock
* @inode2: second inode to lock
*/
void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
{
if (inode1 > inode2)
swap(inode1, inode2);
if (inode1 && !S_ISDIR(inode1->i_mode))
inode_lock(inode1);
if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
inode_lock_nested(inode2, I_MUTEX_NONDIR2);
}
EXPORT_SYMBOL(lock_two_nondirectories);
/**
* unlock_two_nondirectories - release locks from lock_two_nondirectories()
* @inode1: first inode to unlock
* @inode2: second inode to unlock
*/
void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
{
if (inode1 && !S_ISDIR(inode1->i_mode))
inode_unlock(inode1);
if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
inode_unlock(inode2);
}
EXPORT_SYMBOL(unlock_two_nondirectories);
/**
* inode_insert5 - obtain an inode from a mounted file system
* @inode: pre-allocated inode to use for insert to cache
* @hashval: hash value (usually inode number) to get
* @test: callback used for comparisons between inodes
* @set: callback used to initialize a new struct inode
* @data: opaque data pointer to pass to @test and @set
*
* Search for the inode specified by @hashval and @data in the inode cache,
* and if present it is return it with an increased reference count. This is
* a variant of iget5_locked() for callers that don't want to fail on memory
* allocation of inode.
*
* If the inode is not in cache, insert the pre-allocated inode to cache and
* return it locked, hashed, and with the I_NEW flag set. The file system gets
* to fill it in before unlocking it via unlock_new_inode().
*
* Note both @test and @set are called with the inode_hash_lock held, so can't
* sleep.
*/
struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
int (*test)(struct inode *, void *),
int (*set)(struct inode *, void *), void *data)
{
struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
struct inode *old;
bool creating = inode->i_state & I_CREATING;
again:
spin_lock(&inode_hash_lock);
old = find_inode(inode->i_sb, head, test, data);
if (unlikely(old)) {
/*
* Uhhuh, somebody else created the same inode under us.
* Use the old inode instead of the preallocated one.
*/
spin_unlock(&inode_hash_lock);
if (IS_ERR(old))
return NULL;
wait_on_inode(old);
if (unlikely(inode_unhashed(old))) {
iput(old);
goto again;
}
return old;
}
if (set && unlikely(set(inode, data))) {
inode = NULL;
goto unlock;
}
/*
* Return the locked inode with I_NEW set, the
* caller is responsible for filling in the contents
*/
spin_lock(&inode->i_lock);
inode->i_state |= I_NEW;
hlist_add_head_rcu(&inode->i_hash, head);
spin_unlock(&inode->i_lock);
if (!creating)
inode_sb_list_add(inode);
unlock:
spin_unlock(&inode_hash_lock);
return inode;
}
EXPORT_SYMBOL(inode_insert5);
/**
* iget5_locked - obtain an inode from a mounted file system
* @sb: super block of file system
* @hashval: hash value (usually inode number) to get
* @test: callback used for comparisons between inodes
* @set: callback used to initialize a new struct inode
* @data: opaque data pointer to pass to @test and @set
*
* Search for the inode specified by @hashval and @data in the inode cache,
* and if present it is return it with an increased reference count. This is
* a generalized version of iget_locked() for file systems where the inode
* number is not sufficient for unique identification of an inode.
*
* If the inode is not in cache, allocate a new inode and return it locked,
* hashed, and with the I_NEW flag set. The file system gets to fill it in
* before unlocking it via unlock_new_inode().
*
* Note both @test and @set are called with the inode_hash_lock held, so can't
* sleep.
*/
struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
int (*test)(struct inode *, void *),
int (*set)(struct inode *, void *), void *data)
{
struct inode *inode = ilookup5(sb, hashval, test, data);
if (!inode) {
struct inode *new = alloc_inode(sb);
if (new) {
new->i_state = 0;
inode = inode_insert5(new, hashval, test, set, data);
if (unlikely(inode != new))
destroy_inode(new);
}
}
return inode;
}
EXPORT_SYMBOL(iget5_locked);
/**
* iget_locked - obtain an inode from a mounted file system
* @sb: super block of file system
* @ino: inode number to get
*
* Search for the inode specified by @ino in the inode cache and if present
* return it with an increased reference count. This is for file systems
* where the inode number is sufficient for unique identification of an inode.
*
* If the inode is not in cache, allocate a new inode and return it locked,
* hashed, and with the I_NEW flag set. The file system gets to fill it in
* before unlocking it via unlock_new_inode().
*/
struct inode *iget_locked(struct super_block *sb, unsigned long ino)
{
struct hlist_head *head = inode_hashtable + hash(sb, ino);
struct inode *inode;
again:
spin_lock(&inode_hash_lock);
inode = find_inode_fast(sb, head, ino);
spin_unlock(&inode_hash_lock);
if (inode) {
if (IS_ERR(inode))
return NULL;
wait_on_inode(inode);
if (unlikely(inode_unhashed(inode))) {
iput(inode);
goto again;
}
return inode;
}
inode = alloc_inode(sb);
if (inode) {
struct inode *old;
spin_lock(&inode_hash_lock);
/* We released the lock, so.. */
old = find_inode_fast(sb, head, ino);
if (!old) {
inode->i_ino = ino;
spin_lock(&inode->i_lock);
inode->i_state = I_NEW;
hlist_add_head_rcu(&inode->i_hash, head);
spin_unlock(&inode->i_lock);
inode_sb_list_add(inode);
spin_unlock(&inode_hash_lock);
/* Return the locked inode with I_NEW set, the
* caller is responsible for filling in the contents
*/
return inode;
}
/*
* Uhhuh, somebody else created the same inode under
* us. Use the old inode instead of the one we just
* allocated.
*/
spin_unlock(&inode_hash_lock);
destroy_inode(inode);
if (IS_ERR(old))
return NULL;
inode = old;
wait_on_inode(inode);
if (unlikely(inode_unhashed(inode))) {
iput(inode);
goto again;
}
}
return inode;
}
EXPORT_SYMBOL(iget_locked);
/*
* search the inode cache for a matching inode number.
* If we find one, then the inode number we are trying to
* allocate is not unique and so we should not use it.
*
* Returns 1 if the inode number is unique, 0 if it is not.
*/
static int test_inode_iunique(struct super_block *sb, unsigned long ino)
{
struct hlist_head *b = inode_hashtable + hash(sb, ino);
struct inode *inode;
hlist_for_each_entry_rcu(inode, b, i_hash) {
if (inode->i_ino == ino && inode->i_sb == sb)
return 0;
}
return 1;
}
/**
* iunique - get a unique inode number
* @sb: superblock
* @max_reserved: highest reserved inode number
*
* Obtain an inode number that is unique on the system for a given
* superblock. This is used by file systems that have no natural
* permanent inode numbering system. An inode number is returned that
* is higher than the reserved limit but unique.
*
* BUGS:
* With a large number of inodes live on the file system this function
* currently becomes quite slow.
*/
ino_t iunique(struct super_block *sb, ino_t max_reserved)
{
/*
* On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
* error if st_ino won't fit in target struct field. Use 32bit counter
* here to attempt to avoid that.
*/
static DEFINE_SPINLOCK(iunique_lock);
static unsigned int counter;
ino_t res;
rcu_read_lock();
spin_lock(&iunique_lock);
do {
if (counter <= max_reserved)
counter = max_reserved + 1;
res = counter++;
} while (!test_inode_iunique(sb, res));
spin_unlock(&iunique_lock);
rcu_read_unlock();
return res;
}
EXPORT_SYMBOL(iunique);
struct inode *igrab(struct inode *inode)
{
spin_lock(&inode->i_lock);
if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
__iget(inode);
spin_unlock(&inode->i_lock);
} else {
spin_unlock(&inode->i_lock);
/*
* Handle the case where s_op->clear_inode is not been
* called yet, and somebody is calling igrab
* while the inode is getting freed.
*/
inode = NULL;
}
return inode;
}
EXPORT_SYMBOL(igrab);
/**
* ilookup5_nowait - search for an inode in the inode cache
* @sb: super block of file system to search
* @hashval: hash value (usually inode number) to search for
* @test: callback used for comparisons between inodes
* @data: opaque data pointer to pass to @test
*
* Search for the inode specified by @hashval and @data in the inode cache.
* If the inode is in the cache, the inode is returned with an incremented
* reference count.
*
* Note: I_NEW is not waited upon so you have to be very careful what you do
* with the returned inode. You probably should be using ilookup5() instead.
*
* Note2: @test is called with the inode_hash_lock held, so can't sleep.
*/
struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
int (*test)(struct inode *, void *), void *data)
{
struct hlist_head *head = inode_hashtable + hash(sb, hashval);
struct inode *inode;
spin_lock(&inode_hash_lock);
inode = find_inode(sb, head, test, data);
spin_unlock(&inode_hash_lock);
return IS_ERR(inode) ? NULL : inode;
}
EXPORT_SYMBOL(ilookup5_nowait);
/**
* ilookup5 - search for an inode in the inode cache
* @sb: super block of file system to search
* @hashval: hash value (usually inode number) to search for
* @test: callback used for comparisons between inodes
* @data: opaque data pointer to pass to @test
*
* Search for the inode specified by @hashval and @data in the inode cache,
* and if the inode is in the cache, return the inode with an incremented
* reference count. Waits on I_NEW before returning the inode.
* returned with an incremented reference count.
*
* This is a generalized version of ilookup() for file systems where the
* inode number is not sufficient for unique identification of an inode.
*
* Note: @test is called with the inode_hash_lock held, so can't sleep.
*/
struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
int (*test)(struct inode *, void *), void *data)
{
struct inode *inode;
again:
inode = ilookup5_nowait(sb, hashval, test, data);
if (inode) {
wait_on_inode(inode);
if (unlikely(inode_unhashed(inode))) {
iput(inode);
goto again;
}
}
return inode;
}
EXPORT_SYMBOL(ilookup5);
/**
* ilookup - search for an inode in the inode cache
* @sb: super block of file system to search
* @ino: inode number to search for
*
* Search for the inode @ino in the inode cache, and if the inode is in the
* cache, the inode is returned with an incremented reference count.
*/
struct inode *ilookup(struct super_block *sb, unsigned long ino)
{
struct hlist_head *head = inode_hashtable + hash(sb, ino);
struct inode *inode;
again:
spin_lock(&inode_hash_lock);
inode = find_inode_fast(sb, head, ino);
spin_unlock(&inode_hash_lock);
if (inode) {
if (IS_ERR(inode))
return NULL;
wait_on_inode(inode);
if (unlikely(inode_unhashed(inode))) {
iput(inode);
goto again;
}
}
return inode;
}
EXPORT_SYMBOL(ilookup);
/**
* find_inode_nowait - find an inode in the inode cache
* @sb: super block of file system to search
* @hashval: hash value (usually inode number) to search for
* @match: callback used for comparisons between inodes
* @data: opaque data pointer to pass to @match
*
* Search for the inode specified by @hashval and @data in the inode
* cache, where the helper function @match will return 0 if the inode
* does not match, 1 if the inode does match, and -1 if the search
* should be stopped. The @match function must be responsible for
* taking the i_lock spin_lock and checking i_state for an inode being
* freed or being initialized, and incrementing the reference count
* before returning 1. It also must not sleep, since it is called with
* the inode_hash_lock spinlock held.
*
* This is a even more generalized version of ilookup5() when the
* function must never block --- find_inode() can block in
* __wait_on_freeing_inode() --- or when the caller can not increment
* the reference count because the resulting iput() might cause an
* inode eviction. The tradeoff is that the @match funtion must be
* very carefully implemented.
*/
struct inode *find_inode_nowait(struct super_block *sb,
unsigned long hashval,
int (*match)(struct inode *, unsigned long,
void *),
void *data)
{
struct hlist_head *head = inode_hashtable + hash(sb, hashval);
struct inode *inode, *ret_inode = NULL;
int mval;
spin_lock(&inode_hash_lock);
hlist_for_each_entry(inode, head, i_hash) {
if (inode->i_sb != sb)
continue;
mval = match(inode, hashval, data);
if (mval == 0)
continue;
if (mval == 1)
ret_inode = inode;
goto out;
}
out:
spin_unlock(&inode_hash_lock);
return ret_inode;
}
EXPORT_SYMBOL(find_inode_nowait);
/**
* find_inode_rcu - find an inode in the inode cache
* @sb: Super block of file system to search
* @hashval: Key to hash
* @test: Function to test match on an inode
* @data: Data for test function
*
* Search for the inode specified by @hashval and @data in the inode cache,
* where the helper function @test will return 0 if the inode does not match
* and 1 if it does. The @test function must be responsible for taking the
* i_lock spin_lock and checking i_state for an inode being freed or being
* initialized.
*
* If successful, this will return the inode for which the @test function
* returned 1 and NULL otherwise.
*
* The @test function is not permitted to take a ref on any inode presented.
* It is also not permitted to sleep.
*
* The caller must hold the RCU read lock.
*/
struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
int (*test)(struct inode *, void *), void *data)
{
struct hlist_head *head = inode_hashtable + hash(sb, hashval);
struct inode *inode;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
"suspicious find_inode_rcu() usage");
hlist_for_each_entry_rcu(inode, head, i_hash) {
if (inode->i_sb == sb &&
!(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
test(inode, data))
return inode;
}
return NULL;
}
EXPORT_SYMBOL(find_inode_rcu);
/**
* find_inode_by_ino_rcu - Find an inode in the inode cache
* @sb: Super block of file system to search
* @ino: The inode number to match
*
* Search for the inode specified by @hashval and @data in the inode cache,
* where the helper function @test will return 0 if the inode does not match
* and 1 if it does. The @test function must be responsible for taking the
* i_lock spin_lock and checking i_state for an inode being freed or being
* initialized.
*
* If successful, this will return the inode for which the @test function
* returned 1 and NULL otherwise.
*
* The @test function is not permitted to take a ref on any inode presented.
* It is also not permitted to sleep.
*
* The caller must hold the RCU read lock.
*/
struct inode *find_inode_by_ino_rcu(struct super_block *sb,
unsigned long ino)
{
struct hlist_head *head = inode_hashtable + hash(sb, ino);
struct inode *inode;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
"suspicious find_inode_by_ino_rcu() usage");
hlist_for_each_entry_rcu(inode, head, i_hash) {
if (inode->i_ino == ino &&
inode->i_sb == sb &&
!(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
return inode;
}
return NULL;
}
EXPORT_SYMBOL(find_inode_by_ino_rcu);
int insert_inode_locked(struct inode *inode)
{
struct super_block *sb = inode->i_sb;
ino_t ino = inode->i_ino;
struct hlist_head *head = inode_hashtable + hash(sb, ino);
while (1) {
struct inode *old = NULL;
spin_lock(&inode_hash_lock);
hlist_for_each_entry(old, head, i_hash) {
if (old->i_ino != ino)
continue;
if (old->i_sb != sb)
continue;
spin_lock(&old->i_lock);
if (old->i_state & (I_FREEING|I_WILL_FREE)) {
spin_unlock(&old->i_lock);
continue;
}
break;
}
if (likely(!old)) {
spin_lock(&inode->i_lock);
inode->i_state |= I_NEW | I_CREATING;
hlist_add_head_rcu(&inode->i_hash, head);
spin_unlock(&inode->i_lock);
spin_unlock(&inode_hash_lock);
return 0;
}
if (unlikely(old->i_state & I_CREATING)) {
spin_unlock(&old->i_lock);
spin_unlock(&inode_hash_lock);
return -EBUSY;
}
__iget(old);
spin_unlock(&old->i_lock);
spin_unlock(&inode_hash_lock);
wait_on_inode(old);
if (unlikely(!inode_unhashed(old))) {
iput(old);
return -EBUSY;
}
iput(old);
}
}
EXPORT_SYMBOL(insert_inode_locked);
int insert_inode_locked4(struct inode *inode, unsigned long hashval,
int (*test)(struct inode *, void *), void *data)
{
struct inode *old;
inode->i_state |= I_CREATING;
old = inode_insert5(inode, hashval, test, NULL, data);
if (old != inode) {
iput(old);
return -EBUSY;
}
return 0;
}
EXPORT_SYMBOL(insert_inode_locked4);
int generic_delete_inode(struct inode *inode)
{
return 1;
}
EXPORT_SYMBOL(generic_delete_inode);
/*
* Called when we're dropping the last reference
* to an inode.
*
* Call the FS "drop_inode()" function, defaulting to
* the legacy UNIX filesystem behaviour. If it tells
* us to evict inode, do so. Otherwise, retain inode
* in cache if fs is alive, sync and evict if fs is
* shutting down.
*/
static void iput_final(struct inode *inode)
{
struct super_block *sb = inode->i_sb;
const struct super_operations *op = inode->i_sb->s_op;
unsigned long state;
int drop;
WARN_ON(inode->i_state & I_NEW);
if (op->drop_inode)
drop = op->drop_inode(inode);
else
drop = generic_drop_inode(inode);
if (!drop &&
!(inode->i_state & I_DONTCACHE) &&
(sb->s_flags & SB_ACTIVE)) {
inode_add_lru(inode);
spin_unlock(&inode->i_lock);
return;
}
state = inode->i_state;
if (!drop) {
WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
spin_unlock(&inode->i_lock);
write_inode_now(inode, 1);
spin_lock(&inode->i_lock);
state = inode->i_state;
WARN_ON(state & I_NEW);
state &= ~I_WILL_FREE;
}
WRITE_ONCE(inode->i_state, state | I_FREEING);
if (!list_empty(&inode->i_lru))
inode_lru_list_del(inode);
spin_unlock(&inode->i_lock);
evict(inode);
}
/**
* iput - put an inode
* @inode: inode to put
*
* Puts an inode, dropping its usage count. If the inode use count hits
* zero, the inode is then freed and may also be destroyed.
*
* Consequently, iput() can sleep.
*/
void iput(struct inode *inode)
{
if (!inode)
return;
BUG_ON(inode->i_state & I_CLEAR);
retry:
if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
atomic_inc(&inode->i_count);
spin_unlock(&inode->i_lock);
trace_writeback_lazytime_iput(inode);
mark_inode_dirty_sync(inode);
goto retry;
}
iput_final(inode);
}
}
EXPORT_SYMBOL(iput);
#ifdef CONFIG_BLOCK
/**
* bmap - find a block number in a file
* @inode: inode owning the block number being requested
* @block: pointer containing the block to find
*
* Replaces the value in ``*block`` with the block number on the device holding
* corresponding to the requested block number in the file.
* That is, asked for block 4 of inode 1 the function will replace the
* 4 in ``*block``, with disk block relative to the disk start that holds that
* block of the file.
*
* Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
* hole, returns 0 and ``*block`` is also set to 0.
*/
int bmap(struct inode *inode, sector_t *block)
{
if (!inode->i_mapping->a_ops->bmap)
return -EINVAL;
*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
return 0;
}
EXPORT_SYMBOL(bmap);
#endif
/*
* With relative atime, only update atime if the previous atime is
* earlier than either the ctime or mtime or if at least a day has
* passed since the last atime update.
*/
static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
struct timespec64 now)
{
if (!(mnt->mnt_flags & MNT_RELATIME))
return 1;
/*
* Is mtime younger than atime? If yes, update atime:
*/
if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
return 1;
/*
* Is ctime younger than atime? If yes, update atime:
*/
if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
return 1;
/*
* Is the previous atime value older than a day? If yes,
* update atime:
*/
if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
return 1;
/*
* Good, we can skip the atime update:
*/
return 0;
}
int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
{
int dirty_flags = 0;
if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
if (flags & S_ATIME)
inode->i_atime = *time;
if (flags & S_CTIME)
inode->i_ctime = *time;
if (flags & S_MTIME)
inode->i_mtime = *time;
if (inode->i_sb->s_flags & SB_LAZYTIME)
dirty_flags |= I_DIRTY_TIME;
else
dirty_flags |= I_DIRTY_SYNC;
}
if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
dirty_flags |= I_DIRTY_SYNC;
__mark_inode_dirty(inode, dirty_flags);
return 0;
}
EXPORT_SYMBOL(generic_update_time);
/*
* This does the actual work of updating an inodes time or version. Must have
* had called mnt_want_write() before calling this.
*/
static int update_time(struct inode *inode, struct timespec64 *time, int flags)
{
if (inode->i_op->update_time)
return inode->i_op->update_time(inode, time, flags);
return generic_update_time(inode, time, flags);
}
/**
* atime_needs_update - update the access time
* @path: the &struct path to update
* @inode: inode to update
*
* Update the accessed time on an inode and mark it for writeback.
* This function automatically handles read only file systems and media,
* as well as the "noatime" flag and inode specific "noatime" markers.
*/
bool atime_needs_update(const struct path *path, struct inode *inode)
{
struct vfsmount *mnt = path->mnt;
struct timespec64 now;
if (inode->i_flags & S_NOATIME)
return false;
/* Atime updates will likely cause i_uid and i_gid to be written
* back improprely if their true value is unknown to the vfs.
*/
if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
return false;
if (IS_NOATIME(inode))
return false;
if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
return false;
if (mnt->mnt_flags & MNT_NOATIME)
return false;
if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
return false;
now = current_time(inode);
if (!relatime_need_update(mnt, inode, now))
return false;
if (timespec64_equal(&inode->i_atime, &now))
return false;
return true;
}
void touch_atime(const struct path *path)
{
struct vfsmount *mnt = path->mnt;
struct inode *inode = d_inode(path->dentry);
struct timespec64 now;
if (!atime_needs_update(path, inode))
return;
if (!sb_start_write_trylock(inode->i_sb))
return;
if (__mnt_want_write(mnt) != 0)
goto skip_update;
/*
* File systems can error out when updating inodes if they need to
* allocate new space to modify an inode (such is the case for
* Btrfs), but since we touch atime while walking down the path we
* really don't care if we failed to update the atime of the file,
* so just ignore the return value.
* We may also fail on filesystems that have the ability to make parts
* of the fs read only, e.g. subvolumes in Btrfs.
*/
now = current_time(inode);
update_time(inode, &now, S_ATIME);
__mnt_drop_write(mnt);
skip_update:
sb_end_write(inode->i_sb);
}
EXPORT_SYMBOL(touch_atime);
/*
* The logic we want is
*
* if suid or (sgid and xgrp)
* remove privs
*/
int should_remove_suid(struct dentry *dentry)
{
umode_t mode = d_inode(dentry)->i_mode;
int kill = 0;
/* suid always must be killed */
if (unlikely(mode & S_ISUID))
kill = ATTR_KILL_SUID;
/*
* sgid without any exec bits is just a mandatory locking mark; leave
* it alone. If some exec bits are set, it's a real sgid; kill it.
*/
if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
kill |= ATTR_KILL_SGID;
if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
return kill;
return 0;
}
EXPORT_SYMBOL(should_remove_suid);
/*
* Return mask of changes for notify_change() that need to be done as a
* response to write or truncate. Return 0 if nothing has to be changed.
* Negative value on error (change should be denied).
*/
int dentry_needs_remove_privs(struct dentry *dentry)
{
struct inode *inode = d_inode(dentry);
int mask = 0;
int ret;
if (IS_NOSEC(inode))
return 0;
mask = should_remove_suid(dentry);
ret = security_inode_need_killpriv(dentry);
if (ret < 0)
return ret;
if (ret)
mask |= ATTR_KILL_PRIV;
return mask;
}
static int __remove_privs(struct user_namespace *mnt_userns,
struct dentry *dentry, int kill)
{
struct iattr newattrs;
newattrs.ia_valid = ATTR_FORCE | kill;
/*
* Note we call this on write, so notify_change will not
* encounter any conflicting delegations:
*/
return notify_change(mnt_userns, dentry, &newattrs, NULL);
}
/*
* Remove special file priviledges (suid, capabilities) when file is written
* to or truncated.
*/
int file_remove_privs(struct file *file)
{
struct dentry *dentry = file_dentry(file);
struct inode *inode = file_inode(file);
int kill;
int error = 0;
/*
* Fast path for nothing security related.
* As well for non-regular files, e.g. blkdev inodes.
* For example, blkdev_write_iter() might get here
* trying to remove privs which it is not allowed to.
*/
if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
return 0;
kill = dentry_needs_remove_privs(dentry);
if (kill < 0)
return kill;
if (kill)
error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
if (!error)
inode_has_no_xattr(inode);
return error;
}
EXPORT_SYMBOL(file_remove_privs);
/**
* file_update_time - update mtime and ctime time
* @file: file accessed
*
* Update the mtime and ctime members of an inode and mark the inode
* for writeback. Note that this function is meant exclusively for
* usage in the file write path of filesystems, and filesystems may
* choose to explicitly ignore update via this function with the
* S_NOCMTIME inode flag, e.g. for network filesystem where these
* timestamps are handled by the server. This can return an error for
* file systems who need to allocate space in order to update an inode.
*/
int file_update_time(struct file *file)
{
struct inode *inode = file_inode(file);
struct timespec64 now;
int sync_it = 0;
int ret;
/* First try to exhaust all avenues to not sync */
if (IS_NOCMTIME(inode))
return 0;
now = current_time(inode);
if (!timespec64_equal(&inode->i_mtime, &now))
sync_it = S_MTIME;
if (!timespec64_equal(&inode->i_ctime, &now))
sync_it |= S_CTIME;
if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
sync_it |= S_VERSION;
if (!sync_it)
return 0;
/* Finally allowed to write? Takes lock. */
if (__mnt_want_write_file(file))
return 0;
ret = update_time(inode, &now, sync_it);
__mnt_drop_write_file(file);
return ret;
}
EXPORT_SYMBOL(file_update_time);
/* Caller must hold the file's inode lock */
int file_modified(struct file *file)
{
int err;
/*
* Clear the security bits if the process is not being run by root.
* This keeps people from modifying setuid and setgid binaries.
*/
err = file_remove_privs(file);
if (err)
return err;
if (unlikely(file->f_mode & FMODE_NOCMTIME))
return 0;
return file_update_time(file);
}
EXPORT_SYMBOL(file_modified);
int inode_needs_sync(struct inode *inode)
{
if (IS_SYNC(inode))
return 1;
if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
return 1;
return 0;
}
EXPORT_SYMBOL(inode_needs_sync);
/*
* If we try to find an inode in the inode hash while it is being
* deleted, we have to wait until the filesystem completes its
* deletion before reporting that it isn't found. This function waits
* until the deletion _might_ have completed. Callers are responsible
* to recheck inode state.
*
* It doesn't matter if I_NEW is not set initially, a call to
* wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
* will DTRT.
*/
static void __wait_on_freeing_inode(struct inode *inode)
{
wait_queue_head_t *wq;
DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
wq = bit_waitqueue(&inode->i_state, __I_NEW);
prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
spin_unlock(&inode->i_lock);
spin_unlock(&inode_hash_lock);
schedule();
finish_wait(wq, &wait.wq_entry);
spin_lock(&inode_hash_lock);
}
static __initdata unsigned long ihash_entries;
static int __init set_ihash_entries(char *str)
{
if (!str)
return 0;
ihash_entries = simple_strtoul(str, &str, 0);
return 1;
}
__setup("ihash_entries=", set_ihash_entries);
/*
* Initialize the waitqueues and inode hash table.
*/
void __init inode_init_early(void)
{
/* If hashes are distributed across NUMA nodes, defer
* hash allocation until vmalloc space is available.
*/
if (hashdist)
return;
inode_hashtable =
alloc_large_system_hash("Inode-cache",
sizeof(struct hlist_head),
ihash_entries,
14,
HASH_EARLY | HASH_ZERO,
&i_hash_shift,
&i_hash_mask,
0,
0);
}
void __init inode_init(void)
{
/* inode slab cache */
inode_cachep = kmem_cache_create("inode_cache",
sizeof(struct inode),
0,
(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
SLAB_MEM_SPREAD|SLAB_ACCOUNT),
init_once);
/* Hash may have been set up in inode_init_early */
if (!hashdist)
return;
inode_hashtable =
alloc_large_system_hash("Inode-cache",
sizeof(struct hlist_head),
ihash_entries,
14,
HASH_ZERO,
&i_hash_shift,
&i_hash_mask,
0,
0);
}
void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
{
inode->i_mode = mode;
if (S_ISCHR(mode)) {
inode->i_fop = &def_chr_fops;
inode->i_rdev = rdev;
} else if (S_ISBLK(mode)) {
inode->i_fop = &def_blk_fops;
inode->i_rdev = rdev;
} else if (S_ISFIFO(mode))
inode->i_fop = &pipefifo_fops;
else if (S_ISSOCK(mode))
; /* leave it no_open_fops */
else
printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
" inode %s:%lu\n", mode, inode->i_sb->s_id,
inode->i_ino);
}
EXPORT_SYMBOL(init_special_inode);
/**
* inode_init_owner - Init uid,gid,mode for new inode according to posix standards
* @mnt_userns: User namespace of the mount the inode was created from
* @inode: New inode
* @dir: Directory inode
* @mode: mode of the new inode
*
* If the inode has been created through an idmapped mount the user namespace of
* the vfsmount must be passed through @mnt_userns. This function will then take
* care to map the inode according to @mnt_userns before checking permissions
* and initializing i_uid and i_gid. On non-idmapped mounts or if permission
* checking is to be performed on the raw inode simply passs init_user_ns.
*/
void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
const struct inode *dir, umode_t mode)
{
inode_fsuid_set(inode, mnt_userns);
if (dir && dir->i_mode & S_ISGID) {
inode->i_gid = dir->i_gid;
/* Directories are special, and always inherit S_ISGID */
if (S_ISDIR(mode))
mode |= S_ISGID;
else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
!in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
!capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
mode &= ~S_ISGID;
} else
inode_fsgid_set(inode, mnt_userns);
inode->i_mode = mode;
}
EXPORT_SYMBOL(inode_init_owner);
/**
* inode_owner_or_capable - check current task permissions to inode
* @mnt_userns: user namespace of the mount the inode was found from
* @inode: inode being checked
*
* Return true if current either has CAP_FOWNER in a namespace with the
* inode owner uid mapped, or owns the file.
*
* If the inode has been found through an idmapped mount the user namespace of
* the vfsmount must be passed through @mnt_userns. This function will then take
* care to map the inode according to @mnt_userns before checking permissions.
* On non-idmapped mounts or if permission checking is to be performed on the
* raw inode simply passs init_user_ns.
*/
bool inode_owner_or_capable(struct user_namespace *mnt_userns,
const struct inode *inode)
{
kuid_t i_uid;
struct user_namespace *ns;
i_uid = i_uid_into_mnt(mnt_userns, inode);
if (uid_eq(current_fsuid(), i_uid))
return true;
ns = current_user_ns();
if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
return true;
return false;
}
EXPORT_SYMBOL(inode_owner_or_capable);
/*
* Direct i/o helper functions
*/
static void __inode_dio_wait(struct inode *inode)
{
wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
do {
prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
if (atomic_read(&inode->i_dio_count))
schedule();
} while (atomic_read(&inode->i_dio_count));
finish_wait(wq, &q.wq_entry);
}
/**
* inode_dio_wait - wait for outstanding DIO requests to finish
* @inode: inode to wait for
*
* Waits for all pending direct I/O requests to finish so that we can
* proceed with a truncate or equivalent operation.
*
* Must be called under a lock that serializes taking new references
* to i_dio_count, usually by inode->i_mutex.
*/
void inode_dio_wait(struct inode *inode)
{
if (atomic_read(&inode->i_dio_count))
__inode_dio_wait(inode);
}
EXPORT_SYMBOL(inode_dio_wait);
/*
* inode_set_flags - atomically set some inode flags
*
* Note: the caller should be holding i_mutex, or else be sure that
* they have exclusive access to the inode structure (i.e., while the
* inode is being instantiated). The reason for the cmpxchg() loop
* --- which wouldn't be necessary if all code paths which modify
* i_flags actually followed this rule, is that there is at least one
* code path which doesn't today so we use cmpxchg() out of an abundance
* of caution.
*
* In the long run, i_mutex is overkill, and we should probably look
* at using the i_lock spinlock to protect i_flags, and then make sure
* it is so documented in include/linux/fs.h and that all code follows
* the locking convention!!
*/
void inode_set_flags(struct inode *inode, unsigned int flags,
unsigned int mask)
{
WARN_ON_ONCE(flags & ~mask);
set_mask_bits(&inode->i_flags, mask, flags);
}
EXPORT_SYMBOL(inode_set_flags);
void inode_nohighmem(struct inode *inode)
{
mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
}
EXPORT_SYMBOL(inode_nohighmem);
/**
* timestamp_truncate - Truncate timespec to a granularity
* @t: Timespec
* @inode: inode being updated
*
* Truncate a timespec to the granularity supported by the fs
* containing the inode. Always rounds down. gran must
* not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
*/
struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
{
struct super_block *sb = inode->i_sb;
unsigned int gran = sb->s_time_gran;
t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
t.tv_nsec = 0;
/* Avoid division in the common cases 1 ns and 1 s. */
if (gran == 1)
; /* nothing */
else if (gran == NSEC_PER_SEC)
t.tv_nsec = 0;
else if (gran > 1 && gran < NSEC_PER_SEC)
t.tv_nsec -= t.tv_nsec % gran;
else
WARN(1, "invalid file time granularity: %u", gran);
return t;
}
EXPORT_SYMBOL(timestamp_truncate);
/**
* current_time - Return FS time
* @inode: inode.
*
* Return the current time truncated to the time granularity supported by
* the fs.
*
* Note that inode and inode->sb cannot be NULL.
* Otherwise, the function warns and returns time without truncation.
*/
struct timespec64 current_time(struct inode *inode)
{
struct timespec64 now;
ktime_get_coarse_real_ts64(&now);
if (unlikely(!inode->i_sb)) {
WARN(1, "current_time() called with uninitialized super_block in the inode");
return now;
}
return timestamp_truncate(now, inode);
}
EXPORT_SYMBOL(current_time);