linux/drivers/usb
Linus Torvalds 92a578b064 ACPI and power management updates for 3.19-rc1
This time we have some more new material than we used to have during
 the last couple of development cycles.
 
 The most important part of it to me is the introduction of a unified
 interface for accessing device properties provided by platform
 firmware.  It works with Device Trees and ACPI in a uniform way and
 drivers using it need not worry about where the properties come
 from as long as the platform firmware (either DT or ACPI) makes
 them available.  It covers both devices and "bare" device node
 objects without struct device representation as that turns out to
 be necessary in some cases.  This has been in the works for quite
 a few months (and development cycles) and has been approved by
 all of the relevant maintainers.
 
 On top of that, some drivers are switched over to the new interface
 (at25, leds-gpio, gpio_keys_polled) and some additional changes are
 made to the core GPIO subsystem to allow device drivers to manipulate
 GPIOs in the "canonical" way on platforms that provide GPIO information
 in their ACPI tables, but don't assign names to GPIO lines (in which
 case the driver needs to do that on the basis of what it knows about
 the device in question).  That also has been approved by the GPIO
 core maintainers and the rfkill driver is now going to use it.
 
 Second is support for hardware P-states in the intel_pstate driver.
 It uses CPUID to detect whether or not the feature is supported by
 the processor in which case it will be enabled by default.  However,
 it can be disabled entirely from the kernel command line if necessary.
 
 Next is support for a platform firmware interface based on ACPI
 operation regions used by the PMIC (Power Management Integrated
 Circuit) chips on the Intel Baytrail-T and Baytrail-T-CR platforms.
 That interface is used for manipulating power resources and for
 thermal management: sensor temperature reporting, trip point setting
 and so on.
 
 Also the ACPI core is now going to support the _DEP configuration
 information in a limited way.  Basically, _DEP it supposed to reflect
 off-the-hierarchy dependencies between devices which may be very
 indirect, like when AML for one device accesses locations in an
 operation region handled by another device's driver (usually, the
 device depended on this way is a serial bus or GPIO controller).
 The support added this time is sufficient to make the ACPI battery
 driver work on Asus T100A, but it is general enough to be able to
 cover some other use cases in the future.
 
 Finally, we have a new cpufreq driver for the Loongson1B processor.
 
 In addition to the above, there are fixes and cleanups all over the
 place as usual and a traditional ACPICA update to a recent upstream
 release.
 
 As far as the fixes go, the ACPI LPSS (Low-power Subsystem) driver
 for Intel platforms should be able to handle power management of
 the DMA engine correctly, the cpufreq-dt driver should interact
 with the thermal subsystem in a better way and the ACPI backlight
 driver should handle some more corner cases, among other things.
 
 On top of the ACPICA update there are fixes for race conditions
 in the ACPICA's interrupt handling code which might lead to some
 random and strange looking failures on some systems.
 
 In the cleanups department the most visible part is the series
 of commits targeted at getting rid of the CONFIG_PM_RUNTIME
 configuration option.  That was triggered by a discussion
 regarding the generic power domains code during which we realized
 that trying to support certain combinations of PM config options
 was painful and not really worth it, because nobody would use them
 in production anyway.  For this reason, we decided to make
 CONFIG_PM_SLEEP select CONFIG_PM_RUNTIME and that lead to the
 conclusion that the latter became redundant and CONFIG_PM could
 be used instead of it.  The material here makes that replacement
 in a major part of the tree, but there will be at least one more
 batch of that in the second part of the merge window.
 
 Specifics:
 
  - Support for retrieving device properties information from ACPI
    _DSD device configuration objects and a unified device properties
    interface for device drivers (and subsystems) on top of that.
    As stated above, this works with Device Trees and ACPI and allows
    device drivers to be written in a platform firmware (DT or ACPI)
    agnostic way.  The at25, leds-gpio and gpio_keys_polled drivers
    are now going to use this new interface and the GPIO subsystem
    is additionally modified to allow device drivers to assign names
    to GPIO resources returned by ACPI _CRS objects (in case _DSD is
    not present or does not provide the expected data).  The changes
    in this set are mostly from Mika Westerberg, Rafael J Wysocki,
    Aaron Lu, and Darren Hart with some fixes from others (Fabio Estevam,
    Geert Uytterhoeven).
 
  - Support for Hardware Managed Performance States (HWP) as described
    in Volume 3, section 14.4, of the Intel SDM in the intel_pstate
    driver.  CPUID is used to detect whether or not the feature is
    supported by the processor.  If supported, it will be enabled
    automatically unless the intel_pstate=no_hwp switch is present in
    the kernel command line.  From Dirk Brandewie.
 
  - New Intel Broadwell-H ID for intel_pstate (Dirk Brandewie).
 
  - Support for firmware interface based on ACPI operation regions
    used by the PMIC chips on the Intel Baytrail-T and Baytrail-T-CR
    platforms for power resource control and thermal management
    (Aaron Lu).
 
  - Limited support for retrieving off-the-hierarchy dependencies
    between devices from ACPI _DEP device configuration objects
    and deferred probing support for the ACPI battery driver based
    on the _DEP information to make that driver work on Asus T100A
    (Lan Tianyu).
 
  - New cpufreq driver for the Loongson1B processor (Kelvin Cheung).
 
  - ACPICA update to upstream revision 20141107 which only affects
    tools (Bob Moore).
 
  - Fixes for race conditions in the ACPICA's interrupt handling
    code and in the ACPI code related to system suspend and resume
    (Lv Zheng and Rafael J Wysocki).
 
  - ACPI core fix for an RCU-related issue in the ioremap() regions
    management code that slowed down significantly after CPUs had
    been allowed to enter idle states even if they'd had RCU callbakcs
    queued and triggered some problems in certain proprietary graphics
    driver (and elsewhere).  The fix replaces synchronize_rcu() in
    that code with synchronize_rcu_expedited() which makes the issue
    go away.  From Konstantin Khlebnikov.
 
  - ACPI LPSS (Low-Power Subsystem) driver fix to handle power
    management of the DMA engine included into the LPSS correctly.
    The problem is that the DMA engine doesn't have ACPI PM support
    of its own and it simply is turned off when the last LPSS device
    having ACPI PM support goes into D3cold.  To work around that,
    the PM domain used by the ACPI LPSS driver is redesigned so at
    least one device with ACPI PM support will be on as long as the
    DMA engine is in use.  From Andy Shevchenko.
 
  - ACPI backlight driver fix to avoid using it on "Win8-compatible"
    systems where it doesn't work and where it was used by default by
    mistake (Aaron Lu).
 
  - Assorted minor ACPI core fixes and cleanups from Tomasz Nowicki,
    Sudeep Holla, Huang Rui, Hanjun Guo, Fabian Frederick, and
    Ashwin Chaugule (mostly related to the upcoming ARM64 support).
 
  - Intel RAPL (Running Average Power Limit) power capping driver
    fixes and improvements including new processor IDs (Jacob Pan).
 
  - Generic power domains modification to power up domains after
    attaching devices to them to meet the expectations of device
    drivers and bus types assuming devices to be accessible at
    probe time (Ulf Hansson).
 
  - Preliminary support for controlling device clocks from the
    generic power domains core code and modifications of the
    ARM/shmobile platform to use that feature (Ulf Hansson).
 
  - Assorted minor fixes and cleanups of the generic power
    domains core code (Ulf Hansson, Geert Uytterhoeven).
 
  - Assorted minor fixes and cleanups of the device clocks control
    code in the PM core (Geert Uytterhoeven, Grygorii Strashko).
 
  - Consolidation of device power management Kconfig options by making
    CONFIG_PM_SLEEP select CONFIG_PM_RUNTIME and removing the latter
    which is now redundant (Rafael J Wysocki and Kevin Hilman).  That
    is the first batch of the changes needed for this purpose.
 
  - Core device runtime power management support code cleanup related
    to the execution of callbacks (Andrzej Hajda).
 
  - cpuidle ARM support improvements (Lorenzo Pieralisi).
 
  - cpuidle cleanup related to the CPUIDLE_FLAG_TIME_VALID flag and
    a new MAINTAINERS entry for ARM Exynos cpuidle (Daniel Lezcano and
    Bartlomiej Zolnierkiewicz).
 
  - New cpufreq driver callback (->ready) to be executed when the
    cpufreq core is ready to use a given policy object and cpufreq-dt
    driver modification to use that callback for cooling device
    registration (Viresh Kumar).
 
  - cpufreq core fixes and cleanups (Viresh Kumar, Vince Hsu,
    James Geboski, Tomeu Vizoso).
 
  - Assorted fixes and cleanups in the cpufreq-pcc, intel_pstate,
    cpufreq-dt, pxa2xx cpufreq drivers (Lenny Szubowicz, Ethan Zhao,
    Stefan Wahren, Petr Cvek).
 
  - OPP (Operating Performance Points) framework modification to
    allow OPPs to be removed too and update of a few cpufreq drivers
    (cpufreq-dt, exynos5440, imx6q, cpufreq) to remove OPPs (added
    during initialization) on driver removal (Viresh Kumar).
 
  - Hibernation core fixes and cleanups (Tina Ruchandani and
    Markus Elfring).
 
  - PM Kconfig fix related to CPU power management (Pankaj Dubey).
 
  - cpupower tool fix (Prarit Bhargava).
 
 /
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJUhj6JAAoJEILEb/54YlRxTM4P/j5g5SfqvY0QKsn7sR7MGZ6v
 nsgCBhJAqTw3ocNC7EAs8z9h2GWy1KbKpakKYWAh9Fs1yZoey7tFSlcv/Rgjlp70
 uU5sDQHtpE9mHKiymdsowiQuWgpl962L4k+k8hUslhlvgk1PvVbpajR6OqG8G+pD
 asuIW9eh1APNkLyXmRJ3ZPomzs0VmRdZJ0NEs0lKX9mJskqEvxPIwdaxq3iaJq9B
 Fo0J345zUDcJnxWblDRdHlOigCimglElfN5qJwaC4KpwUKuBvLRKbp4f69+wfT0c
 kYFiR29X5KjJ2kLfP/wKsLyuDCYYXRq3tCia5M1tAqOjZ+UA89H/GDftx/5lntmv
 qUlBa35VfdS1SX4HyApZitOHiLgo+It/hl8Z9bJnhyVw66NxmMQ8JYN2imb8Lhqh
 XCLR7BxLTah82AapLJuQ0ZDHPzZqMPG2veC2vAzRMYzVijict/p4Y2+qBqONltER
 4rs9uRVn+hamX33lCLg8BEN8zqlnT3rJFIgGaKjq/wXHAU/zpE9CjOrKMQcAg9+s
 t51XMNPwypHMAYyGVhEL89ImjXnXxBkLRuquhlmEpvQchIhR+mR3dLsarGn7da44
 WPIQJXzcsojXczcwwfqsJCR4I1FTFyQIW+UNh02GkDRgRovQqo+Jk762U7vQwqH+
 LBdhvVaS1VW4v+FWXEoZ
 =5dox
 -----END PGP SIGNATURE-----

Merge tag 'pm+acpi-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull ACPI and power management updates from Rafael Wysocki:
 "This time we have some more new material than we used to have during
  the last couple of development cycles.

  The most important part of it to me is the introduction of a unified
  interface for accessing device properties provided by platform
  firmware.  It works with Device Trees and ACPI in a uniform way and
  drivers using it need not worry about where the properties come from
  as long as the platform firmware (either DT or ACPI) makes them
  available.  It covers both devices and "bare" device node objects
  without struct device representation as that turns out to be necessary
  in some cases.  This has been in the works for quite a few months (and
  development cycles) and has been approved by all of the relevant
  maintainers.

  On top of that, some drivers are switched over to the new interface
  (at25, leds-gpio, gpio_keys_polled) and some additional changes are
  made to the core GPIO subsystem to allow device drivers to manipulate
  GPIOs in the "canonical" way on platforms that provide GPIO
  information in their ACPI tables, but don't assign names to GPIO lines
  (in which case the driver needs to do that on the basis of what it
  knows about the device in question).  That also has been approved by
  the GPIO core maintainers and the rfkill driver is now going to use
  it.

  Second is support for hardware P-states in the intel_pstate driver.
  It uses CPUID to detect whether or not the feature is supported by the
  processor in which case it will be enabled by default.  However, it
  can be disabled entirely from the kernel command line if necessary.

  Next is support for a platform firmware interface based on ACPI
  operation regions used by the PMIC (Power Management Integrated
  Circuit) chips on the Intel Baytrail-T and Baytrail-T-CR platforms.
  That interface is used for manipulating power resources and for
  thermal management: sensor temperature reporting, trip point setting
  and so on.

  Also the ACPI core is now going to support the _DEP configuration
  information in a limited way.  Basically, _DEP it supposed to reflect
  off-the-hierarchy dependencies between devices which may be very
  indirect, like when AML for one device accesses locations in an
  operation region handled by another device's driver (usually, the
  device depended on this way is a serial bus or GPIO controller).  The
  support added this time is sufficient to make the ACPI battery driver
  work on Asus T100A, but it is general enough to be able to cover some
  other use cases in the future.

  Finally, we have a new cpufreq driver for the Loongson1B processor.

  In addition to the above, there are fixes and cleanups all over the
  place as usual and a traditional ACPICA update to a recent upstream
  release.

  As far as the fixes go, the ACPI LPSS (Low-power Subsystem) driver for
  Intel platforms should be able to handle power management of the DMA
  engine correctly, the cpufreq-dt driver should interact with the
  thermal subsystem in a better way and the ACPI backlight driver should
  handle some more corner cases, among other things.

  On top of the ACPICA update there are fixes for race conditions in the
  ACPICA's interrupt handling code which might lead to some random and
  strange looking failures on some systems.

  In the cleanups department the most visible part is the series of
  commits targeted at getting rid of the CONFIG_PM_RUNTIME configuration
  option.  That was triggered by a discussion regarding the generic
  power domains code during which we realized that trying to support
  certain combinations of PM config options was painful and not really
  worth it, because nobody would use them in production anyway.  For
  this reason, we decided to make CONFIG_PM_SLEEP select
  CONFIG_PM_RUNTIME and that lead to the conclusion that the latter
  became redundant and CONFIG_PM could be used instead of it.  The
  material here makes that replacement in a major part of the tree, but
  there will be at least one more batch of that in the second part of
  the merge window.

  Specifics:

   - Support for retrieving device properties information from ACPI _DSD
     device configuration objects and a unified device properties
     interface for device drivers (and subsystems) on top of that.  As
     stated above, this works with Device Trees and ACPI and allows
     device drivers to be written in a platform firmware (DT or ACPI)
     agnostic way.  The at25, leds-gpio and gpio_keys_polled drivers are
     now going to use this new interface and the GPIO subsystem is
     additionally modified to allow device drivers to assign names to
     GPIO resources returned by ACPI _CRS objects (in case _DSD is not
     present or does not provide the expected data).  The changes in
     this set are mostly from Mika Westerberg, Rafael J Wysocki, Aaron
     Lu, and Darren Hart with some fixes from others (Fabio Estevam,
     Geert Uytterhoeven).

   - Support for Hardware Managed Performance States (HWP) as described
     in Volume 3, section 14.4, of the Intel SDM in the intel_pstate
     driver.  CPUID is used to detect whether or not the feature is
     supported by the processor.  If supported, it will be enabled
     automatically unless the intel_pstate=no_hwp switch is present in
     the kernel command line.  From Dirk Brandewie.

   - New Intel Broadwell-H ID for intel_pstate (Dirk Brandewie).

   - Support for firmware interface based on ACPI operation regions used
     by the PMIC chips on the Intel Baytrail-T and Baytrail-T-CR
     platforms for power resource control and thermal management (Aaron
     Lu).

   - Limited support for retrieving off-the-hierarchy dependencies
     between devices from ACPI _DEP device configuration objects and
     deferred probing support for the ACPI battery driver based on the
     _DEP information to make that driver work on Asus T100A (Lan
     Tianyu).

   - New cpufreq driver for the Loongson1B processor (Kelvin Cheung).

   - ACPICA update to upstream revision 20141107 which only affects
     tools (Bob Moore).

   - Fixes for race conditions in the ACPICA's interrupt handling code
     and in the ACPI code related to system suspend and resume (Lv Zheng
     and Rafael J Wysocki).

   - ACPI core fix for an RCU-related issue in the ioremap() regions
     management code that slowed down significantly after CPUs had been
     allowed to enter idle states even if they'd had RCU callbakcs
     queued and triggered some problems in certain proprietary graphics
     driver (and elsewhere).  The fix replaces synchronize_rcu() in that
     code with synchronize_rcu_expedited() which makes the issue go
     away.  From Konstantin Khlebnikov.

   - ACPI LPSS (Low-Power Subsystem) driver fix to handle power
     management of the DMA engine included into the LPSS correctly.  The
     problem is that the DMA engine doesn't have ACPI PM support of its
     own and it simply is turned off when the last LPSS device having
     ACPI PM support goes into D3cold.  To work around that, the PM
     domain used by the ACPI LPSS driver is redesigned so at least one
     device with ACPI PM support will be on as long as the DMA engine is
     in use.  From Andy Shevchenko.

   - ACPI backlight driver fix to avoid using it on "Win8-compatible"
     systems where it doesn't work and where it was used by default by
     mistake (Aaron Lu).

   - Assorted minor ACPI core fixes and cleanups from Tomasz Nowicki,
     Sudeep Holla, Huang Rui, Hanjun Guo, Fabian Frederick, and Ashwin
     Chaugule (mostly related to the upcoming ARM64 support).

   - Intel RAPL (Running Average Power Limit) power capping driver fixes
     and improvements including new processor IDs (Jacob Pan).

   - Generic power domains modification to power up domains after
     attaching devices to them to meet the expectations of device
     drivers and bus types assuming devices to be accessible at probe
     time (Ulf Hansson).

   - Preliminary support for controlling device clocks from the generic
     power domains core code and modifications of the ARM/shmobile
     platform to use that feature (Ulf Hansson).

   - Assorted minor fixes and cleanups of the generic power domains core
     code (Ulf Hansson, Geert Uytterhoeven).

   - Assorted minor fixes and cleanups of the device clocks control code
     in the PM core (Geert Uytterhoeven, Grygorii Strashko).

   - Consolidation of device power management Kconfig options by making
     CONFIG_PM_SLEEP select CONFIG_PM_RUNTIME and removing the latter
     which is now redundant (Rafael J Wysocki and Kevin Hilman).  That
     is the first batch of the changes needed for this purpose.

   - Core device runtime power management support code cleanup related
     to the execution of callbacks (Andrzej Hajda).

   - cpuidle ARM support improvements (Lorenzo Pieralisi).

   - cpuidle cleanup related to the CPUIDLE_FLAG_TIME_VALID flag and a
     new MAINTAINERS entry for ARM Exynos cpuidle (Daniel Lezcano and
     Bartlomiej Zolnierkiewicz).

   - New cpufreq driver callback (->ready) to be executed when the
     cpufreq core is ready to use a given policy object and cpufreq-dt
     driver modification to use that callback for cooling device
     registration (Viresh Kumar).

   - cpufreq core fixes and cleanups (Viresh Kumar, Vince Hsu, James
     Geboski, Tomeu Vizoso).

   - Assorted fixes and cleanups in the cpufreq-pcc, intel_pstate,
     cpufreq-dt, pxa2xx cpufreq drivers (Lenny Szubowicz, Ethan Zhao,
     Stefan Wahren, Petr Cvek).

   - OPP (Operating Performance Points) framework modification to allow
     OPPs to be removed too and update of a few cpufreq drivers
     (cpufreq-dt, exynos5440, imx6q, cpufreq) to remove OPPs (added
     during initialization) on driver removal (Viresh Kumar).

   - Hibernation core fixes and cleanups (Tina Ruchandani and Markus
     Elfring).

   - PM Kconfig fix related to CPU power management (Pankaj Dubey).

   - cpupower tool fix (Prarit Bhargava)"

* tag 'pm+acpi-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (120 commits)
  i2c-omap / PM: Drop CONFIG_PM_RUNTIME from i2c-omap.c
  dmaengine / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  tools: cpupower: fix return checks for sysfs_get_idlestate_count()
  drivers: sh / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  e1000e / igb / PM: Eliminate CONFIG_PM_RUNTIME
  MMC / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  MFD / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  misc / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  media / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  input / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  leds: leds-gpio: Fix multiple instances registration without 'label' property
  iio / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  hsi / OMAP / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  i2c-hid / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  drm / exynos / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  gpio / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  hwrandom / exynos / PM: Use CONFIG_PM in #ifdef
  block / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
  USB / PM: Drop CONFIG_PM_RUNTIME from the USB core
  PM: Merge the SET*_RUNTIME_PM_OPS() macros
  ...
2014-12-10 21:17:00 -08:00
..
atm usb: delete non-required instances of include <linux/init.h> 2014-01-08 15:01:39 -08:00
c67x00 USB: c67x00: correct spelling mistakes in comments 2014-01-08 15:05:14 -08:00
chipidea usb: chipidea: Fix oops when removing the ci_hdrc module 2014-10-27 10:01:05 +08:00
class USB: cdc-acm: add quirk for control-line state requests 2014-11-06 12:25:40 -08:00
common usb: Add LED triggers for USB activity 2014-09-25 17:05:12 +02:00
core Merge branch 'pm-runtime' 2014-12-08 20:00:44 +01:00
dwc2 usb: dwc2: gadget: fix enumeration issues 2014-10-28 10:40:58 -05:00
dwc3 usb: dwc3: ep0: fix for dead code 2014-11-10 14:39:44 -06:00
early USB: ehci-dbgp: drop dead code. 2013-09-26 16:25:21 -07:00
gadget scsi: rename SERVICE_ACTION_IN to SERVICE_ACTION_IN_16 2014-11-24 20:01:40 +01:00
host Merge branch 'pm-runtime' 2014-12-08 20:00:44 +01:00
image USB: image: correct spelling mistake in comment 2014-01-08 15:08:14 -08:00
misc usb: rename phy to usb_phy in HCD 2014-09-29 11:52:59 -04:00
mon
musb usb: musb: musb_dsps: fix NULL pointer in suspend 2014-10-23 09:55:43 -05:00
phy USB / PM: Drop CONFIG_PM_RUNTIME from the USB core 2014-12-04 00:51:54 +01:00
renesas_usbhs usb: gadget: Refactor request completion 2014-09-25 16:58:50 +02:00
serial USB: ssu100: fix overrun-error reporting 2014-11-19 16:22:22 +01:00
storage printk: add and use LOGLEVEL_<level> defines for KERN_<LEVEL> equivalents 2014-12-10 17:41:11 -08:00
usbip usbip: remove struct usb_device_id table 2014-08-25 10:40:58 -07:00
wusbcore usb: hub: rename khubd to hub_wq in documentation and comments 2014-09-23 22:33:19 -07:00
Kconfig usb: Add LED triggers for USB activity 2014-09-25 17:05:12 +02:00
Makefile usbip: move usbip kernel code out of staging 2014-08-25 10:40:06 -07:00
README usb: hub: rename khubd to hub_wq in documentation and comments 2014-09-23 22:33:19 -07:00
usb-skeleton.c usb: delete non-required instances of include <linux/init.h> 2014-01-08 15:01:39 -08:00

To understand all the Linux-USB framework, you'll use these resources:

    * This source code.  This is necessarily an evolving work, and
      includes kerneldoc that should help you get a current overview.
      ("make pdfdocs", and then look at "usb.pdf" for host side and
      "gadget.pdf" for peripheral side.)  Also, Documentation/usb has
      more information.

    * The USB 2.0 specification (from www.usb.org), with supplements
      such as those for USB OTG and the various device classes.
      The USB specification has a good overview chapter, and USB
      peripherals conform to the widely known "Chapter 9".

    * Chip specifications for USB controllers.  Examples include
      host controllers (on PCs, servers, and more); peripheral
      controllers (in devices with Linux firmware, like printers or
      cell phones); and hard-wired peripherals like Ethernet adapters.

    * Specifications for other protocols implemented by USB peripheral
      functions.  Some are vendor-specific; others are vendor-neutral
      but just standardized outside of the www.usb.org team.

Here is a list of what each subdirectory here is, and what is contained in
them.

core/		- This is for the core USB host code, including the
		  usbfs files and the hub class driver ("hub_wq").

host/		- This is for USB host controller drivers.  This
		  includes UHCI, OHCI, EHCI, and others that might
		  be used with more specialized "embedded" systems.

gadget/		- This is for USB peripheral controller drivers and
		  the various gadget drivers which talk to them.


Individual USB driver directories.  A new driver should be added to the
first subdirectory in the list below that it fits into.

image/		- This is for still image drivers, like scanners or
		  digital cameras.
../input/	- This is for any driver that uses the input subsystem,
		  like keyboard, mice, touchscreens, tablets, etc.
../media/	- This is for multimedia drivers, like video cameras,
		  radios, and any other drivers that talk to the v4l
		  subsystem.
../net/		- This is for network drivers.
serial/		- This is for USB to serial drivers.
storage/	- This is for USB mass-storage drivers.
class/		- This is for all USB device drivers that do not fit
		  into any of the above categories, and work for a range
		  of USB Class specified devices. 
misc/		- This is for all USB device drivers that do not fit
		  into any of the above categories.