linux/drivers/net/can/xilinx_can.c
Jakub Kicinski 83ec88d81a Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
No conflicts.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-07-07 12:07:37 -07:00

1920 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* Xilinx CAN device driver
*
* Copyright (C) 2012 - 2022 Xilinx, Inc.
* Copyright (C) 2009 PetaLogix. All rights reserved.
* Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
*
* Description:
* This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#include <linux/pm_runtime.h>
#define DRIVER_NAME "xilinx_can"
/* CAN registers set */
enum xcan_reg {
XCAN_SRR_OFFSET = 0x00, /* Software reset */
XCAN_MSR_OFFSET = 0x04, /* Mode select */
XCAN_BRPR_OFFSET = 0x08, /* Baud rate prescaler */
XCAN_BTR_OFFSET = 0x0C, /* Bit timing */
XCAN_ECR_OFFSET = 0x10, /* Error counter */
XCAN_ESR_OFFSET = 0x14, /* Error status */
XCAN_SR_OFFSET = 0x18, /* Status */
XCAN_ISR_OFFSET = 0x1C, /* Interrupt status */
XCAN_IER_OFFSET = 0x20, /* Interrupt enable */
XCAN_ICR_OFFSET = 0x24, /* Interrupt clear */
/* not on CAN FD cores */
XCAN_TXFIFO_OFFSET = 0x30, /* TX FIFO base */
XCAN_RXFIFO_OFFSET = 0x50, /* RX FIFO base */
XCAN_AFR_OFFSET = 0x60, /* Acceptance Filter */
/* only on CAN FD cores */
XCAN_F_BRPR_OFFSET = 0x088, /* Data Phase Baud Rate
* Prescaler
*/
XCAN_F_BTR_OFFSET = 0x08C, /* Data Phase Bit Timing */
XCAN_TRR_OFFSET = 0x0090, /* TX Buffer Ready Request */
XCAN_AFR_EXT_OFFSET = 0x00E0, /* Acceptance Filter */
XCAN_FSR_OFFSET = 0x00E8, /* RX FIFO Status */
XCAN_TXMSG_BASE_OFFSET = 0x0100, /* TX Message Space */
XCAN_RXMSG_BASE_OFFSET = 0x1100, /* RX Message Space */
XCAN_RXMSG_2_BASE_OFFSET = 0x2100, /* RX Message Space */
XCAN_AFR_2_MASK_OFFSET = 0x0A00, /* Acceptance Filter MASK */
XCAN_AFR_2_ID_OFFSET = 0x0A04, /* Acceptance Filter ID */
};
#define XCAN_FRAME_ID_OFFSET(frame_base) ((frame_base) + 0x00)
#define XCAN_FRAME_DLC_OFFSET(frame_base) ((frame_base) + 0x04)
#define XCAN_FRAME_DW1_OFFSET(frame_base) ((frame_base) + 0x08)
#define XCAN_FRAME_DW2_OFFSET(frame_base) ((frame_base) + 0x0C)
#define XCANFD_FRAME_DW_OFFSET(frame_base) ((frame_base) + 0x08)
#define XCAN_CANFD_FRAME_SIZE 0x48
#define XCAN_TXMSG_FRAME_OFFSET(n) (XCAN_TXMSG_BASE_OFFSET + \
XCAN_CANFD_FRAME_SIZE * (n))
#define XCAN_RXMSG_FRAME_OFFSET(n) (XCAN_RXMSG_BASE_OFFSET + \
XCAN_CANFD_FRAME_SIZE * (n))
#define XCAN_RXMSG_2_FRAME_OFFSET(n) (XCAN_RXMSG_2_BASE_OFFSET + \
XCAN_CANFD_FRAME_SIZE * (n))
/* the single TX mailbox used by this driver on CAN FD HW */
#define XCAN_TX_MAILBOX_IDX 0
/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
#define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */
#define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */
#define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */
#define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */
#define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */
#define XCAN_BRPR_TDCO_MASK GENMASK(12, 8) /* TDCO */
#define XCAN_2_BRPR_TDCO_MASK GENMASK(13, 8) /* TDCO for CANFD 2.0 */
#define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */
#define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */
#define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */
#define XCAN_BTR_SJW_MASK_CANFD 0x000F0000 /* Synchronous jump width */
#define XCAN_BTR_TS2_MASK_CANFD 0x00000F00 /* Time segment 2 */
#define XCAN_BTR_TS1_MASK_CANFD 0x0000003F /* Time segment 1 */
#define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */
#define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */
#define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */
#define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */
#define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */
#define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */
#define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */
#define XCAN_SR_TDCV_MASK GENMASK(22, 16) /* TDCV Value */
#define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */
#define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */
#define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */
#define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */
#define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */
#define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */
#define XCAN_IXR_RXMNF_MASK 0x00020000 /* RX match not finished */
#define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */
#define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */
#define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */
#define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */
#define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */
#define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */
#define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */
#define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */
#define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */
#define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */
#define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */
#define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */
#define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */
#define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */
#define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */
#define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */
#define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */
#define XCAN_FSR_FL_MASK 0x00003F00 /* RX Fill Level */
#define XCAN_2_FSR_FL_MASK 0x00007F00 /* RX Fill Level */
#define XCAN_FSR_IRI_MASK 0x00000080 /* RX Increment Read Index */
#define XCAN_FSR_RI_MASK 0x0000001F /* RX Read Index */
#define XCAN_2_FSR_RI_MASK 0x0000003F /* RX Read Index */
#define XCAN_DLCR_EDL_MASK 0x08000000 /* EDL Mask in DLC */
#define XCAN_DLCR_BRS_MASK 0x04000000 /* BRS Mask in DLC */
/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
#define XCAN_BRPR_TDC_ENABLE BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
#define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */
#define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */
#define XCAN_BTR_SJW_SHIFT_CANFD 16 /* Synchronous jump width */
#define XCAN_BTR_TS2_SHIFT_CANFD 8 /* Time segment 2 */
#define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */
#define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */
#define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */
#define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */
/* CAN frame length constants */
#define XCAN_FRAME_MAX_DATA_LEN 8
#define XCANFD_DW_BYTES 4
#define XCAN_TIMEOUT (1 * HZ)
/* TX-FIFO-empty interrupt available */
#define XCAN_FLAG_TXFEMP 0x0001
/* RX Match Not Finished interrupt available */
#define XCAN_FLAG_RXMNF 0x0002
/* Extended acceptance filters with control at 0xE0 */
#define XCAN_FLAG_EXT_FILTERS 0x0004
/* TX mailboxes instead of TX FIFO */
#define XCAN_FLAG_TX_MAILBOXES 0x0008
/* RX FIFO with each buffer in separate registers at 0x1100
* instead of the regular FIFO at 0x50
*/
#define XCAN_FLAG_RX_FIFO_MULTI 0x0010
#define XCAN_FLAG_CANFD_2 0x0020
enum xcan_ip_type {
XAXI_CAN = 0,
XZYNQ_CANPS,
XAXI_CANFD,
XAXI_CANFD_2_0,
};
struct xcan_devtype_data {
enum xcan_ip_type cantype;
unsigned int flags;
const struct can_bittiming_const *bittiming_const;
const char *bus_clk_name;
unsigned int btr_ts2_shift;
unsigned int btr_sjw_shift;
};
/**
* struct xcan_priv - This definition define CAN driver instance
* @can: CAN private data structure.
* @tx_lock: Lock for synchronizing TX interrupt handling
* @tx_head: Tx CAN packets ready to send on the queue
* @tx_tail: Tx CAN packets successfully sended on the queue
* @tx_max: Maximum number packets the driver can send
* @napi: NAPI structure
* @read_reg: For reading data from CAN registers
* @write_reg: For writing data to CAN registers
* @dev: Network device data structure
* @reg_base: Ioremapped address to registers
* @irq_flags: For request_irq()
* @bus_clk: Pointer to struct clk
* @can_clk: Pointer to struct clk
* @devtype: Device type specific constants
*/
struct xcan_priv {
struct can_priv can;
spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
unsigned int tx_head;
unsigned int tx_tail;
unsigned int tx_max;
struct napi_struct napi;
u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
u32 val);
struct device *dev;
void __iomem *reg_base;
unsigned long irq_flags;
struct clk *bus_clk;
struct clk *can_clk;
struct xcan_devtype_data devtype;
};
/* CAN Bittiming constants as per Xilinx CAN specs */
static const struct can_bittiming_const xcan_bittiming_const = {
.name = DRIVER_NAME,
.tseg1_min = 1,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
};
/* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
static const struct can_bittiming_const xcan_bittiming_const_canfd = {
.name = DRIVER_NAME,
.tseg1_min = 1,
.tseg1_max = 64,
.tseg2_min = 1,
.tseg2_max = 16,
.sjw_max = 16,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
};
/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
.name = DRIVER_NAME,
.tseg1_min = 1,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 8,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
};
/* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
.name = DRIVER_NAME,
.tseg1_min = 1,
.tseg1_max = 256,
.tseg2_min = 1,
.tseg2_max = 128,
.sjw_max = 128,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
};
/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
.name = DRIVER_NAME,
.tseg1_min = 1,
.tseg1_max = 32,
.tseg2_min = 1,
.tseg2_max = 16,
.sjw_max = 16,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
};
/* Transmission Delay Compensation constants for CANFD 1.0 */
static const struct can_tdc_const xcan_tdc_const_canfd = {
.tdcv_min = 0,
.tdcv_max = 0, /* Manual mode not supported. */
.tdco_min = 0,
.tdco_max = 32,
.tdcf_min = 0, /* Filter window not supported */
.tdcf_max = 0,
};
/* Transmission Delay Compensation constants for CANFD 2.0 */
static const struct can_tdc_const xcan_tdc_const_canfd2 = {
.tdcv_min = 0,
.tdcv_max = 0, /* Manual mode not supported. */
.tdco_min = 0,
.tdco_max = 64,
.tdcf_min = 0, /* Filter window not supported */
.tdcf_max = 0,
};
/**
* xcan_write_reg_le - Write a value to the device register little endian
* @priv: Driver private data structure
* @reg: Register offset
* @val: Value to write at the Register offset
*
* Write data to the paricular CAN register
*/
static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
u32 val)
{
iowrite32(val, priv->reg_base + reg);
}
/**
* xcan_read_reg_le - Read a value from the device register little endian
* @priv: Driver private data structure
* @reg: Register offset
*
* Read data from the particular CAN register
* Return: value read from the CAN register
*/
static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
{
return ioread32(priv->reg_base + reg);
}
/**
* xcan_write_reg_be - Write a value to the device register big endian
* @priv: Driver private data structure
* @reg: Register offset
* @val: Value to write at the Register offset
*
* Write data to the paricular CAN register
*/
static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
u32 val)
{
iowrite32be(val, priv->reg_base + reg);
}
/**
* xcan_read_reg_be - Read a value from the device register big endian
* @priv: Driver private data structure
* @reg: Register offset
*
* Read data from the particular CAN register
* Return: value read from the CAN register
*/
static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
{
return ioread32be(priv->reg_base + reg);
}
/**
* xcan_rx_int_mask - Get the mask for the receive interrupt
* @priv: Driver private data structure
*
* Return: The receive interrupt mask used by the driver on this HW
*/
static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
{
/* RXNEMP is better suited for our use case as it cannot be cleared
* while the FIFO is non-empty, but CAN FD HW does not have it
*/
if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
return XCAN_IXR_RXOK_MASK;
else
return XCAN_IXR_RXNEMP_MASK;
}
/**
* set_reset_mode - Resets the CAN device mode
* @ndev: Pointer to net_device structure
*
* This is the driver reset mode routine.The driver
* enters into configuration mode.
*
* Return: 0 on success and failure value on error
*/
static int set_reset_mode(struct net_device *ndev)
{
struct xcan_priv *priv = netdev_priv(ndev);
unsigned long timeout;
priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
timeout = jiffies + XCAN_TIMEOUT;
while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
if (time_after(jiffies, timeout)) {
netdev_warn(ndev, "timed out for config mode\n");
return -ETIMEDOUT;
}
usleep_range(500, 10000);
}
/* reset clears FIFOs */
priv->tx_head = 0;
priv->tx_tail = 0;
return 0;
}
/**
* xcan_set_bittiming - CAN set bit timing routine
* @ndev: Pointer to net_device structure
*
* This is the driver set bittiming routine.
* Return: 0 on success and failure value on error
*/
static int xcan_set_bittiming(struct net_device *ndev)
{
struct xcan_priv *priv = netdev_priv(ndev);
struct can_bittiming *bt = &priv->can.bittiming;
struct can_bittiming *dbt = &priv->can.data_bittiming;
u32 btr0, btr1;
u32 is_config_mode;
/* Check whether Xilinx CAN is in configuration mode.
* It cannot set bit timing if Xilinx CAN is not in configuration mode.
*/
is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
XCAN_SR_CONFIG_MASK;
if (!is_config_mode) {
netdev_alert(ndev,
"BUG! Cannot set bittiming - CAN is not in config mode\n");
return -EPERM;
}
/* Setting Baud Rate prescaler value in BRPR Register */
btr0 = (bt->brp - 1);
/* Setting Time Segment 1 in BTR Register */
btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
/* Setting Time Segment 2 in BTR Register */
btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
/* Setting Synchronous jump width in BTR Register */
btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
if (priv->devtype.cantype == XAXI_CANFD ||
priv->devtype.cantype == XAXI_CANFD_2_0) {
/* Setting Baud Rate prescaler value in F_BRPR Register */
btr0 = dbt->brp - 1;
if (can_tdc_is_enabled(&priv->can)) {
if (priv->devtype.cantype == XAXI_CANFD)
btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
XCAN_BRPR_TDC_ENABLE;
else
btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
XCAN_BRPR_TDC_ENABLE;
}
/* Setting Time Segment 1 in BTR Register */
btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
/* Setting Time Segment 2 in BTR Register */
btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
/* Setting Synchronous jump width in BTR Register */
btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
}
netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
priv->read_reg(priv, XCAN_BRPR_OFFSET),
priv->read_reg(priv, XCAN_BTR_OFFSET));
return 0;
}
/**
* xcan_chip_start - This the drivers start routine
* @ndev: Pointer to net_device structure
*
* This is the drivers start routine.
* Based on the State of the CAN device it puts
* the CAN device into a proper mode.
*
* Return: 0 on success and failure value on error
*/
static int xcan_chip_start(struct net_device *ndev)
{
struct xcan_priv *priv = netdev_priv(ndev);
u32 reg_msr;
int err;
u32 ier;
/* Check if it is in reset mode */
err = set_reset_mode(ndev);
if (err < 0)
return err;
err = xcan_set_bittiming(ndev);
if (err < 0)
return err;
/* Enable interrupts
*
* We enable the ERROR interrupt even with
* CAN_CTRLMODE_BERR_REPORTING disabled as there is no
* dedicated interrupt for a state change to
* ERROR_WARNING/ERROR_PASSIVE.
*/
ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
if (priv->devtype.flags & XCAN_FLAG_RXMNF)
ier |= XCAN_IXR_RXMNF_MASK;
priv->write_reg(priv, XCAN_IER_OFFSET, ier);
/* Check whether it is loopback mode or normal mode */
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
reg_msr = XCAN_MSR_LBACK_MASK;
else
reg_msr = 0x0;
/* enable the first extended filter, if any, as cores with extended
* filtering default to non-receipt if all filters are disabled
*/
if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
netdev_dbg(ndev, "status:#x%08x\n",
priv->read_reg(priv, XCAN_SR_OFFSET));
priv->can.state = CAN_STATE_ERROR_ACTIVE;
return 0;
}
/**
* xcan_do_set_mode - This sets the mode of the driver
* @ndev: Pointer to net_device structure
* @mode: Tells the mode of the driver
*
* This check the drivers state and calls the corresponding modes to set.
*
* Return: 0 on success and failure value on error
*/
static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
{
int ret;
switch (mode) {
case CAN_MODE_START:
ret = xcan_chip_start(ndev);
if (ret < 0) {
netdev_err(ndev, "xcan_chip_start failed!\n");
return ret;
}
netif_wake_queue(ndev);
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
/**
* xcan_write_frame - Write a frame to HW
* @ndev: Pointer to net_device structure
* @skb: sk_buff pointer that contains data to be Txed
* @frame_offset: Register offset to write the frame to
*/
static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
int frame_offset)
{
u32 id, dlc, data[2] = {0, 0};
struct canfd_frame *cf = (struct canfd_frame *)skb->data;
u32 ramoff, dwindex = 0, i;
struct xcan_priv *priv = netdev_priv(ndev);
/* Watch carefully on the bit sequence */
if (cf->can_id & CAN_EFF_FLAG) {
/* Extended CAN ID format */
id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
XCAN_IDR_ID2_MASK;
id |= (((cf->can_id & CAN_EFF_MASK) >>
(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
/* The substibute remote TX request bit should be "1"
* for extended frames as in the Xilinx CAN datasheet
*/
id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
if (cf->can_id & CAN_RTR_FLAG)
/* Extended frames remote TX request */
id |= XCAN_IDR_RTR_MASK;
} else {
/* Standard CAN ID format */
id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
XCAN_IDR_ID1_MASK;
if (cf->can_id & CAN_RTR_FLAG)
/* Standard frames remote TX request */
id |= XCAN_IDR_SRR_MASK;
}
dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
if (can_is_canfd_skb(skb)) {
if (cf->flags & CANFD_BRS)
dlc |= XCAN_DLCR_BRS_MASK;
dlc |= XCAN_DLCR_EDL_MASK;
}
if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
(priv->devtype.flags & XCAN_FLAG_TXFEMP))
can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
else
can_put_echo_skb(skb, ndev, 0, 0);
priv->tx_head++;
priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
/* If the CAN frame is RTR frame this write triggers transmission
* (not on CAN FD)
*/
priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
if (priv->devtype.cantype == XAXI_CANFD ||
priv->devtype.cantype == XAXI_CANFD_2_0) {
for (i = 0; i < cf->len; i += 4) {
ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
(dwindex * XCANFD_DW_BYTES);
priv->write_reg(priv, ramoff,
be32_to_cpup((__be32 *)(cf->data + i)));
dwindex++;
}
} else {
if (cf->len > 0)
data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
if (cf->len > 4)
data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
if (!(cf->can_id & CAN_RTR_FLAG)) {
priv->write_reg(priv,
XCAN_FRAME_DW1_OFFSET(frame_offset),
data[0]);
/* If the CAN frame is Standard/Extended frame this
* write triggers transmission (not on CAN FD)
*/
priv->write_reg(priv,
XCAN_FRAME_DW2_OFFSET(frame_offset),
data[1]);
}
}
}
/**
* xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
* @skb: sk_buff pointer that contains data to be Txed
* @ndev: Pointer to net_device structure
*
* Return: 0 on success, -ENOSPC if FIFO is full.
*/
static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
{
struct xcan_priv *priv = netdev_priv(ndev);
unsigned long flags;
/* Check if the TX buffer is full */
if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
XCAN_SR_TXFLL_MASK))
return -ENOSPC;
spin_lock_irqsave(&priv->tx_lock, flags);
xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
if (priv->tx_max > 1)
priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
/* Check if the TX buffer is full */
if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
netif_stop_queue(ndev);
spin_unlock_irqrestore(&priv->tx_lock, flags);
return 0;
}
/**
* xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
* @skb: sk_buff pointer that contains data to be Txed
* @ndev: Pointer to net_device structure
*
* Return: 0 on success, -ENOSPC if there is no space
*/
static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
{
struct xcan_priv *priv = netdev_priv(ndev);
unsigned long flags;
if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
BIT(XCAN_TX_MAILBOX_IDX)))
return -ENOSPC;
spin_lock_irqsave(&priv->tx_lock, flags);
xcan_write_frame(ndev, skb,
XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
/* Mark buffer as ready for transmit */
priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
netif_stop_queue(ndev);
spin_unlock_irqrestore(&priv->tx_lock, flags);
return 0;
}
/**
* xcan_start_xmit - Starts the transmission
* @skb: sk_buff pointer that contains data to be Txed
* @ndev: Pointer to net_device structure
*
* This function is invoked from upper layers to initiate transmission.
*
* Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
*/
static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct xcan_priv *priv = netdev_priv(ndev);
int ret;
if (can_dropped_invalid_skb(ndev, skb))
return NETDEV_TX_OK;
if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
ret = xcan_start_xmit_mailbox(skb, ndev);
else
ret = xcan_start_xmit_fifo(skb, ndev);
if (ret < 0) {
netdev_err(ndev, "BUG!, TX full when queue awake!\n");
netif_stop_queue(ndev);
return NETDEV_TX_BUSY;
}
return NETDEV_TX_OK;
}
/**
* xcan_rx - Is called from CAN isr to complete the received
* frame processing
* @ndev: Pointer to net_device structure
* @frame_base: Register offset to the frame to be read
*
* This function is invoked from the CAN isr(poll) to process the Rx frames. It
* does minimal processing and invokes "netif_receive_skb" to complete further
* processing.
* Return: 1 on success and 0 on failure.
*/
static int xcan_rx(struct net_device *ndev, int frame_base)
{
struct xcan_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
struct can_frame *cf;
struct sk_buff *skb;
u32 id_xcan, dlc, data[2] = {0, 0};
skb = alloc_can_skb(ndev, &cf);
if (unlikely(!skb)) {
stats->rx_dropped++;
return 0;
}
/* Read a frame from Xilinx zynq CANPS */
id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
XCAN_DLCR_DLC_SHIFT;
/* Change Xilinx CAN data length format to socketCAN data format */
cf->len = can_cc_dlc2len(dlc);
/* Change Xilinx CAN ID format to socketCAN ID format */
if (id_xcan & XCAN_IDR_IDE_MASK) {
/* The received frame is an Extended format frame */
cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
XCAN_IDR_ID2_SHIFT;
cf->can_id |= CAN_EFF_FLAG;
if (id_xcan & XCAN_IDR_RTR_MASK)
cf->can_id |= CAN_RTR_FLAG;
} else {
/* The received frame is a standard format frame */
cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
XCAN_IDR_ID1_SHIFT;
if (id_xcan & XCAN_IDR_SRR_MASK)
cf->can_id |= CAN_RTR_FLAG;
}
/* DW1/DW2 must always be read to remove message from RXFIFO */
data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
if (!(cf->can_id & CAN_RTR_FLAG)) {
/* Change Xilinx CAN data format to socketCAN data format */
if (cf->len > 0)
*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
if (cf->len > 4)
*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
stats->rx_bytes += cf->len;
}
stats->rx_packets++;
netif_receive_skb(skb);
return 1;
}
/**
* xcanfd_rx - Is called from CAN isr to complete the received
* frame processing
* @ndev: Pointer to net_device structure
* @frame_base: Register offset to the frame to be read
*
* This function is invoked from the CAN isr(poll) to process the Rx frames. It
* does minimal processing and invokes "netif_receive_skb" to complete further
* processing.
* Return: 1 on success and 0 on failure.
*/
static int xcanfd_rx(struct net_device *ndev, int frame_base)
{
struct xcan_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
struct canfd_frame *cf;
struct sk_buff *skb;
u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
if (dlc & XCAN_DLCR_EDL_MASK)
skb = alloc_canfd_skb(ndev, &cf);
else
skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
if (unlikely(!skb)) {
stats->rx_dropped++;
return 0;
}
/* Change Xilinx CANFD data length format to socketCAN data
* format
*/
if (dlc & XCAN_DLCR_EDL_MASK)
cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
XCAN_DLCR_DLC_SHIFT);
else
cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
XCAN_DLCR_DLC_SHIFT);
/* Change Xilinx CAN ID format to socketCAN ID format */
if (id_xcan & XCAN_IDR_IDE_MASK) {
/* The received frame is an Extended format frame */
cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
XCAN_IDR_ID2_SHIFT;
cf->can_id |= CAN_EFF_FLAG;
if (id_xcan & XCAN_IDR_RTR_MASK)
cf->can_id |= CAN_RTR_FLAG;
} else {
/* The received frame is a standard format frame */
cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
XCAN_IDR_ID1_SHIFT;
if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
XCAN_IDR_SRR_MASK))
cf->can_id |= CAN_RTR_FLAG;
}
/* Check the frame received is FD or not*/
if (dlc & XCAN_DLCR_EDL_MASK) {
for (i = 0; i < cf->len; i += 4) {
dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
(dwindex * XCANFD_DW_BYTES);
data[0] = priv->read_reg(priv, dw_offset);
*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
dwindex++;
}
} else {
for (i = 0; i < cf->len; i += 4) {
dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
data[0] = priv->read_reg(priv, dw_offset + i);
*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
}
}
if (!(cf->can_id & CAN_RTR_FLAG))
stats->rx_bytes += cf->len;
stats->rx_packets++;
netif_receive_skb(skb);
return 1;
}
/**
* xcan_current_error_state - Get current error state from HW
* @ndev: Pointer to net_device structure
*
* Checks the current CAN error state from the HW. Note that this
* only checks for ERROR_PASSIVE and ERROR_WARNING.
*
* Return:
* ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
* otherwise.
*/
static enum can_state xcan_current_error_state(struct net_device *ndev)
{
struct xcan_priv *priv = netdev_priv(ndev);
u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
return CAN_STATE_ERROR_PASSIVE;
else if (status & XCAN_SR_ERRWRN_MASK)
return CAN_STATE_ERROR_WARNING;
else
return CAN_STATE_ERROR_ACTIVE;
}
/**
* xcan_set_error_state - Set new CAN error state
* @ndev: Pointer to net_device structure
* @new_state: The new CAN state to be set
* @cf: Error frame to be populated or NULL
*
* Set new CAN error state for the device, updating statistics and
* populating the error frame if given.
*/
static void xcan_set_error_state(struct net_device *ndev,
enum can_state new_state,
struct can_frame *cf)
{
struct xcan_priv *priv = netdev_priv(ndev);
u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
u32 txerr = ecr & XCAN_ECR_TEC_MASK;
u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
enum can_state tx_state = txerr >= rxerr ? new_state : 0;
enum can_state rx_state = txerr <= rxerr ? new_state : 0;
/* non-ERROR states are handled elsewhere */
if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
return;
can_change_state(ndev, cf, tx_state, rx_state);
if (cf) {
cf->data[6] = txerr;
cf->data[7] = rxerr;
}
}
/**
* xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
* @ndev: Pointer to net_device structure
*
* If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
* the performed RX/TX has caused it to drop to a lesser state and set
* the interface state accordingly.
*/
static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
{
struct xcan_priv *priv = netdev_priv(ndev);
enum can_state old_state = priv->can.state;
enum can_state new_state;
/* changing error state due to successful frame RX/TX can only
* occur from these states
*/
if (old_state != CAN_STATE_ERROR_WARNING &&
old_state != CAN_STATE_ERROR_PASSIVE)
return;
new_state = xcan_current_error_state(ndev);
if (new_state != old_state) {
struct sk_buff *skb;
struct can_frame *cf;
skb = alloc_can_err_skb(ndev, &cf);
xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
if (skb)
netif_rx(skb);
}
}
/**
* xcan_err_interrupt - error frame Isr
* @ndev: net_device pointer
* @isr: interrupt status register value
*
* This is the CAN error interrupt and it will
* check the type of error and forward the error
* frame to upper layers.
*/
static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
{
struct xcan_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
struct can_frame cf = { };
u32 err_status;
err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
if (isr & XCAN_IXR_BSOFF_MASK) {
priv->can.state = CAN_STATE_BUS_OFF;
priv->can.can_stats.bus_off++;
/* Leave device in Config Mode in bus-off state */
priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
can_bus_off(ndev);
cf.can_id |= CAN_ERR_BUSOFF;
} else {
enum can_state new_state = xcan_current_error_state(ndev);
if (new_state != priv->can.state)
xcan_set_error_state(ndev, new_state, &cf);
}
/* Check for Arbitration lost interrupt */
if (isr & XCAN_IXR_ARBLST_MASK) {
priv->can.can_stats.arbitration_lost++;
cf.can_id |= CAN_ERR_LOSTARB;
cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
}
/* Check for RX FIFO Overflow interrupt */
if (isr & XCAN_IXR_RXOFLW_MASK) {
stats->rx_over_errors++;
stats->rx_errors++;
cf.can_id |= CAN_ERR_CRTL;
cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
}
/* Check for RX Match Not Finished interrupt */
if (isr & XCAN_IXR_RXMNF_MASK) {
stats->rx_dropped++;
stats->rx_errors++;
netdev_err(ndev, "RX match not finished, frame discarded\n");
cf.can_id |= CAN_ERR_CRTL;
cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
}
/* Check for error interrupt */
if (isr & XCAN_IXR_ERROR_MASK) {
bool berr_reporting = false;
if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
berr_reporting = true;
cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
}
/* Check for Ack error interrupt */
if (err_status & XCAN_ESR_ACKER_MASK) {
stats->tx_errors++;
if (berr_reporting) {
cf.can_id |= CAN_ERR_ACK;
cf.data[3] = CAN_ERR_PROT_LOC_ACK;
}
}
/* Check for Bit error interrupt */
if (err_status & XCAN_ESR_BERR_MASK) {
stats->tx_errors++;
if (berr_reporting) {
cf.can_id |= CAN_ERR_PROT;
cf.data[2] = CAN_ERR_PROT_BIT;
}
}
/* Check for Stuff error interrupt */
if (err_status & XCAN_ESR_STER_MASK) {
stats->rx_errors++;
if (berr_reporting) {
cf.can_id |= CAN_ERR_PROT;
cf.data[2] = CAN_ERR_PROT_STUFF;
}
}
/* Check for Form error interrupt */
if (err_status & XCAN_ESR_FMER_MASK) {
stats->rx_errors++;
if (berr_reporting) {
cf.can_id |= CAN_ERR_PROT;
cf.data[2] = CAN_ERR_PROT_FORM;
}
}
/* Check for CRC error interrupt */
if (err_status & XCAN_ESR_CRCER_MASK) {
stats->rx_errors++;
if (berr_reporting) {
cf.can_id |= CAN_ERR_PROT;
cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
}
}
priv->can.can_stats.bus_error++;
}
if (cf.can_id) {
struct can_frame *skb_cf;
struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
if (skb) {
skb_cf->can_id |= cf.can_id;
memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
netif_rx(skb);
}
}
netdev_dbg(ndev, "%s: error status register:0x%x\n",
__func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
}
/**
* xcan_state_interrupt - It will check the state of the CAN device
* @ndev: net_device pointer
* @isr: interrupt status register value
*
* This will checks the state of the CAN device
* and puts the device into appropriate state.
*/
static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
{
struct xcan_priv *priv = netdev_priv(ndev);
/* Check for Sleep interrupt if set put CAN device in sleep state */
if (isr & XCAN_IXR_SLP_MASK)
priv->can.state = CAN_STATE_SLEEPING;
/* Check for Wake up interrupt if set put CAN device in Active state */
if (isr & XCAN_IXR_WKUP_MASK)
priv->can.state = CAN_STATE_ERROR_ACTIVE;
}
/**
* xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
* @priv: Driver private data structure
*
* Return: Register offset of the next frame in RX FIFO.
*/
static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
{
int offset;
if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
u32 fsr, mask;
/* clear RXOK before the is-empty check so that any newly
* received frame will reassert it without a race
*/
priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
/* check if RX FIFO is empty */
if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
mask = XCAN_2_FSR_FL_MASK;
else
mask = XCAN_FSR_FL_MASK;
if (!(fsr & mask))
return -ENOENT;
if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
offset =
XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
else
offset =
XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
} else {
/* check if RX FIFO is empty */
if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
XCAN_IXR_RXNEMP_MASK))
return -ENOENT;
/* frames are read from a static offset */
offset = XCAN_RXFIFO_OFFSET;
}
return offset;
}
/**
* xcan_rx_poll - Poll routine for rx packets (NAPI)
* @napi: napi structure pointer
* @quota: Max number of rx packets to be processed.
*
* This is the poll routine for rx part.
* It will process the packets maximux quota value.
*
* Return: number of packets received
*/
static int xcan_rx_poll(struct napi_struct *napi, int quota)
{
struct net_device *ndev = napi->dev;
struct xcan_priv *priv = netdev_priv(ndev);
u32 ier;
int work_done = 0;
int frame_offset;
while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
(work_done < quota)) {
if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
work_done += xcanfd_rx(ndev, frame_offset);
else
work_done += xcan_rx(ndev, frame_offset);
if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
/* increment read index */
priv->write_reg(priv, XCAN_FSR_OFFSET,
XCAN_FSR_IRI_MASK);
else
/* clear rx-not-empty (will actually clear only if
* empty)
*/
priv->write_reg(priv, XCAN_ICR_OFFSET,
XCAN_IXR_RXNEMP_MASK);
}
if (work_done)
xcan_update_error_state_after_rxtx(ndev);
if (work_done < quota) {
if (napi_complete_done(napi, work_done)) {
ier = priv->read_reg(priv, XCAN_IER_OFFSET);
ier |= xcan_rx_int_mask(priv);
priv->write_reg(priv, XCAN_IER_OFFSET, ier);
}
}
return work_done;
}
/**
* xcan_tx_interrupt - Tx Done Isr
* @ndev: net_device pointer
* @isr: Interrupt status register value
*/
static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
{
struct xcan_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
unsigned int frames_in_fifo;
int frames_sent = 1; /* TXOK => at least 1 frame was sent */
unsigned long flags;
int retries = 0;
/* Synchronize with xmit as we need to know the exact number
* of frames in the FIFO to stay in sync due to the TXFEMP
* handling.
* This also prevents a race between netif_wake_queue() and
* netif_stop_queue().
*/
spin_lock_irqsave(&priv->tx_lock, flags);
frames_in_fifo = priv->tx_head - priv->tx_tail;
if (WARN_ON_ONCE(frames_in_fifo == 0)) {
/* clear TXOK anyway to avoid getting back here */
priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
spin_unlock_irqrestore(&priv->tx_lock, flags);
return;
}
/* Check if 2 frames were sent (TXOK only means that at least 1
* frame was sent).
*/
if (frames_in_fifo > 1) {
WARN_ON(frames_in_fifo > priv->tx_max);
/* Synchronize TXOK and isr so that after the loop:
* (1) isr variable is up-to-date at least up to TXOK clear
* time. This avoids us clearing a TXOK of a second frame
* but not noticing that the FIFO is now empty and thus
* marking only a single frame as sent.
* (2) No TXOK is left. Having one could mean leaving a
* stray TXOK as we might process the associated frame
* via TXFEMP handling as we read TXFEMP *after* TXOK
* clear to satisfy (1).
*/
while ((isr & XCAN_IXR_TXOK_MASK) &&
!WARN_ON(++retries == 100)) {
priv->write_reg(priv, XCAN_ICR_OFFSET,
XCAN_IXR_TXOK_MASK);
isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
}
if (isr & XCAN_IXR_TXFEMP_MASK) {
/* nothing in FIFO anymore */
frames_sent = frames_in_fifo;
}
} else {
/* single frame in fifo, just clear TXOK */
priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
}
while (frames_sent--) {
stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
priv->tx_max, NULL);
priv->tx_tail++;
stats->tx_packets++;
}
netif_wake_queue(ndev);
spin_unlock_irqrestore(&priv->tx_lock, flags);
xcan_update_error_state_after_rxtx(ndev);
}
/**
* xcan_interrupt - CAN Isr
* @irq: irq number
* @dev_id: device id pointer
*
* This is the xilinx CAN Isr. It checks for the type of interrupt
* and invokes the corresponding ISR.
*
* Return:
* IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
*/
static irqreturn_t xcan_interrupt(int irq, void *dev_id)
{
struct net_device *ndev = (struct net_device *)dev_id;
struct xcan_priv *priv = netdev_priv(ndev);
u32 isr, ier;
u32 isr_errors;
u32 rx_int_mask = xcan_rx_int_mask(priv);
/* Get the interrupt status from Xilinx CAN */
isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
if (!isr)
return IRQ_NONE;
/* Check for the type of interrupt and Processing it */
if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
XCAN_IXR_WKUP_MASK));
xcan_state_interrupt(ndev, isr);
}
/* Check for Tx interrupt and Processing it */
if (isr & XCAN_IXR_TXOK_MASK)
xcan_tx_interrupt(ndev, isr);
/* Check for the type of error interrupt and Processing it */
isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
XCAN_IXR_RXMNF_MASK);
if (isr_errors) {
priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
xcan_err_interrupt(ndev, isr);
}
/* Check for the type of receive interrupt and Processing it */
if (isr & rx_int_mask) {
ier = priv->read_reg(priv, XCAN_IER_OFFSET);
ier &= ~rx_int_mask;
priv->write_reg(priv, XCAN_IER_OFFSET, ier);
napi_schedule(&priv->napi);
}
return IRQ_HANDLED;
}
/**
* xcan_chip_stop - Driver stop routine
* @ndev: Pointer to net_device structure
*
* This is the drivers stop routine. It will disable the
* interrupts and put the device into configuration mode.
*/
static void xcan_chip_stop(struct net_device *ndev)
{
struct xcan_priv *priv = netdev_priv(ndev);
int ret;
/* Disable interrupts and leave the can in configuration mode */
ret = set_reset_mode(ndev);
if (ret < 0)
netdev_dbg(ndev, "set_reset_mode() Failed\n");
priv->can.state = CAN_STATE_STOPPED;
}
/**
* xcan_open - Driver open routine
* @ndev: Pointer to net_device structure
*
* This is the driver open routine.
* Return: 0 on success and failure value on error
*/
static int xcan_open(struct net_device *ndev)
{
struct xcan_priv *priv = netdev_priv(ndev);
int ret;
ret = pm_runtime_get_sync(priv->dev);
if (ret < 0) {
netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
__func__, ret);
goto err;
}
ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
ndev->name, ndev);
if (ret < 0) {
netdev_err(ndev, "irq allocation for CAN failed\n");
goto err;
}
/* Set chip into reset mode */
ret = set_reset_mode(ndev);
if (ret < 0) {
netdev_err(ndev, "mode resetting failed!\n");
goto err_irq;
}
/* Common open */
ret = open_candev(ndev);
if (ret)
goto err_irq;
ret = xcan_chip_start(ndev);
if (ret < 0) {
netdev_err(ndev, "xcan_chip_start failed!\n");
goto err_candev;
}
napi_enable(&priv->napi);
netif_start_queue(ndev);
return 0;
err_candev:
close_candev(ndev);
err_irq:
free_irq(ndev->irq, ndev);
err:
pm_runtime_put(priv->dev);
return ret;
}
/**
* xcan_close - Driver close routine
* @ndev: Pointer to net_device structure
*
* Return: 0 always
*/
static int xcan_close(struct net_device *ndev)
{
struct xcan_priv *priv = netdev_priv(ndev);
netif_stop_queue(ndev);
napi_disable(&priv->napi);
xcan_chip_stop(ndev);
free_irq(ndev->irq, ndev);
close_candev(ndev);
pm_runtime_put(priv->dev);
return 0;
}
/**
* xcan_get_berr_counter - error counter routine
* @ndev: Pointer to net_device structure
* @bec: Pointer to can_berr_counter structure
*
* This is the driver error counter routine.
* Return: 0 on success and failure value on error
*/
static int xcan_get_berr_counter(const struct net_device *ndev,
struct can_berr_counter *bec)
{
struct xcan_priv *priv = netdev_priv(ndev);
int ret;
ret = pm_runtime_get_sync(priv->dev);
if (ret < 0) {
netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
__func__, ret);
pm_runtime_put(priv->dev);
return ret;
}
bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
pm_runtime_put(priv->dev);
return 0;
}
/**
* xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
* @ndev: Pointer to net_device structure
* @tdcv: Pointer to TDCV value
*
* Return: 0 on success
*/
static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
{
struct xcan_priv *priv = netdev_priv(ndev);
*tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
return 0;
}
static const struct net_device_ops xcan_netdev_ops = {
.ndo_open = xcan_open,
.ndo_stop = xcan_close,
.ndo_start_xmit = xcan_start_xmit,
.ndo_change_mtu = can_change_mtu,
};
/**
* xcan_suspend - Suspend method for the driver
* @dev: Address of the device structure
*
* Put the driver into low power mode.
* Return: 0 on success and failure value on error
*/
static int __maybe_unused xcan_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
if (netif_running(ndev)) {
netif_stop_queue(ndev);
netif_device_detach(ndev);
xcan_chip_stop(ndev);
}
return pm_runtime_force_suspend(dev);
}
/**
* xcan_resume - Resume from suspend
* @dev: Address of the device structure
*
* Resume operation after suspend.
* Return: 0 on success and failure value on error
*/
static int __maybe_unused xcan_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
int ret;
ret = pm_runtime_force_resume(dev);
if (ret) {
dev_err(dev, "pm_runtime_force_resume failed on resume\n");
return ret;
}
if (netif_running(ndev)) {
ret = xcan_chip_start(ndev);
if (ret) {
dev_err(dev, "xcan_chip_start failed on resume\n");
return ret;
}
netif_device_attach(ndev);
netif_start_queue(ndev);
}
return 0;
}
/**
* xcan_runtime_suspend - Runtime suspend method for the driver
* @dev: Address of the device structure
*
* Put the driver into low power mode.
* Return: 0 always
*/
static int __maybe_unused xcan_runtime_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct xcan_priv *priv = netdev_priv(ndev);
clk_disable_unprepare(priv->bus_clk);
clk_disable_unprepare(priv->can_clk);
return 0;
}
/**
* xcan_runtime_resume - Runtime resume from suspend
* @dev: Address of the device structure
*
* Resume operation after suspend.
* Return: 0 on success and failure value on error
*/
static int __maybe_unused xcan_runtime_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct xcan_priv *priv = netdev_priv(ndev);
int ret;
ret = clk_prepare_enable(priv->bus_clk);
if (ret) {
dev_err(dev, "Cannot enable clock.\n");
return ret;
}
ret = clk_prepare_enable(priv->can_clk);
if (ret) {
dev_err(dev, "Cannot enable clock.\n");
clk_disable_unprepare(priv->bus_clk);
return ret;
}
return 0;
}
static const struct dev_pm_ops xcan_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
};
static const struct xcan_devtype_data xcan_zynq_data = {
.cantype = XZYNQ_CANPS,
.flags = XCAN_FLAG_TXFEMP,
.bittiming_const = &xcan_bittiming_const,
.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
.bus_clk_name = "pclk",
};
static const struct xcan_devtype_data xcan_axi_data = {
.cantype = XAXI_CAN,
.bittiming_const = &xcan_bittiming_const,
.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
.bus_clk_name = "s_axi_aclk",
};
static const struct xcan_devtype_data xcan_canfd_data = {
.cantype = XAXI_CANFD,
.flags = XCAN_FLAG_EXT_FILTERS |
XCAN_FLAG_RXMNF |
XCAN_FLAG_TX_MAILBOXES |
XCAN_FLAG_RX_FIFO_MULTI,
.bittiming_const = &xcan_bittiming_const_canfd,
.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
.bus_clk_name = "s_axi_aclk",
};
static const struct xcan_devtype_data xcan_canfd2_data = {
.cantype = XAXI_CANFD_2_0,
.flags = XCAN_FLAG_EXT_FILTERS |
XCAN_FLAG_RXMNF |
XCAN_FLAG_TX_MAILBOXES |
XCAN_FLAG_CANFD_2 |
XCAN_FLAG_RX_FIFO_MULTI,
.bittiming_const = &xcan_bittiming_const_canfd2,
.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
.bus_clk_name = "s_axi_aclk",
};
/* Match table for OF platform binding */
static const struct of_device_id xcan_of_match[] = {
{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
{ /* end of list */ },
};
MODULE_DEVICE_TABLE(of, xcan_of_match);
/**
* xcan_probe - Platform registration call
* @pdev: Handle to the platform device structure
*
* This function does all the memory allocation and registration for the CAN
* device.
*
* Return: 0 on success and failure value on error
*/
static int xcan_probe(struct platform_device *pdev)
{
struct net_device *ndev;
struct xcan_priv *priv;
const struct of_device_id *of_id;
const struct xcan_devtype_data *devtype = &xcan_axi_data;
void __iomem *addr;
int ret;
int rx_max, tx_max;
u32 hw_tx_max = 0, hw_rx_max = 0;
const char *hw_tx_max_property;
/* Get the virtual base address for the device */
addr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(addr)) {
ret = PTR_ERR(addr);
goto err;
}
of_id = of_match_device(xcan_of_match, &pdev->dev);
if (of_id && of_id->data)
devtype = of_id->data;
hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
"tx-mailbox-count" : "tx-fifo-depth";
ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
&hw_tx_max);
if (ret < 0) {
dev_err(&pdev->dev, "missing %s property\n",
hw_tx_max_property);
goto err;
}
ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
&hw_rx_max);
if (ret < 0) {
dev_err(&pdev->dev,
"missing rx-fifo-depth property (mailbox mode is not supported)\n");
goto err;
}
/* With TX FIFO:
*
* There is no way to directly figure out how many frames have been
* sent when the TXOK interrupt is processed. If TXFEMP
* is supported, we can have 2 frames in the FIFO and use TXFEMP
* to determine if 1 or 2 frames have been sent.
* Theoretically we should be able to use TXFWMEMP to determine up
* to 3 frames, but it seems that after putting a second frame in the
* FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
* than 2 frames in FIFO) is set anyway with no TXOK (a frame was
* sent), which is not a sensible state - possibly TXFWMEMP is not
* completely synchronized with the rest of the bits?
*
* With TX mailboxes:
*
* HW sends frames in CAN ID priority order. To preserve FIFO ordering
* we submit frames one at a time.
*/
if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
(devtype->flags & XCAN_FLAG_TXFEMP))
tx_max = min(hw_tx_max, 2U);
else
tx_max = 1;
rx_max = hw_rx_max;
/* Create a CAN device instance */
ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
if (!ndev)
return -ENOMEM;
priv = netdev_priv(ndev);
priv->dev = &pdev->dev;
priv->can.bittiming_const = devtype->bittiming_const;
priv->can.do_set_mode = xcan_do_set_mode;
priv->can.do_get_berr_counter = xcan_get_berr_counter;
priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
CAN_CTRLMODE_BERR_REPORTING;
if (devtype->cantype == XAXI_CANFD) {
priv->can.data_bittiming_const =
&xcan_data_bittiming_const_canfd;
priv->can.tdc_const = &xcan_tdc_const_canfd;
}
if (devtype->cantype == XAXI_CANFD_2_0) {
priv->can.data_bittiming_const =
&xcan_data_bittiming_const_canfd2;
priv->can.tdc_const = &xcan_tdc_const_canfd2;
}
if (devtype->cantype == XAXI_CANFD ||
devtype->cantype == XAXI_CANFD_2_0) {
priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
CAN_CTRLMODE_TDC_AUTO;
priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
}
priv->reg_base = addr;
priv->tx_max = tx_max;
priv->devtype = *devtype;
spin_lock_init(&priv->tx_lock);
/* Get IRQ for the device */
ret = platform_get_irq(pdev, 0);
if (ret < 0)
goto err_free;
ndev->irq = ret;
ndev->flags |= IFF_ECHO; /* We support local echo */
platform_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
ndev->netdev_ops = &xcan_netdev_ops;
/* Getting the CAN can_clk info */
priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
if (IS_ERR(priv->can_clk)) {
ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
"device clock not found\n");
goto err_free;
}
priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
if (IS_ERR(priv->bus_clk)) {
ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
"bus clock not found\n");
goto err_free;
}
priv->write_reg = xcan_write_reg_le;
priv->read_reg = xcan_read_reg_le;
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) {
netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
__func__, ret);
goto err_disableclks;
}
if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
priv->write_reg = xcan_write_reg_be;
priv->read_reg = xcan_read_reg_be;
}
priv->can.clock.freq = clk_get_rate(priv->can_clk);
netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
ret = register_candev(ndev);
if (ret) {
dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
goto err_disableclks;
}
pm_runtime_put(&pdev->dev);
if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
}
netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
priv->reg_base, ndev->irq, priv->can.clock.freq,
hw_tx_max, priv->tx_max);
return 0;
err_disableclks:
pm_runtime_put(priv->dev);
pm_runtime_disable(&pdev->dev);
err_free:
free_candev(ndev);
err:
return ret;
}
/**
* xcan_remove - Unregister the device after releasing the resources
* @pdev: Handle to the platform device structure
*
* This function frees all the resources allocated to the device.
* Return: 0 always
*/
static int xcan_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
unregister_candev(ndev);
pm_runtime_disable(&pdev->dev);
free_candev(ndev);
return 0;
}
static struct platform_driver xcan_driver = {
.probe = xcan_probe,
.remove = xcan_remove,
.driver = {
.name = DRIVER_NAME,
.pm = &xcan_dev_pm_ops,
.of_match_table = xcan_of_match,
},
};
module_platform_driver(xcan_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Xilinx Inc");
MODULE_DESCRIPTION("Xilinx CAN interface");