linux/drivers/net/ipa/ipa.h
Alex Elder 2091c79ac4 net: ipa: count the number of modem TX endpoints
In ipa_endpoint_modem_exception_reset_all(), a high estimate was
made of the number of endpoints that need their status register
updated.  We only used what was needed, so the high estimate didn't
matter much.

However the next few patches are going to limit the number of
commands in a single transaction, and the overestimate would exceed
that.  So count the number of modem TX endpoints at initialization
time, and use it in ipa_endpoint_modem_exception_reset_all().

Signed-off-by: Alex Elder <elder@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-05-22 20:46:12 +01:00

164 lines
5.2 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2018-2020 Linaro Ltd.
*/
#ifndef _IPA_H_
#define _IPA_H_
#include <linux/types.h>
#include <linux/device.h>
#include <linux/notifier.h>
#include <linux/pm_wakeup.h>
#include "ipa_version.h"
#include "gsi.h"
#include "ipa_mem.h"
#include "ipa_qmi.h"
#include "ipa_endpoint.h"
#include "ipa_interrupt.h"
struct clk;
struct icc_path;
struct net_device;
struct platform_device;
struct ipa_power;
struct ipa_smp2p;
struct ipa_interrupt;
/**
* struct ipa - IPA information
* @gsi: Embedded GSI structure
* @version: IPA hardware version
* @pdev: Platform device
* @completion: Used to signal pipeline clear transfer complete
* @nb: Notifier block used for remoteproc SSR
* @notifier: Remoteproc SSR notifier
* @smp2p: SMP2P information
* @power: IPA power information
* @table_addr: DMA address of filter/route table content
* @table_virt: Virtual address of filter/route table content
* @interrupt: IPA Interrupt information
* @uc_powered: true if power is active by proxy for microcontroller
* @uc_loaded: true after microcontroller has reported it's ready
* @reg_addr: DMA address used for IPA register access
* @reg_virt: Virtual address used for IPA register access
* @mem_addr: DMA address of IPA-local memory space
* @mem_virt: Virtual address of IPA-local memory space
* @mem_offset: Offset from @mem_virt used for access to IPA memory
* @mem_size: Total size (bytes) of memory at @mem_virt
* @mem_count: Number of entries in the mem array
* @mem: Array of IPA-local memory region descriptors
* @imem_iova: I/O virtual address of IPA region in IMEM
* @imem_size: Size of IMEM region
* @smem_iova: I/O virtual address of IPA region in SMEM
* @smem_size: Size of SMEM region
* @zero_addr: DMA address of preallocated zero-filled memory
* @zero_virt: Virtual address of preallocated zero-filled memory
* @zero_size: Size (bytes) of preallocated zero-filled memory
* @available: Bit mask indicating endpoints hardware supports
* @filter_map: Bit mask indicating endpoints that support filtering
* @initialized: Bit mask indicating endpoints initialized
* @set_up: Bit mask indicating endpoints set up
* @enabled: Bit mask indicating endpoints enabled
* @modem_tx_count: Number of defined modem TX endoints
* @endpoint: Array of endpoint information
* @channel_map: Mapping of GSI channel to IPA endpoint
* @name_map: Mapping of IPA endpoint name to IPA endpoint
* @setup_complete: Flag indicating whether setup stage has completed
* @modem_state: State of modem (stopped, running)
* @modem_netdev: Network device structure used for modem
* @qmi: QMI information
*/
struct ipa {
struct gsi gsi;
enum ipa_version version;
struct platform_device *pdev;
struct completion completion;
struct notifier_block nb;
void *notifier;
struct ipa_smp2p *smp2p;
struct ipa_power *power;
dma_addr_t table_addr;
__le64 *table_virt;
struct ipa_interrupt *interrupt;
bool uc_powered;
bool uc_loaded;
dma_addr_t reg_addr;
void __iomem *reg_virt;
dma_addr_t mem_addr;
void *mem_virt;
u32 mem_offset;
u32 mem_size;
u32 mem_count;
const struct ipa_mem *mem;
unsigned long imem_iova;
size_t imem_size;
unsigned long smem_iova;
size_t smem_size;
dma_addr_t zero_addr;
void *zero_virt;
size_t zero_size;
/* Bit masks indicating endpoint state */
u32 available; /* supported by hardware */
u32 filter_map;
u32 initialized;
u32 set_up;
u32 enabled;
u32 modem_tx_count;
struct ipa_endpoint endpoint[IPA_ENDPOINT_MAX];
struct ipa_endpoint *channel_map[GSI_CHANNEL_COUNT_MAX];
struct ipa_endpoint *name_map[IPA_ENDPOINT_COUNT];
bool setup_complete;
atomic_t modem_state; /* enum ipa_modem_state */
struct net_device *modem_netdev;
struct ipa_qmi qmi;
};
/**
* ipa_setup() - Perform IPA setup
* @ipa: IPA pointer
*
* IPA initialization is broken into stages: init; config; and setup.
* (These have inverses exit, deconfig, and teardown.)
*
* Activities performed at the init stage can be done without requiring
* any access to IPA hardware. Activities performed at the config stage
* require IPA power, because they involve access to IPA registers.
* The setup stage is performed only after the GSI hardware is ready
* (more on this below). The setup stage allows the AP to perform
* more complex initialization by issuing "immediate commands" using
* a special interface to the IPA.
*
* This function, @ipa_setup(), starts the setup stage.
*
* In order for the GSI hardware to be functional it needs firmware to be
* loaded (in addition to some other low-level initialization). This early
* GSI initialization can be done either by Trust Zone on the AP or by the
* modem.
*
* If it's done by Trust Zone, the AP loads the GSI firmware and supplies
* it to Trust Zone to verify and install. When this completes, if
* verification was successful, the GSI layer is ready and ipa_setup()
* implements the setup phase of initialization.
*
* If the modem performs early GSI initialization, the AP needs to know
* when this has occurred. An SMP2P interrupt is used for this purpose,
* and receipt of that interrupt triggers the call to ipa_setup().
*/
int ipa_setup(struct ipa *ipa);
#endif /* _IPA_H_ */