linux/arch/x86/kernel/apic/msi.c
Thomas Gleixner 6e24c88773 x86/apic/msi: Enable PCI/IMS
Enable IMS in the domain init and allocation mapping code, but do not
enable it on the vector domain as discussed in various threads on LKML.

The interrupt remap domains can expand this setting like they do with
PCI multi MSI.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232327.022658817@linutronix.de
2022-12-05 22:22:35 +01:00

398 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Support of MSI, HPET and DMAR interrupts.
*
* Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
* Moved from arch/x86/kernel/apic/io_apic.c.
* Jiang Liu <jiang.liu@linux.intel.com>
* Convert to hierarchical irqdomain
*/
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/hpet.h>
#include <linux/msi.h>
#include <asm/irqdomain.h>
#include <asm/hpet.h>
#include <asm/hw_irq.h>
#include <asm/apic.h>
#include <asm/irq_remapping.h>
#include <asm/xen/hypervisor.h>
struct irq_domain *x86_pci_msi_default_domain __ro_after_init;
static void irq_msi_update_msg(struct irq_data *irqd, struct irq_cfg *cfg)
{
struct msi_msg msg[2] = { [1] = { }, };
__irq_msi_compose_msg(cfg, msg, false);
irq_data_get_irq_chip(irqd)->irq_write_msi_msg(irqd, msg);
}
static int
msi_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force)
{
struct irq_cfg old_cfg, *cfg = irqd_cfg(irqd);
struct irq_data *parent = irqd->parent_data;
unsigned int cpu;
int ret;
/* Save the current configuration */
cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
old_cfg = *cfg;
/* Allocate a new target vector */
ret = parent->chip->irq_set_affinity(parent, mask, force);
if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
return ret;
/*
* For non-maskable and non-remapped MSI interrupts the migration
* to a different destination CPU and a different vector has to be
* done careful to handle the possible stray interrupt which can be
* caused by the non-atomic update of the address/data pair.
*
* Direct update is possible when:
* - The MSI is maskable (remapped MSI does not use this code path)).
* The quirk bit is not set in this case.
* - The new vector is the same as the old vector
* - The old vector is MANAGED_IRQ_SHUTDOWN_VECTOR (interrupt starts up)
* - The interrupt is not yet started up
* - The new destination CPU is the same as the old destination CPU
*/
if (!irqd_msi_nomask_quirk(irqd) ||
cfg->vector == old_cfg.vector ||
old_cfg.vector == MANAGED_IRQ_SHUTDOWN_VECTOR ||
!irqd_is_started(irqd) ||
cfg->dest_apicid == old_cfg.dest_apicid) {
irq_msi_update_msg(irqd, cfg);
return ret;
}
/*
* Paranoia: Validate that the interrupt target is the local
* CPU.
*/
if (WARN_ON_ONCE(cpu != smp_processor_id())) {
irq_msi_update_msg(irqd, cfg);
return ret;
}
/*
* Redirect the interrupt to the new vector on the current CPU
* first. This might cause a spurious interrupt on this vector if
* the device raises an interrupt right between this update and the
* update to the final destination CPU.
*
* If the vector is in use then the installed device handler will
* denote it as spurious which is no harm as this is a rare event
* and interrupt handlers have to cope with spurious interrupts
* anyway. If the vector is unused, then it is marked so it won't
* trigger the 'No irq handler for vector' warning in
* common_interrupt().
*
* This requires to hold vector lock to prevent concurrent updates to
* the affected vector.
*/
lock_vector_lock();
/*
* Mark the new target vector on the local CPU if it is currently
* unused. Reuse the VECTOR_RETRIGGERED state which is also used in
* the CPU hotplug path for a similar purpose. This cannot be
* undone here as the current CPU has interrupts disabled and
* cannot handle the interrupt before the whole set_affinity()
* section is done. In the CPU unplug case, the current CPU is
* about to vanish and will not handle any interrupts anymore. The
* vector is cleaned up when the CPU comes online again.
*/
if (IS_ERR_OR_NULL(this_cpu_read(vector_irq[cfg->vector])))
this_cpu_write(vector_irq[cfg->vector], VECTOR_RETRIGGERED);
/* Redirect it to the new vector on the local CPU temporarily */
old_cfg.vector = cfg->vector;
irq_msi_update_msg(irqd, &old_cfg);
/* Now transition it to the target CPU */
irq_msi_update_msg(irqd, cfg);
/*
* All interrupts after this point are now targeted at the new
* vector/CPU.
*
* Drop vector lock before testing whether the temporary assignment
* to the local CPU was hit by an interrupt raised in the device,
* because the retrigger function acquires vector lock again.
*/
unlock_vector_lock();
/*
* Check whether the transition raced with a device interrupt and
* is pending in the local APICs IRR. It is safe to do this outside
* of vector lock as the irq_desc::lock of this interrupt is still
* held and interrupts are disabled: The check is not accessing the
* underlying vector store. It's just checking the local APIC's
* IRR.
*/
if (lapic_vector_set_in_irr(cfg->vector))
irq_data_get_irq_chip(irqd)->irq_retrigger(irqd);
return ret;
}
/**
* pci_dev_has_default_msi_parent_domain - Check whether the device has the default
* MSI parent domain associated
* @dev: Pointer to the PCI device
*/
bool pci_dev_has_default_msi_parent_domain(struct pci_dev *dev)
{
struct irq_domain *domain = dev_get_msi_domain(&dev->dev);
if (!domain)
domain = dev_get_msi_domain(&dev->bus->dev);
if (!domain)
return false;
return domain == x86_vector_domain;
}
/**
* x86_msi_prepare - Setup of msi_alloc_info_t for allocations
* @domain: The domain for which this setup happens
* @dev: The device for which interrupts are allocated
* @nvec: The number of vectors to allocate
* @alloc: The allocation info structure to initialize
*
* This function is to be used for all types of MSI domains above the x86
* vector domain and any intermediates. It is always invoked from the
* top level interrupt domain. The domain specific allocation
* functionality is determined via the @domain's bus token which allows to
* map the X86 specific allocation type.
*/
static int x86_msi_prepare(struct irq_domain *domain, struct device *dev,
int nvec, msi_alloc_info_t *alloc)
{
struct msi_domain_info *info = domain->host_data;
init_irq_alloc_info(alloc, NULL);
switch (info->bus_token) {
case DOMAIN_BUS_PCI_DEVICE_MSI:
alloc->type = X86_IRQ_ALLOC_TYPE_PCI_MSI;
return 0;
case DOMAIN_BUS_PCI_DEVICE_MSIX:
case DOMAIN_BUS_PCI_DEVICE_IMS:
alloc->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX;
return 0;
default:
return -EINVAL;
}
}
/**
* x86_init_dev_msi_info - Domain info setup for MSI domains
* @dev: The device for which the domain should be created
* @domain: The (root) domain providing this callback
* @real_parent: The real parent domain of the to initialize domain
* @info: The domain info for the to initialize domain
*
* This function is to be used for all types of MSI domains above the x86
* vector domain and any intermediates. The domain specific functionality
* is determined via the @real_parent.
*/
static bool x86_init_dev_msi_info(struct device *dev, struct irq_domain *domain,
struct irq_domain *real_parent, struct msi_domain_info *info)
{
const struct msi_parent_ops *pops = real_parent->msi_parent_ops;
/* MSI parent domain specific settings */
switch (real_parent->bus_token) {
case DOMAIN_BUS_ANY:
/* Only the vector domain can have the ANY token */
if (WARN_ON_ONCE(domain != real_parent))
return false;
info->chip->irq_set_affinity = msi_set_affinity;
/* See msi_set_affinity() for the gory details */
info->flags |= MSI_FLAG_NOMASK_QUIRK;
break;
case DOMAIN_BUS_DMAR:
case DOMAIN_BUS_AMDVI:
break;
default:
WARN_ON_ONCE(1);
return false;
}
/* Is the target supported? */
switch(info->bus_token) {
case DOMAIN_BUS_PCI_DEVICE_MSI:
case DOMAIN_BUS_PCI_DEVICE_MSIX:
break;
case DOMAIN_BUS_PCI_DEVICE_IMS:
if (!(pops->supported_flags & MSI_FLAG_PCI_IMS))
return false;
break;
default:
WARN_ON_ONCE(1);
return false;
}
/*
* Mask out the domain specific MSI feature flags which are not
* supported by the real parent.
*/
info->flags &= pops->supported_flags;
/* Enforce the required flags */
info->flags |= X86_VECTOR_MSI_FLAGS_REQUIRED;
/* This is always invoked from the top level MSI domain! */
info->ops->msi_prepare = x86_msi_prepare;
info->chip->irq_ack = irq_chip_ack_parent;
info->chip->irq_retrigger = irq_chip_retrigger_hierarchy;
info->chip->flags |= IRQCHIP_SKIP_SET_WAKE |
IRQCHIP_AFFINITY_PRE_STARTUP;
info->handler = handle_edge_irq;
info->handler_name = "edge";
return true;
}
static const struct msi_parent_ops x86_vector_msi_parent_ops = {
.supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED,
.init_dev_msi_info = x86_init_dev_msi_info,
};
struct irq_domain * __init native_create_pci_msi_domain(void)
{
if (disable_apic)
return NULL;
x86_vector_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
x86_vector_domain->msi_parent_ops = &x86_vector_msi_parent_ops;
return x86_vector_domain;
}
void __init x86_create_pci_msi_domain(void)
{
x86_pci_msi_default_domain = x86_init.irqs.create_pci_msi_domain();
}
/* Keep around for hyperV */
int pci_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec,
msi_alloc_info_t *arg)
{
init_irq_alloc_info(arg, NULL);
if (to_pci_dev(dev)->msix_enabled)
arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX;
else
arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSI;
return 0;
}
EXPORT_SYMBOL_GPL(pci_msi_prepare);
#ifdef CONFIG_DMAR_TABLE
/*
* The Intel IOMMU (ab)uses the high bits of the MSI address to contain the
* high bits of the destination APIC ID. This can't be done in the general
* case for MSIs as it would be targeting real memory above 4GiB not the
* APIC.
*/
static void dmar_msi_compose_msg(struct irq_data *data, struct msi_msg *msg)
{
__irq_msi_compose_msg(irqd_cfg(data), msg, true);
}
static void dmar_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
{
dmar_msi_write(data->irq, msg);
}
static struct irq_chip dmar_msi_controller = {
.name = "DMAR-MSI",
.irq_unmask = dmar_msi_unmask,
.irq_mask = dmar_msi_mask,
.irq_ack = irq_chip_ack_parent,
.irq_set_affinity = msi_domain_set_affinity,
.irq_retrigger = irq_chip_retrigger_hierarchy,
.irq_compose_msi_msg = dmar_msi_compose_msg,
.irq_write_msi_msg = dmar_msi_write_msg,
.flags = IRQCHIP_SKIP_SET_WAKE |
IRQCHIP_AFFINITY_PRE_STARTUP,
};
static int dmar_msi_init(struct irq_domain *domain,
struct msi_domain_info *info, unsigned int virq,
irq_hw_number_t hwirq, msi_alloc_info_t *arg)
{
irq_domain_set_info(domain, virq, arg->devid, info->chip, NULL,
handle_edge_irq, arg->data, "edge");
return 0;
}
static struct msi_domain_ops dmar_msi_domain_ops = {
.msi_init = dmar_msi_init,
};
static struct msi_domain_info dmar_msi_domain_info = {
.ops = &dmar_msi_domain_ops,
.chip = &dmar_msi_controller,
.flags = MSI_FLAG_USE_DEF_DOM_OPS,
};
static struct irq_domain *dmar_get_irq_domain(void)
{
static struct irq_domain *dmar_domain;
static DEFINE_MUTEX(dmar_lock);
struct fwnode_handle *fn;
mutex_lock(&dmar_lock);
if (dmar_domain)
goto out;
fn = irq_domain_alloc_named_fwnode("DMAR-MSI");
if (fn) {
dmar_domain = msi_create_irq_domain(fn, &dmar_msi_domain_info,
x86_vector_domain);
if (!dmar_domain)
irq_domain_free_fwnode(fn);
}
out:
mutex_unlock(&dmar_lock);
return dmar_domain;
}
int dmar_alloc_hwirq(int id, int node, void *arg)
{
struct irq_domain *domain = dmar_get_irq_domain();
struct irq_alloc_info info;
if (!domain)
return -1;
init_irq_alloc_info(&info, NULL);
info.type = X86_IRQ_ALLOC_TYPE_DMAR;
info.devid = id;
info.hwirq = id;
info.data = arg;
return irq_domain_alloc_irqs(domain, 1, node, &info);
}
void dmar_free_hwirq(int irq)
{
irq_domain_free_irqs(irq, 1);
}
#endif
bool arch_restore_msi_irqs(struct pci_dev *dev)
{
return xen_initdom_restore_msi(dev);
}