mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-16 16:54:20 +08:00
91eea67c6d
We need to keep track of the backing pages that get allocated by vmemmap_populate() so that when we use kdump, the dump-capture kernel knows where these pages are. We use a simple linked list of structures that contain the physical address of the backing page and corresponding virtual address to track the backing pages. To save space, we just use a pointer to the next struct vmemmap_backing. We can also do this because we never remove nodes. We call the pointer "list" to be compatible with changes made to the crash utility. vmemmap_populate() is called either at boot-time or on a memory hotplug operation. We don't have to worry about the boot-time calls because they will be inherently single-threaded, and for a memory hotplug operation vmemmap_populate() is called through: sparse_add_one_section() | V kmalloc_section_memmap() | V sparse_mem_map_populate() | V vmemmap_populate() and in sparse_add_one_section() we're protected by pgdat_resize_lock(). So, we don't need a spinlock to protect the vmemmap_list. We allocate space for the vmemmap_backing structs by allocating whole pages in vmemmap_list_alloc() and then handing out chunks of this to vmemmap_list_populate(). This means that we waste at most just under one page, but this keeps the code is simple. Signed-off-by: Mark Nelson <markn@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
144 lines
4.0 KiB
C
144 lines
4.0 KiB
C
#ifndef _ASM_POWERPC_PGALLOC_64_H
|
|
#define _ASM_POWERPC_PGALLOC_64_H
|
|
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/percpu.h>
|
|
|
|
struct vmemmap_backing {
|
|
struct vmemmap_backing *list;
|
|
unsigned long phys;
|
|
unsigned long virt_addr;
|
|
};
|
|
|
|
/*
|
|
* Functions that deal with pagetables that could be at any level of
|
|
* the table need to be passed an "index_size" so they know how to
|
|
* handle allocation. For PTE pages (which are linked to a struct
|
|
* page for now, and drawn from the main get_free_pages() pool), the
|
|
* allocation size will be (2^index_size * sizeof(pointer)) and
|
|
* allocations are drawn from the kmem_cache in PGT_CACHE(index_size).
|
|
*
|
|
* The maximum index size needs to be big enough to allow any
|
|
* pagetable sizes we need, but small enough to fit in the low bits of
|
|
* any page table pointer. In other words all pagetables, even tiny
|
|
* ones, must be aligned to allow at least enough low 0 bits to
|
|
* contain this value. This value is also used as a mask, so it must
|
|
* be one less than a power of two.
|
|
*/
|
|
#define MAX_PGTABLE_INDEX_SIZE 0xf
|
|
|
|
extern struct kmem_cache *pgtable_cache[];
|
|
#define PGT_CACHE(shift) (pgtable_cache[(shift)-1])
|
|
|
|
static inline pgd_t *pgd_alloc(struct mm_struct *mm)
|
|
{
|
|
return kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), GFP_KERNEL);
|
|
}
|
|
|
|
static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd);
|
|
}
|
|
|
|
#ifndef CONFIG_PPC_64K_PAGES
|
|
|
|
#define pgd_populate(MM, PGD, PUD) pgd_set(PGD, PUD)
|
|
|
|
static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE),
|
|
GFP_KERNEL|__GFP_REPEAT);
|
|
}
|
|
|
|
static inline void pud_free(struct mm_struct *mm, pud_t *pud)
|
|
{
|
|
kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud);
|
|
}
|
|
|
|
static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
|
|
{
|
|
pud_set(pud, (unsigned long)pmd);
|
|
}
|
|
|
|
#define pmd_populate(mm, pmd, pte_page) \
|
|
pmd_populate_kernel(mm, pmd, page_address(pte_page))
|
|
#define pmd_populate_kernel(mm, pmd, pte) pmd_set(pmd, (unsigned long)(pte))
|
|
#define pmd_pgtable(pmd) pmd_page(pmd)
|
|
|
|
|
|
#else /* CONFIG_PPC_64K_PAGES */
|
|
|
|
#define pud_populate(mm, pud, pmd) pud_set(pud, (unsigned long)pmd)
|
|
|
|
static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
|
|
pte_t *pte)
|
|
{
|
|
pmd_set(pmd, (unsigned long)pte);
|
|
}
|
|
|
|
#define pmd_populate(mm, pmd, pte_page) \
|
|
pmd_populate_kernel(mm, pmd, page_address(pte_page))
|
|
#define pmd_pgtable(pmd) pmd_page(pmd)
|
|
|
|
#endif /* CONFIG_PPC_64K_PAGES */
|
|
|
|
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
return kmem_cache_alloc(PGT_CACHE(PMD_INDEX_SIZE),
|
|
GFP_KERNEL|__GFP_REPEAT);
|
|
}
|
|
|
|
static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
kmem_cache_free(PGT_CACHE(PMD_INDEX_SIZE), pmd);
|
|
}
|
|
|
|
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO);
|
|
}
|
|
|
|
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
struct page *page;
|
|
pte_t *pte;
|
|
|
|
pte = pte_alloc_one_kernel(mm, address);
|
|
if (!pte)
|
|
return NULL;
|
|
page = virt_to_page(pte);
|
|
pgtable_page_ctor(page);
|
|
return page;
|
|
}
|
|
|
|
static inline void pgtable_free(void *table, unsigned index_size)
|
|
{
|
|
if (!index_size)
|
|
free_page((unsigned long)table);
|
|
else {
|
|
BUG_ON(index_size > MAX_PGTABLE_INDEX_SIZE);
|
|
kmem_cache_free(PGT_CACHE(index_size), table);
|
|
}
|
|
}
|
|
|
|
#define __pmd_free_tlb(tlb, pmd, addr) \
|
|
pgtable_free_tlb(tlb, pmd, PMD_INDEX_SIZE)
|
|
#ifndef CONFIG_PPC_64K_PAGES
|
|
#define __pud_free_tlb(tlb, pud, addr) \
|
|
pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE)
|
|
|
|
#endif /* CONFIG_PPC_64K_PAGES */
|
|
|
|
#define check_pgt_cache() do { } while (0)
|
|
|
|
#endif /* _ASM_POWERPC_PGALLOC_64_H */
|