mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-24 04:34:08 +08:00
8ac0406335
Although the desired size of the SWIOTLB memory pool is increased in
swiotlb_adjust_nareas() to match the number of areas, the actual allocation
may be smaller, which may require reducing the number of areas.
For example, Xen uses swiotlb_init_late(), which in turn uses the page
allocator. On x86, page size is 4 KiB and MAX_ORDER is 10 (1024 pages),
resulting in a maximum memory pool size of 4 MiB. This corresponds to 2048
slots of 2 KiB each. The minimum area size is 128 (IO_TLB_SEGSIZE),
allowing at most 2048 / 128 = 16 areas.
If num_possible_cpus() is greater than the maximum number of areas, areas
are smaller than IO_TLB_SEGSIZE and contiguous groups of free slots will
span multiple areas. When allocating and freeing slots, only one area will
be properly locked, causing race conditions on the unlocked slots and
ultimately data corruption, kernel hangs and crashes.
Fixes: 20347fca71
("swiotlb: split up the global swiotlb lock")
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Reviewed-by: Roberto Sassu <roberto.sassu@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
1144 lines
31 KiB
C
1144 lines
31 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Dynamic DMA mapping support.
|
|
*
|
|
* This implementation is a fallback for platforms that do not support
|
|
* I/O TLBs (aka DMA address translation hardware).
|
|
* Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
|
|
* Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
|
|
* Copyright (C) 2000, 2003 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*
|
|
* 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
|
|
* 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
|
|
* unnecessary i-cache flushing.
|
|
* 04/07/.. ak Better overflow handling. Assorted fixes.
|
|
* 05/09/10 linville Add support for syncing ranges, support syncing for
|
|
* DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
|
|
* 08/12/11 beckyb Add highmem support
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "software IO TLB: " fmt
|
|
|
|
#include <linux/cache.h>
|
|
#include <linux/cc_platform.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/dma-map-ops.h>
|
|
#include <linux/export.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iommu-helper.h>
|
|
#include <linux/init.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/set_memory.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/string.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/types.h>
|
|
#ifdef CONFIG_DMA_RESTRICTED_POOL
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/of_reserved_mem.h>
|
|
#include <linux/slab.h>
|
|
#endif
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/swiotlb.h>
|
|
|
|
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
|
|
|
|
/*
|
|
* Minimum IO TLB size to bother booting with. Systems with mainly
|
|
* 64bit capable cards will only lightly use the swiotlb. If we can't
|
|
* allocate a contiguous 1MB, we're probably in trouble anyway.
|
|
*/
|
|
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
|
|
|
|
#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
|
|
|
|
struct io_tlb_slot {
|
|
phys_addr_t orig_addr;
|
|
size_t alloc_size;
|
|
unsigned int list;
|
|
};
|
|
|
|
static bool swiotlb_force_bounce;
|
|
static bool swiotlb_force_disable;
|
|
|
|
struct io_tlb_mem io_tlb_default_mem;
|
|
|
|
static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
|
|
static unsigned long default_nareas;
|
|
|
|
/**
|
|
* struct io_tlb_area - IO TLB memory area descriptor
|
|
*
|
|
* This is a single area with a single lock.
|
|
*
|
|
* @used: The number of used IO TLB block.
|
|
* @index: The slot index to start searching in this area for next round.
|
|
* @lock: The lock to protect the above data structures in the map and
|
|
* unmap calls.
|
|
*/
|
|
struct io_tlb_area {
|
|
unsigned long used;
|
|
unsigned int index;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
/*
|
|
* Round up number of slabs to the next power of 2. The last area is going
|
|
* be smaller than the rest if default_nslabs is not power of two.
|
|
* The number of slot in an area should be a multiple of IO_TLB_SEGSIZE,
|
|
* otherwise a segment may span two or more areas. It conflicts with free
|
|
* contiguous slots tracking: free slots are treated contiguous no matter
|
|
* whether they cross an area boundary.
|
|
*
|
|
* Return true if default_nslabs is rounded up.
|
|
*/
|
|
static bool round_up_default_nslabs(void)
|
|
{
|
|
if (!default_nareas)
|
|
return false;
|
|
|
|
if (default_nslabs < IO_TLB_SEGSIZE * default_nareas)
|
|
default_nslabs = IO_TLB_SEGSIZE * default_nareas;
|
|
else if (is_power_of_2(default_nslabs))
|
|
return false;
|
|
default_nslabs = roundup_pow_of_two(default_nslabs);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* swiotlb_adjust_nareas() - adjust the number of areas and slots
|
|
* @nareas: Desired number of areas. Zero is treated as 1.
|
|
*
|
|
* Adjust the default number of areas in a memory pool.
|
|
* The default size of the memory pool may also change to meet minimum area
|
|
* size requirements.
|
|
*/
|
|
static void swiotlb_adjust_nareas(unsigned int nareas)
|
|
{
|
|
if (!nareas)
|
|
nareas = 1;
|
|
else if (!is_power_of_2(nareas))
|
|
nareas = roundup_pow_of_two(nareas);
|
|
|
|
default_nareas = nareas;
|
|
|
|
pr_info("area num %d.\n", nareas);
|
|
if (round_up_default_nslabs())
|
|
pr_info("SWIOTLB bounce buffer size roundup to %luMB",
|
|
(default_nslabs << IO_TLB_SHIFT) >> 20);
|
|
}
|
|
|
|
/**
|
|
* limit_nareas() - get the maximum number of areas for a given memory pool size
|
|
* @nareas: Desired number of areas.
|
|
* @nslots: Total number of slots in the memory pool.
|
|
*
|
|
* Limit the number of areas to the maximum possible number of areas in
|
|
* a memory pool of the given size.
|
|
*
|
|
* Return: Maximum possible number of areas.
|
|
*/
|
|
static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots)
|
|
{
|
|
if (nslots < nareas * IO_TLB_SEGSIZE)
|
|
return nslots / IO_TLB_SEGSIZE;
|
|
return nareas;
|
|
}
|
|
|
|
static int __init
|
|
setup_io_tlb_npages(char *str)
|
|
{
|
|
if (isdigit(*str)) {
|
|
/* avoid tail segment of size < IO_TLB_SEGSIZE */
|
|
default_nslabs =
|
|
ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
|
|
}
|
|
if (*str == ',')
|
|
++str;
|
|
if (isdigit(*str))
|
|
swiotlb_adjust_nareas(simple_strtoul(str, &str, 0));
|
|
if (*str == ',')
|
|
++str;
|
|
if (!strcmp(str, "force"))
|
|
swiotlb_force_bounce = true;
|
|
else if (!strcmp(str, "noforce"))
|
|
swiotlb_force_disable = true;
|
|
|
|
return 0;
|
|
}
|
|
early_param("swiotlb", setup_io_tlb_npages);
|
|
|
|
unsigned long swiotlb_size_or_default(void)
|
|
{
|
|
return default_nslabs << IO_TLB_SHIFT;
|
|
}
|
|
|
|
void __init swiotlb_adjust_size(unsigned long size)
|
|
{
|
|
/*
|
|
* If swiotlb parameter has not been specified, give a chance to
|
|
* architectures such as those supporting memory encryption to
|
|
* adjust/expand SWIOTLB size for their use.
|
|
*/
|
|
if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
|
|
return;
|
|
|
|
size = ALIGN(size, IO_TLB_SIZE);
|
|
default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
|
|
if (round_up_default_nslabs())
|
|
size = default_nslabs << IO_TLB_SHIFT;
|
|
pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
|
|
}
|
|
|
|
void swiotlb_print_info(void)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
|
|
if (!mem->nslabs) {
|
|
pr_warn("No low mem\n");
|
|
return;
|
|
}
|
|
|
|
pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
|
|
(mem->nslabs << IO_TLB_SHIFT) >> 20);
|
|
}
|
|
|
|
static inline unsigned long io_tlb_offset(unsigned long val)
|
|
{
|
|
return val & (IO_TLB_SEGSIZE - 1);
|
|
}
|
|
|
|
static inline unsigned long nr_slots(u64 val)
|
|
{
|
|
return DIV_ROUND_UP(val, IO_TLB_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Early SWIOTLB allocation may be too early to allow an architecture to
|
|
* perform the desired operations. This function allows the architecture to
|
|
* call SWIOTLB when the operations are possible. It needs to be called
|
|
* before the SWIOTLB memory is used.
|
|
*/
|
|
void __init swiotlb_update_mem_attributes(void)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
unsigned long bytes;
|
|
|
|
if (!mem->nslabs || mem->late_alloc)
|
|
return;
|
|
bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
|
|
set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT);
|
|
}
|
|
|
|
static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
|
|
unsigned long nslabs, unsigned int flags,
|
|
bool late_alloc, unsigned int nareas)
|
|
{
|
|
void *vaddr = phys_to_virt(start);
|
|
unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
|
|
|
|
mem->nslabs = nslabs;
|
|
mem->start = start;
|
|
mem->end = mem->start + bytes;
|
|
mem->late_alloc = late_alloc;
|
|
mem->nareas = nareas;
|
|
mem->area_nslabs = nslabs / mem->nareas;
|
|
|
|
mem->force_bounce = swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
|
|
|
|
for (i = 0; i < mem->nareas; i++) {
|
|
spin_lock_init(&mem->areas[i].lock);
|
|
mem->areas[i].index = 0;
|
|
mem->areas[i].used = 0;
|
|
}
|
|
|
|
for (i = 0; i < mem->nslabs; i++) {
|
|
mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
|
|
mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
|
|
mem->slots[i].alloc_size = 0;
|
|
}
|
|
|
|
memset(vaddr, 0, bytes);
|
|
mem->vaddr = vaddr;
|
|
return;
|
|
}
|
|
|
|
static void __init *swiotlb_memblock_alloc(unsigned long nslabs,
|
|
unsigned int flags,
|
|
int (*remap)(void *tlb, unsigned long nslabs))
|
|
{
|
|
size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
|
|
void *tlb;
|
|
|
|
/*
|
|
* By default allocate the bounce buffer memory from low memory, but
|
|
* allow to pick a location everywhere for hypervisors with guest
|
|
* memory encryption.
|
|
*/
|
|
if (flags & SWIOTLB_ANY)
|
|
tlb = memblock_alloc(bytes, PAGE_SIZE);
|
|
else
|
|
tlb = memblock_alloc_low(bytes, PAGE_SIZE);
|
|
|
|
if (!tlb) {
|
|
pr_warn("%s: Failed to allocate %zu bytes tlb structure\n",
|
|
__func__, bytes);
|
|
return NULL;
|
|
}
|
|
|
|
if (remap && remap(tlb, nslabs) < 0) {
|
|
memblock_free(tlb, PAGE_ALIGN(bytes));
|
|
pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes);
|
|
return NULL;
|
|
}
|
|
|
|
return tlb;
|
|
}
|
|
|
|
/*
|
|
* Statically reserve bounce buffer space and initialize bounce buffer data
|
|
* structures for the software IO TLB used to implement the DMA API.
|
|
*/
|
|
void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
|
|
int (*remap)(void *tlb, unsigned long nslabs))
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
unsigned long nslabs;
|
|
unsigned int nareas;
|
|
size_t alloc_size;
|
|
void *tlb;
|
|
|
|
if (!addressing_limit && !swiotlb_force_bounce)
|
|
return;
|
|
if (swiotlb_force_disable)
|
|
return;
|
|
|
|
if (!default_nareas)
|
|
swiotlb_adjust_nareas(num_possible_cpus());
|
|
|
|
nslabs = default_nslabs;
|
|
nareas = limit_nareas(default_nareas, nslabs);
|
|
while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) {
|
|
if (nslabs <= IO_TLB_MIN_SLABS)
|
|
return;
|
|
nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
|
|
nareas = limit_nareas(nareas, nslabs);
|
|
}
|
|
|
|
if (default_nslabs != nslabs) {
|
|
pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs",
|
|
default_nslabs, nslabs);
|
|
default_nslabs = nslabs;
|
|
}
|
|
|
|
alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
|
|
mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
|
|
if (!mem->slots) {
|
|
pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n",
|
|
__func__, alloc_size, PAGE_SIZE);
|
|
return;
|
|
}
|
|
|
|
mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area),
|
|
default_nareas), SMP_CACHE_BYTES);
|
|
if (!mem->areas) {
|
|
pr_warn("%s: Failed to allocate mem->areas.\n", __func__);
|
|
return;
|
|
}
|
|
|
|
swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, flags, false,
|
|
default_nareas);
|
|
|
|
if (flags & SWIOTLB_VERBOSE)
|
|
swiotlb_print_info();
|
|
}
|
|
|
|
void __init swiotlb_init(bool addressing_limit, unsigned int flags)
|
|
{
|
|
swiotlb_init_remap(addressing_limit, flags, NULL);
|
|
}
|
|
|
|
/*
|
|
* Systems with larger DMA zones (those that don't support ISA) can
|
|
* initialize the swiotlb later using the slab allocator if needed.
|
|
* This should be just like above, but with some error catching.
|
|
*/
|
|
int swiotlb_init_late(size_t size, gfp_t gfp_mask,
|
|
int (*remap)(void *tlb, unsigned long nslabs))
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
|
|
unsigned int nareas;
|
|
unsigned char *vstart = NULL;
|
|
unsigned int order, area_order;
|
|
bool retried = false;
|
|
int rc = 0;
|
|
|
|
if (swiotlb_force_disable)
|
|
return 0;
|
|
|
|
if (!default_nareas)
|
|
swiotlb_adjust_nareas(num_possible_cpus());
|
|
|
|
retry:
|
|
order = get_order(nslabs << IO_TLB_SHIFT);
|
|
nslabs = SLABS_PER_PAGE << order;
|
|
|
|
while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
|
|
vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
|
|
order);
|
|
if (vstart)
|
|
break;
|
|
order--;
|
|
nslabs = SLABS_PER_PAGE << order;
|
|
retried = true;
|
|
}
|
|
|
|
if (!vstart)
|
|
return -ENOMEM;
|
|
|
|
if (remap)
|
|
rc = remap(vstart, nslabs);
|
|
if (rc) {
|
|
free_pages((unsigned long)vstart, order);
|
|
|
|
nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
|
|
if (nslabs < IO_TLB_MIN_SLABS)
|
|
return rc;
|
|
retried = true;
|
|
goto retry;
|
|
}
|
|
|
|
if (retried) {
|
|
pr_warn("only able to allocate %ld MB\n",
|
|
(PAGE_SIZE << order) >> 20);
|
|
}
|
|
|
|
nareas = limit_nareas(default_nareas, nslabs);
|
|
area_order = get_order(array_size(sizeof(*mem->areas), nareas));
|
|
mem->areas = (struct io_tlb_area *)
|
|
__get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order);
|
|
if (!mem->areas)
|
|
goto error_area;
|
|
|
|
mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
|
|
get_order(array_size(sizeof(*mem->slots), nslabs)));
|
|
if (!mem->slots)
|
|
goto error_slots;
|
|
|
|
set_memory_decrypted((unsigned long)vstart,
|
|
(nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
|
|
swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, 0, true,
|
|
nareas);
|
|
|
|
swiotlb_print_info();
|
|
return 0;
|
|
|
|
error_slots:
|
|
free_pages((unsigned long)mem->areas, area_order);
|
|
error_area:
|
|
free_pages((unsigned long)vstart, order);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void __init swiotlb_exit(void)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
unsigned long tbl_vaddr;
|
|
size_t tbl_size, slots_size;
|
|
unsigned int area_order;
|
|
|
|
if (swiotlb_force_bounce)
|
|
return;
|
|
|
|
if (!mem->nslabs)
|
|
return;
|
|
|
|
pr_info("tearing down default memory pool\n");
|
|
tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
|
|
tbl_size = PAGE_ALIGN(mem->end - mem->start);
|
|
slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
|
|
|
|
set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
|
|
if (mem->late_alloc) {
|
|
area_order = get_order(array_size(sizeof(*mem->areas),
|
|
mem->nareas));
|
|
free_pages((unsigned long)mem->areas, area_order);
|
|
free_pages(tbl_vaddr, get_order(tbl_size));
|
|
free_pages((unsigned long)mem->slots, get_order(slots_size));
|
|
} else {
|
|
memblock_free_late(__pa(mem->areas),
|
|
array_size(sizeof(*mem->areas), mem->nareas));
|
|
memblock_free_late(mem->start, tbl_size);
|
|
memblock_free_late(__pa(mem->slots), slots_size);
|
|
}
|
|
|
|
memset(mem, 0, sizeof(*mem));
|
|
}
|
|
|
|
/*
|
|
* Return the offset into a iotlb slot required to keep the device happy.
|
|
*/
|
|
static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
|
|
{
|
|
return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
|
|
}
|
|
|
|
/*
|
|
* Bounce: copy the swiotlb buffer from or back to the original dma location
|
|
*/
|
|
static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
|
|
phys_addr_t orig_addr = mem->slots[index].orig_addr;
|
|
size_t alloc_size = mem->slots[index].alloc_size;
|
|
unsigned long pfn = PFN_DOWN(orig_addr);
|
|
unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
|
|
unsigned int tlb_offset, orig_addr_offset;
|
|
|
|
if (orig_addr == INVALID_PHYS_ADDR)
|
|
return;
|
|
|
|
tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
|
|
orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
|
|
if (tlb_offset < orig_addr_offset) {
|
|
dev_WARN_ONCE(dev, 1,
|
|
"Access before mapping start detected. orig offset %u, requested offset %u.\n",
|
|
orig_addr_offset, tlb_offset);
|
|
return;
|
|
}
|
|
|
|
tlb_offset -= orig_addr_offset;
|
|
if (tlb_offset > alloc_size) {
|
|
dev_WARN_ONCE(dev, 1,
|
|
"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
|
|
alloc_size, size, tlb_offset);
|
|
return;
|
|
}
|
|
|
|
orig_addr += tlb_offset;
|
|
alloc_size -= tlb_offset;
|
|
|
|
if (size > alloc_size) {
|
|
dev_WARN_ONCE(dev, 1,
|
|
"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
|
|
alloc_size, size);
|
|
size = alloc_size;
|
|
}
|
|
|
|
if (PageHighMem(pfn_to_page(pfn))) {
|
|
unsigned int offset = orig_addr & ~PAGE_MASK;
|
|
struct page *page;
|
|
unsigned int sz = 0;
|
|
unsigned long flags;
|
|
|
|
while (size) {
|
|
sz = min_t(size_t, PAGE_SIZE - offset, size);
|
|
|
|
local_irq_save(flags);
|
|
page = pfn_to_page(pfn);
|
|
if (dir == DMA_TO_DEVICE)
|
|
memcpy_from_page(vaddr, page, offset, sz);
|
|
else
|
|
memcpy_to_page(page, offset, vaddr, sz);
|
|
local_irq_restore(flags);
|
|
|
|
size -= sz;
|
|
pfn++;
|
|
vaddr += sz;
|
|
offset = 0;
|
|
}
|
|
} else if (dir == DMA_TO_DEVICE) {
|
|
memcpy(vaddr, phys_to_virt(orig_addr), size);
|
|
} else {
|
|
memcpy(phys_to_virt(orig_addr), vaddr, size);
|
|
}
|
|
}
|
|
|
|
static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
|
|
{
|
|
return start + (idx << IO_TLB_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
|
|
*/
|
|
static inline unsigned long get_max_slots(unsigned long boundary_mask)
|
|
{
|
|
if (boundary_mask == ~0UL)
|
|
return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
|
|
return nr_slots(boundary_mask + 1);
|
|
}
|
|
|
|
static unsigned int wrap_area_index(struct io_tlb_mem *mem, unsigned int index)
|
|
{
|
|
if (index >= mem->area_nslabs)
|
|
return 0;
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* Track the total used slots with a global atomic value in order to have
|
|
* correct information to determine the high water mark. The mem_used()
|
|
* function gives imprecise results because there's no locking across
|
|
* multiple areas.
|
|
*/
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
|
|
{
|
|
unsigned long old_hiwater, new_used;
|
|
|
|
new_used = atomic_long_add_return(nslots, &mem->total_used);
|
|
old_hiwater = atomic_long_read(&mem->used_hiwater);
|
|
do {
|
|
if (new_used <= old_hiwater)
|
|
break;
|
|
} while (!atomic_long_try_cmpxchg(&mem->used_hiwater,
|
|
&old_hiwater, new_used));
|
|
}
|
|
|
|
static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
|
|
{
|
|
atomic_long_sub(nslots, &mem->total_used);
|
|
}
|
|
|
|
#else /* !CONFIG_DEBUG_FS */
|
|
static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
|
|
{
|
|
}
|
|
static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
|
|
{
|
|
}
|
|
#endif /* CONFIG_DEBUG_FS */
|
|
|
|
/*
|
|
* Find a suitable number of IO TLB entries size that will fit this request and
|
|
* allocate a buffer from that IO TLB pool.
|
|
*/
|
|
static int swiotlb_do_find_slots(struct device *dev, int area_index,
|
|
phys_addr_t orig_addr, size_t alloc_size,
|
|
unsigned int alloc_align_mask)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
struct io_tlb_area *area = mem->areas + area_index;
|
|
unsigned long boundary_mask = dma_get_seg_boundary(dev);
|
|
dma_addr_t tbl_dma_addr =
|
|
phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
|
|
unsigned long max_slots = get_max_slots(boundary_mask);
|
|
unsigned int iotlb_align_mask =
|
|
dma_get_min_align_mask(dev) | alloc_align_mask;
|
|
unsigned int nslots = nr_slots(alloc_size), stride;
|
|
unsigned int offset = swiotlb_align_offset(dev, orig_addr);
|
|
unsigned int index, slots_checked, count = 0, i;
|
|
unsigned long flags;
|
|
unsigned int slot_base;
|
|
unsigned int slot_index;
|
|
|
|
BUG_ON(!nslots);
|
|
BUG_ON(area_index >= mem->nareas);
|
|
|
|
/*
|
|
* For allocations of PAGE_SIZE or larger only look for page aligned
|
|
* allocations.
|
|
*/
|
|
if (alloc_size >= PAGE_SIZE)
|
|
iotlb_align_mask |= ~PAGE_MASK;
|
|
iotlb_align_mask &= ~(IO_TLB_SIZE - 1);
|
|
|
|
/*
|
|
* For mappings with an alignment requirement don't bother looping to
|
|
* unaligned slots once we found an aligned one.
|
|
*/
|
|
stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
|
|
|
|
spin_lock_irqsave(&area->lock, flags);
|
|
if (unlikely(nslots > mem->area_nslabs - area->used))
|
|
goto not_found;
|
|
|
|
slot_base = area_index * mem->area_nslabs;
|
|
index = area->index;
|
|
|
|
for (slots_checked = 0; slots_checked < mem->area_nslabs; ) {
|
|
slot_index = slot_base + index;
|
|
|
|
if (orig_addr &&
|
|
(slot_addr(tbl_dma_addr, slot_index) &
|
|
iotlb_align_mask) != (orig_addr & iotlb_align_mask)) {
|
|
index = wrap_area_index(mem, index + 1);
|
|
slots_checked++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we find a slot that indicates we have 'nslots' number of
|
|
* contiguous buffers, we allocate the buffers from that slot
|
|
* and mark the entries as '0' indicating unavailable.
|
|
*/
|
|
if (!iommu_is_span_boundary(slot_index, nslots,
|
|
nr_slots(tbl_dma_addr),
|
|
max_slots)) {
|
|
if (mem->slots[slot_index].list >= nslots)
|
|
goto found;
|
|
}
|
|
index = wrap_area_index(mem, index + stride);
|
|
slots_checked += stride;
|
|
}
|
|
|
|
not_found:
|
|
spin_unlock_irqrestore(&area->lock, flags);
|
|
return -1;
|
|
|
|
found:
|
|
for (i = slot_index; i < slot_index + nslots; i++) {
|
|
mem->slots[i].list = 0;
|
|
mem->slots[i].alloc_size = alloc_size - (offset +
|
|
((i - slot_index) << IO_TLB_SHIFT));
|
|
}
|
|
for (i = slot_index - 1;
|
|
io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
|
|
mem->slots[i].list; i--)
|
|
mem->slots[i].list = ++count;
|
|
|
|
/*
|
|
* Update the indices to avoid searching in the next round.
|
|
*/
|
|
area->index = wrap_area_index(mem, index + nslots);
|
|
area->used += nslots;
|
|
spin_unlock_irqrestore(&area->lock, flags);
|
|
|
|
inc_used_and_hiwater(mem, nslots);
|
|
return slot_index;
|
|
}
|
|
|
|
static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
|
|
size_t alloc_size, unsigned int alloc_align_mask)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
int start = raw_smp_processor_id() & (mem->nareas - 1);
|
|
int i = start, index;
|
|
|
|
do {
|
|
index = swiotlb_do_find_slots(dev, i, orig_addr, alloc_size,
|
|
alloc_align_mask);
|
|
if (index >= 0)
|
|
return index;
|
|
if (++i >= mem->nareas)
|
|
i = 0;
|
|
} while (i != start);
|
|
|
|
return -1;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
|
|
static unsigned long mem_used(struct io_tlb_mem *mem)
|
|
{
|
|
return atomic_long_read(&mem->total_used);
|
|
}
|
|
|
|
#else /* !CONFIG_DEBUG_FS */
|
|
|
|
static unsigned long mem_used(struct io_tlb_mem *mem)
|
|
{
|
|
int i;
|
|
unsigned long used = 0;
|
|
|
|
for (i = 0; i < mem->nareas; i++)
|
|
used += mem->areas[i].used;
|
|
return used;
|
|
}
|
|
|
|
#endif /* CONFIG_DEBUG_FS */
|
|
|
|
phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
|
|
size_t mapping_size, size_t alloc_size,
|
|
unsigned int alloc_align_mask, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
unsigned int offset = swiotlb_align_offset(dev, orig_addr);
|
|
unsigned int i;
|
|
int index;
|
|
phys_addr_t tlb_addr;
|
|
|
|
if (!mem || !mem->nslabs) {
|
|
dev_warn_ratelimited(dev,
|
|
"Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
|
|
return (phys_addr_t)DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
|
|
pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
|
|
|
|
if (mapping_size > alloc_size) {
|
|
dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
|
|
mapping_size, alloc_size);
|
|
return (phys_addr_t)DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
index = swiotlb_find_slots(dev, orig_addr,
|
|
alloc_size + offset, alloc_align_mask);
|
|
if (index == -1) {
|
|
if (!(attrs & DMA_ATTR_NO_WARN))
|
|
dev_warn_ratelimited(dev,
|
|
"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
|
|
alloc_size, mem->nslabs, mem_used(mem));
|
|
return (phys_addr_t)DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
/*
|
|
* Save away the mapping from the original address to the DMA address.
|
|
* This is needed when we sync the memory. Then we sync the buffer if
|
|
* needed.
|
|
*/
|
|
for (i = 0; i < nr_slots(alloc_size + offset); i++)
|
|
mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
|
|
tlb_addr = slot_addr(mem->start, index) + offset;
|
|
/*
|
|
* When dir == DMA_FROM_DEVICE we could omit the copy from the orig
|
|
* to the tlb buffer, if we knew for sure the device will
|
|
* overwrite the entire current content. But we don't. Thus
|
|
* unconditional bounce may prevent leaking swiotlb content (i.e.
|
|
* kernel memory) to user-space.
|
|
*/
|
|
swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
|
|
return tlb_addr;
|
|
}
|
|
|
|
static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
unsigned long flags;
|
|
unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
|
|
int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
|
|
int nslots = nr_slots(mem->slots[index].alloc_size + offset);
|
|
int aindex = index / mem->area_nslabs;
|
|
struct io_tlb_area *area = &mem->areas[aindex];
|
|
int count, i;
|
|
|
|
/*
|
|
* Return the buffer to the free list by setting the corresponding
|
|
* entries to indicate the number of contiguous entries available.
|
|
* While returning the entries to the free list, we merge the entries
|
|
* with slots below and above the pool being returned.
|
|
*/
|
|
BUG_ON(aindex >= mem->nareas);
|
|
|
|
spin_lock_irqsave(&area->lock, flags);
|
|
if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
|
|
count = mem->slots[index + nslots].list;
|
|
else
|
|
count = 0;
|
|
|
|
/*
|
|
* Step 1: return the slots to the free list, merging the slots with
|
|
* superceeding slots
|
|
*/
|
|
for (i = index + nslots - 1; i >= index; i--) {
|
|
mem->slots[i].list = ++count;
|
|
mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
|
|
mem->slots[i].alloc_size = 0;
|
|
}
|
|
|
|
/*
|
|
* Step 2: merge the returned slots with the preceding slots, if
|
|
* available (non zero)
|
|
*/
|
|
for (i = index - 1;
|
|
io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
|
|
i--)
|
|
mem->slots[i].list = ++count;
|
|
area->used -= nslots;
|
|
spin_unlock_irqrestore(&area->lock, flags);
|
|
|
|
dec_used(mem, nslots);
|
|
}
|
|
|
|
/*
|
|
* tlb_addr is the physical address of the bounce buffer to unmap.
|
|
*/
|
|
void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
|
|
size_t mapping_size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
/*
|
|
* First, sync the memory before unmapping the entry
|
|
*/
|
|
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
|
|
(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
|
|
swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
|
|
|
|
swiotlb_release_slots(dev, tlb_addr);
|
|
}
|
|
|
|
void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
|
|
swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
|
|
else
|
|
BUG_ON(dir != DMA_FROM_DEVICE);
|
|
}
|
|
|
|
void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
|
|
swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
|
|
else
|
|
BUG_ON(dir != DMA_TO_DEVICE);
|
|
}
|
|
|
|
/*
|
|
* Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
|
|
* to the device copy the data into it as well.
|
|
*/
|
|
dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
phys_addr_t swiotlb_addr;
|
|
dma_addr_t dma_addr;
|
|
|
|
trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
|
|
|
|
swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
|
|
attrs);
|
|
if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
|
|
return DMA_MAPPING_ERROR;
|
|
|
|
/* Ensure that the address returned is DMA'ble */
|
|
dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
|
|
if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
|
|
swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
|
|
attrs | DMA_ATTR_SKIP_CPU_SYNC);
|
|
dev_WARN_ONCE(dev, 1,
|
|
"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
|
|
&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
|
|
return DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
|
arch_sync_dma_for_device(swiotlb_addr, size, dir);
|
|
return dma_addr;
|
|
}
|
|
|
|
size_t swiotlb_max_mapping_size(struct device *dev)
|
|
{
|
|
int min_align_mask = dma_get_min_align_mask(dev);
|
|
int min_align = 0;
|
|
|
|
/*
|
|
* swiotlb_find_slots() skips slots according to
|
|
* min align mask. This affects max mapping size.
|
|
* Take it into acount here.
|
|
*/
|
|
if (min_align_mask)
|
|
min_align = roundup(min_align_mask, IO_TLB_SIZE);
|
|
|
|
return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
|
|
}
|
|
|
|
bool is_swiotlb_active(struct device *dev)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
|
|
return mem && mem->nslabs;
|
|
}
|
|
EXPORT_SYMBOL_GPL(is_swiotlb_active);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
|
|
static int io_tlb_used_get(void *data, u64 *val)
|
|
{
|
|
struct io_tlb_mem *mem = data;
|
|
|
|
*val = mem_used(mem);
|
|
return 0;
|
|
}
|
|
|
|
static int io_tlb_hiwater_get(void *data, u64 *val)
|
|
{
|
|
struct io_tlb_mem *mem = data;
|
|
|
|
*val = atomic_long_read(&mem->used_hiwater);
|
|
return 0;
|
|
}
|
|
|
|
static int io_tlb_hiwater_set(void *data, u64 val)
|
|
{
|
|
struct io_tlb_mem *mem = data;
|
|
|
|
/* Only allow setting to zero */
|
|
if (val != 0)
|
|
return -EINVAL;
|
|
|
|
atomic_long_set(&mem->used_hiwater, val);
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n");
|
|
DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get,
|
|
io_tlb_hiwater_set, "%llu\n");
|
|
|
|
static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
|
|
const char *dirname)
|
|
{
|
|
atomic_long_set(&mem->total_used, 0);
|
|
atomic_long_set(&mem->used_hiwater, 0);
|
|
|
|
mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
|
|
if (!mem->nslabs)
|
|
return;
|
|
|
|
debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
|
|
debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem,
|
|
&fops_io_tlb_used);
|
|
debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem,
|
|
&fops_io_tlb_hiwater);
|
|
}
|
|
|
|
static int __init swiotlb_create_default_debugfs(void)
|
|
{
|
|
swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(swiotlb_create_default_debugfs);
|
|
|
|
#else /* !CONFIG_DEBUG_FS */
|
|
|
|
static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
|
|
const char *dirname)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_DEBUG_FS */
|
|
|
|
#ifdef CONFIG_DMA_RESTRICTED_POOL
|
|
|
|
struct page *swiotlb_alloc(struct device *dev, size_t size)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
phys_addr_t tlb_addr;
|
|
int index;
|
|
|
|
if (!mem)
|
|
return NULL;
|
|
|
|
index = swiotlb_find_slots(dev, 0, size, 0);
|
|
if (index == -1)
|
|
return NULL;
|
|
|
|
tlb_addr = slot_addr(mem->start, index);
|
|
|
|
return pfn_to_page(PFN_DOWN(tlb_addr));
|
|
}
|
|
|
|
bool swiotlb_free(struct device *dev, struct page *page, size_t size)
|
|
{
|
|
phys_addr_t tlb_addr = page_to_phys(page);
|
|
|
|
if (!is_swiotlb_buffer(dev, tlb_addr))
|
|
return false;
|
|
|
|
swiotlb_release_slots(dev, tlb_addr);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
|
|
struct device *dev)
|
|
{
|
|
struct io_tlb_mem *mem = rmem->priv;
|
|
unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
|
|
|
|
/* Set Per-device io tlb area to one */
|
|
unsigned int nareas = 1;
|
|
|
|
if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
|
|
dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Since multiple devices can share the same pool, the private data,
|
|
* io_tlb_mem struct, will be initialized by the first device attached
|
|
* to it.
|
|
*/
|
|
if (!mem) {
|
|
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
|
|
if (!mem)
|
|
return -ENOMEM;
|
|
|
|
mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL);
|
|
if (!mem->slots) {
|
|
kfree(mem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mem->areas = kcalloc(nareas, sizeof(*mem->areas),
|
|
GFP_KERNEL);
|
|
if (!mem->areas) {
|
|
kfree(mem->slots);
|
|
kfree(mem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
|
|
rmem->size >> PAGE_SHIFT);
|
|
swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, SWIOTLB_FORCE,
|
|
false, nareas);
|
|
mem->for_alloc = true;
|
|
|
|
rmem->priv = mem;
|
|
|
|
swiotlb_create_debugfs_files(mem, rmem->name);
|
|
}
|
|
|
|
dev->dma_io_tlb_mem = mem;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
|
|
struct device *dev)
|
|
{
|
|
dev->dma_io_tlb_mem = &io_tlb_default_mem;
|
|
}
|
|
|
|
static const struct reserved_mem_ops rmem_swiotlb_ops = {
|
|
.device_init = rmem_swiotlb_device_init,
|
|
.device_release = rmem_swiotlb_device_release,
|
|
};
|
|
|
|
static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
|
|
{
|
|
unsigned long node = rmem->fdt_node;
|
|
|
|
if (of_get_flat_dt_prop(node, "reusable", NULL) ||
|
|
of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
|
|
of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
|
|
of_get_flat_dt_prop(node, "no-map", NULL))
|
|
return -EINVAL;
|
|
|
|
rmem->ops = &rmem_swiotlb_ops;
|
|
pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
|
|
&rmem->base, (unsigned long)rmem->size / SZ_1M);
|
|
return 0;
|
|
}
|
|
|
|
RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
|
|
#endif /* CONFIG_DMA_RESTRICTED_POOL */
|