linux/drivers/net/ethernet/intel/ice/ice_vf_lib.c
Jacob Keller 5a57ee83d9 ice: remove PF pointer from ice_check_vf_init
The ice_check_vf_init function takes both a PF and a VF pointer. Every
caller looks up the PF pointer from the VF structure. Some callers only
use of the PF pointer is call this function. Move the lookup inside
ice_check_vf_init and drop the unnecessary argument.

Cleanup the callers to drop the now unnecessary local variables. In
particular, replace the local PF pointer with a HW structure pointer in
ice_vc_get_vf_res_msg which simplifies a few accesses to the HW
structure in that function.

Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Tested-by: Konrad Jankowski <konrad0.jankowski@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-03-15 13:23:14 -07:00

1030 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2022, Intel Corporation. */
#include "ice_vf_lib_private.h"
#include "ice.h"
#include "ice_lib.h"
#include "ice_fltr.h"
#include "ice_virtchnl_allowlist.h"
/* Public functions which may be accessed by all driver files */
/**
* ice_get_vf_by_id - Get pointer to VF by ID
* @pf: the PF private structure
* @vf_id: the VF ID to locate
*
* Locate and return a pointer to the VF structure associated with a given ID.
* Returns NULL if the ID does not have a valid VF structure associated with
* it.
*
* This function takes a reference to the VF, which must be released by
* calling ice_put_vf() once the caller is finished accessing the VF structure
* returned.
*/
struct ice_vf *ice_get_vf_by_id(struct ice_pf *pf, u16 vf_id)
{
struct ice_vf *vf;
rcu_read_lock();
hash_for_each_possible_rcu(pf->vfs.table, vf, entry, vf_id) {
if (vf->vf_id == vf_id) {
struct ice_vf *found;
if (kref_get_unless_zero(&vf->refcnt))
found = vf;
else
found = NULL;
rcu_read_unlock();
return found;
}
}
rcu_read_unlock();
return NULL;
}
/**
* ice_release_vf - Release VF associated with a refcount
* @ref: the kref decremented to zero
*
* Callback function for kref_put to release a VF once its reference count has
* hit zero.
*/
static void ice_release_vf(struct kref *ref)
{
struct ice_vf *vf = container_of(ref, struct ice_vf, refcnt);
vf->vf_ops->free(vf);
}
/**
* ice_put_vf - Release a reference to a VF
* @vf: the VF structure to decrease reference count on
*
* Decrease the reference count for a VF, and free the entry if it is no
* longer in use.
*
* This must be called after ice_get_vf_by_id() once the reference to the VF
* structure is no longer used. Otherwise, the VF structure will never be
* freed.
*/
void ice_put_vf(struct ice_vf *vf)
{
kref_put(&vf->refcnt, ice_release_vf);
}
/**
* ice_has_vfs - Return true if the PF has any associated VFs
* @pf: the PF private structure
*
* Return whether or not the PF has any allocated VFs.
*
* Note that this function only guarantees that there are no VFs at the point
* of calling it. It does not guarantee that no more VFs will be added.
*/
bool ice_has_vfs(struct ice_pf *pf)
{
/* A simple check that the hash table is not empty does not require
* the mutex or rcu_read_lock.
*/
return !hash_empty(pf->vfs.table);
}
/**
* ice_get_num_vfs - Get number of allocated VFs
* @pf: the PF private structure
*
* Return the total number of allocated VFs. NOTE: VF IDs are not guaranteed
* to be contiguous. Do not assume that a VF ID is guaranteed to be less than
* the output of this function.
*/
u16 ice_get_num_vfs(struct ice_pf *pf)
{
struct ice_vf *vf;
unsigned int bkt;
u16 num_vfs = 0;
rcu_read_lock();
ice_for_each_vf_rcu(pf, bkt, vf)
num_vfs++;
rcu_read_unlock();
return num_vfs;
}
/**
* ice_get_vf_vsi - get VF's VSI based on the stored index
* @vf: VF used to get VSI
*/
struct ice_vsi *ice_get_vf_vsi(struct ice_vf *vf)
{
if (vf->lan_vsi_idx == ICE_NO_VSI)
return NULL;
return vf->pf->vsi[vf->lan_vsi_idx];
}
/**
* ice_is_vf_disabled
* @vf: pointer to the VF info
*
* If the PF has been disabled, there is no need resetting VF until PF is
* active again. Similarly, if the VF has been disabled, this means something
* else is resetting the VF, so we shouldn't continue.
*
* Returns true if the caller should consider the VF as disabled whether
* because that single VF is explicitly disabled or because the PF is
* currently disabled.
*/
bool ice_is_vf_disabled(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
return (test_bit(ICE_VF_DIS, pf->state) ||
test_bit(ICE_VF_STATE_DIS, vf->vf_states));
}
/**
* ice_wait_on_vf_reset - poll to make sure a given VF is ready after reset
* @vf: The VF being resseting
*
* The max poll time is about ~800ms, which is about the maximum time it takes
* for a VF to be reset and/or a VF driver to be removed.
*/
static void ice_wait_on_vf_reset(struct ice_vf *vf)
{
int i;
for (i = 0; i < ICE_MAX_VF_RESET_TRIES; i++) {
if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
break;
msleep(ICE_MAX_VF_RESET_SLEEP_MS);
}
}
/**
* ice_check_vf_ready_for_cfg - check if VF is ready to be configured/queried
* @vf: VF to check if it's ready to be configured/queried
*
* The purpose of this function is to make sure the VF is not in reset, not
* disabled, and initialized so it can be configured and/or queried by a host
* administrator.
*/
int ice_check_vf_ready_for_cfg(struct ice_vf *vf)
{
ice_wait_on_vf_reset(vf);
if (ice_is_vf_disabled(vf))
return -EINVAL;
if (ice_check_vf_init(vf))
return -EBUSY;
return 0;
}
/**
* ice_trigger_vf_reset - Reset a VF on HW
* @vf: pointer to the VF structure
* @is_vflr: true if VFLR was issued, false if not
* @is_pfr: true if the reset was triggered due to a previous PFR
*
* Trigger hardware to start a reset for a particular VF. Expects the caller
* to wait the proper amount of time to allow hardware to reset the VF before
* it cleans up and restores VF functionality.
*/
static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr, bool is_pfr)
{
/* Inform VF that it is no longer active, as a warning */
clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
/* Disable VF's configuration API during reset. The flag is re-enabled
* when it's safe again to access VF's VSI.
*/
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
/* VF_MBX_ARQLEN and VF_MBX_ATQLEN are cleared by PFR, so the driver
* needs to clear them in the case of VFR/VFLR. If this is done for
* PFR, it can mess up VF resets because the VF driver may already
* have started cleanup by the time we get here.
*/
if (!is_pfr)
vf->vf_ops->clear_mbx_register(vf);
vf->vf_ops->trigger_reset_register(vf, is_vflr);
}
static void ice_vf_clear_counters(struct ice_vf *vf)
{
struct ice_vsi *vsi = ice_get_vf_vsi(vf);
vf->num_mac = 0;
vsi->num_vlan = 0;
memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
}
/**
* ice_vf_pre_vsi_rebuild - tasks to be done prior to VSI rebuild
* @vf: VF to perform pre VSI rebuild tasks
*
* These tasks are items that don't need to be amortized since they are most
* likely called in a for loop with all VF(s) in the reset_all_vfs() case.
*/
static void ice_vf_pre_vsi_rebuild(struct ice_vf *vf)
{
ice_vf_clear_counters(vf);
vf->vf_ops->clear_reset_trigger(vf);
}
/**
* ice_vf_rebuild_vsi - rebuild the VF's VSI
* @vf: VF to rebuild the VSI for
*
* This is only called when all VF(s) are being reset (i.e. PCIe Reset on the
* host, PFR, CORER, etc.).
*/
static int ice_vf_rebuild_vsi(struct ice_vf *vf)
{
struct ice_vsi *vsi = ice_get_vf_vsi(vf);
struct ice_pf *pf = vf->pf;
if (ice_vsi_rebuild(vsi, true)) {
dev_err(ice_pf_to_dev(pf), "failed to rebuild VF %d VSI\n",
vf->vf_id);
return -EIO;
}
/* vsi->idx will remain the same in this case so don't update
* vf->lan_vsi_idx
*/
vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
vf->lan_vsi_num = vsi->vsi_num;
return 0;
}
/**
* ice_is_any_vf_in_promisc - check if any VF(s) are in promiscuous mode
* @pf: PF structure for accessing VF(s)
*
* Return false if no VF(s) are in unicast and/or multicast promiscuous mode,
* else return true
*/
bool ice_is_any_vf_in_promisc(struct ice_pf *pf)
{
bool is_vf_promisc = false;
struct ice_vf *vf;
unsigned int bkt;
rcu_read_lock();
ice_for_each_vf_rcu(pf, bkt, vf) {
/* found a VF that has promiscuous mode configured */
if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) {
is_vf_promisc = true;
break;
}
}
rcu_read_unlock();
return is_vf_promisc;
}
/**
* ice_vf_set_vsi_promisc - Enable promiscuous mode for a VF VSI
* @vf: the VF to configure
* @vsi: the VF's VSI
* @promisc_m: the promiscuous mode to enable
*/
int
ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m)
{
struct ice_hw *hw = &vsi->back->hw;
int status;
if (ice_vf_is_port_vlan_ena(vf))
status = ice_fltr_set_vsi_promisc(hw, vsi->idx, promisc_m,
ice_vf_get_port_vlan_id(vf));
else if (ice_vsi_has_non_zero_vlans(vsi))
status = ice_fltr_set_vlan_vsi_promisc(hw, vsi, promisc_m);
else
status = ice_fltr_set_vsi_promisc(hw, vsi->idx, promisc_m, 0);
if (status && status != -EEXIST) {
dev_err(ice_pf_to_dev(vsi->back), "enable Tx/Rx filter promiscuous mode on VF-%u failed, error: %d\n",
vf->vf_id, status);
return status;
}
return 0;
}
/**
* ice_vf_clear_vsi_promisc - Disable promiscuous mode for a VF VSI
* @vf: the VF to configure
* @vsi: the VF's VSI
* @promisc_m: the promiscuous mode to disable
*/
int
ice_vf_clear_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m)
{
struct ice_hw *hw = &vsi->back->hw;
int status;
if (ice_vf_is_port_vlan_ena(vf))
status = ice_fltr_clear_vsi_promisc(hw, vsi->idx, promisc_m,
ice_vf_get_port_vlan_id(vf));
else if (ice_vsi_has_non_zero_vlans(vsi))
status = ice_fltr_clear_vlan_vsi_promisc(hw, vsi, promisc_m);
else
status = ice_fltr_clear_vsi_promisc(hw, vsi->idx, promisc_m, 0);
if (status && status != -ENOENT) {
dev_err(ice_pf_to_dev(vsi->back), "disable Tx/Rx filter promiscuous mode on VF-%u failed, error: %d\n",
vf->vf_id, status);
return status;
}
return 0;
}
/**
* ice_reset_all_vfs - reset all allocated VFs in one go
* @pf: pointer to the PF structure
*
* First, tell the hardware to reset each VF, then do all the waiting in one
* chunk, and finally finish restoring each VF after the wait. This is useful
* during PF routines which need to reset all VFs, as otherwise it must perform
* these resets in a serialized fashion.
*
* Returns true if any VFs were reset, and false otherwise.
*/
void ice_reset_all_vfs(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
struct ice_vf *vf;
unsigned int bkt;
/* If we don't have any VFs, then there is nothing to reset */
if (!ice_has_vfs(pf))
return;
mutex_lock(&pf->vfs.table_lock);
/* clear all malicious info if the VFs are getting reset */
ice_for_each_vf(pf, bkt, vf)
if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->vfs.malvfs,
ICE_MAX_SRIOV_VFS, vf->vf_id))
dev_dbg(dev, "failed to clear malicious VF state for VF %u\n",
vf->vf_id);
/* If VFs have been disabled, there is no need to reset */
if (test_and_set_bit(ICE_VF_DIS, pf->state)) {
mutex_unlock(&pf->vfs.table_lock);
return;
}
/* Begin reset on all VFs at once */
ice_for_each_vf(pf, bkt, vf)
ice_trigger_vf_reset(vf, true, true);
/* HW requires some time to make sure it can flush the FIFO for a VF
* when it resets it. Now that we've triggered all of the VFs, iterate
* the table again and wait for each VF to complete.
*/
ice_for_each_vf(pf, bkt, vf) {
if (!vf->vf_ops->poll_reset_status(vf)) {
/* Display a warning if at least one VF didn't manage
* to reset in time, but continue on with the
* operation.
*/
dev_warn(dev, "VF %u reset check timeout\n", vf->vf_id);
break;
}
}
/* free VF resources to begin resetting the VSI state */
ice_for_each_vf(pf, bkt, vf) {
mutex_lock(&vf->cfg_lock);
vf->driver_caps = 0;
ice_vc_set_default_allowlist(vf);
ice_vf_fdir_exit(vf);
ice_vf_fdir_init(vf);
/* clean VF control VSI when resetting VFs since it should be
* setup only when VF creates its first FDIR rule.
*/
if (vf->ctrl_vsi_idx != ICE_NO_VSI)
ice_vf_ctrl_invalidate_vsi(vf);
ice_vf_pre_vsi_rebuild(vf);
ice_vf_rebuild_vsi(vf);
vf->vf_ops->post_vsi_rebuild(vf);
mutex_unlock(&vf->cfg_lock);
}
if (ice_is_eswitch_mode_switchdev(pf))
if (ice_eswitch_rebuild(pf))
dev_warn(dev, "eswitch rebuild failed\n");
ice_flush(hw);
clear_bit(ICE_VF_DIS, pf->state);
mutex_unlock(&pf->vfs.table_lock);
}
/**
* ice_notify_vf_reset - Notify VF of a reset event
* @vf: pointer to the VF structure
*/
static void ice_notify_vf_reset(struct ice_vf *vf)
{
struct ice_hw *hw = &vf->pf->hw;
struct virtchnl_pf_event pfe;
/* Bail out if VF is in disabled state, neither initialized, nor active
* state - otherwise proceed with notifications
*/
if ((!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) ||
test_bit(ICE_VF_STATE_DIS, vf->vf_states))
return;
pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe),
NULL);
}
/**
* ice_reset_vf - Reset a particular VF
* @vf: pointer to the VF structure
* @flags: flags controlling behavior of the reset
*
* Flags:
* ICE_VF_RESET_VFLR - Indicates a reset is due to VFLR event
* ICE_VF_RESET_NOTIFY - Send VF a notification prior to reset
* ICE_VF_RESET_LOCK - Acquire VF cfg_lock before resetting
*
* Returns 0 if the VF is currently in reset, if the resets are disabled, or
* if the VF resets successfully. Returns an error code if the VF fails to
* rebuild.
*/
int ice_reset_vf(struct ice_vf *vf, u32 flags)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
struct device *dev;
struct ice_hw *hw;
u8 promisc_m;
int err = 0;
bool rsd;
dev = ice_pf_to_dev(pf);
hw = &pf->hw;
if (flags & ICE_VF_RESET_NOTIFY)
ice_notify_vf_reset(vf);
if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
dev_dbg(dev, "Trying to reset VF %d, but all VF resets are disabled\n",
vf->vf_id);
return 0;
}
if (ice_is_vf_disabled(vf)) {
dev_dbg(dev, "VF is already disabled, there is no need for resetting it, telling VM, all is fine %d\n",
vf->vf_id);
return 0;
}
if (flags & ICE_VF_RESET_LOCK)
mutex_lock(&vf->cfg_lock);
else
lockdep_assert_held(&vf->cfg_lock);
/* Set VF disable bit state here, before triggering reset */
set_bit(ICE_VF_STATE_DIS, vf->vf_states);
ice_trigger_vf_reset(vf, flags & ICE_VF_RESET_VFLR, false);
vsi = ice_get_vf_vsi(vf);
ice_dis_vf_qs(vf);
/* Call Disable LAN Tx queue AQ whether or not queues are
* enabled. This is needed for successful completion of VFR.
*/
ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL,
NULL, vf->vf_ops->reset_type, vf->vf_id, NULL);
/* poll VPGEN_VFRSTAT reg to make sure
* that reset is complete
*/
rsd = vf->vf_ops->poll_reset_status(vf);
/* Display a warning if VF didn't manage to reset in time, but need to
* continue on with the operation.
*/
if (!rsd)
dev_warn(dev, "VF reset check timeout on VF %d\n", vf->vf_id);
vf->driver_caps = 0;
ice_vc_set_default_allowlist(vf);
/* disable promiscuous modes in case they were enabled
* ignore any error if disabling process failed
*/
if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) {
if (ice_vf_is_port_vlan_ena(vf) || vsi->num_vlan)
promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
else
promisc_m = ICE_UCAST_PROMISC_BITS;
if (ice_vf_clear_vsi_promisc(vf, vsi, promisc_m))
dev_err(dev, "disabling promiscuous mode failed\n");
}
ice_eswitch_del_vf_mac_rule(vf);
ice_vf_fdir_exit(vf);
ice_vf_fdir_init(vf);
/* clean VF control VSI when resetting VF since it should be setup
* only when VF creates its first FDIR rule.
*/
if (vf->ctrl_vsi_idx != ICE_NO_VSI)
ice_vf_ctrl_vsi_release(vf);
ice_vf_pre_vsi_rebuild(vf);
if (vf->vf_ops->vsi_rebuild(vf)) {
dev_err(dev, "Failed to release and setup the VF%u's VSI\n",
vf->vf_id);
err = -EFAULT;
goto out_unlock;
}
vf->vf_ops->post_vsi_rebuild(vf);
vsi = ice_get_vf_vsi(vf);
ice_eswitch_update_repr(vsi);
ice_eswitch_replay_vf_mac_rule(vf);
/* if the VF has been reset allow it to come up again */
if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->vfs.malvfs,
ICE_MAX_SRIOV_VFS, vf->vf_id))
dev_dbg(dev, "failed to clear malicious VF state for VF %u\n",
vf->vf_id);
out_unlock:
if (flags & ICE_VF_RESET_LOCK)
mutex_unlock(&vf->cfg_lock);
return err;
}
/**
* ice_set_vf_state_qs_dis - Set VF queues state to disabled
* @vf: pointer to the VF structure
*/
void ice_set_vf_state_qs_dis(struct ice_vf *vf)
{
/* Clear Rx/Tx enabled queues flag */
bitmap_zero(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF);
bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
}
/* Private functions only accessed from other virtualization files */
/**
* ice_dis_vf_qs - Disable the VF queues
* @vf: pointer to the VF structure
*/
void ice_dis_vf_qs(struct ice_vf *vf)
{
struct ice_vsi *vsi = ice_get_vf_vsi(vf);
ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id);
ice_vsi_stop_all_rx_rings(vsi);
ice_set_vf_state_qs_dis(vf);
}
/**
* ice_check_vf_init - helper to check if VF init complete
* @vf: the pointer to the VF to check
*/
int ice_check_vf_init(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
dev_err(ice_pf_to_dev(pf), "VF ID: %u in reset. Try again.\n",
vf->vf_id);
return -EBUSY;
}
return 0;
}
/**
* ice_vf_get_port_info - Get the VF's port info structure
* @vf: VF used to get the port info structure for
*/
struct ice_port_info *ice_vf_get_port_info(struct ice_vf *vf)
{
return vf->pf->hw.port_info;
}
static int ice_cfg_mac_antispoof(struct ice_vsi *vsi, bool enable)
{
struct ice_vsi_ctx *ctx;
int err;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->info.sec_flags = vsi->info.sec_flags;
ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
if (enable)
ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
else
ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
err = ice_update_vsi(&vsi->back->hw, vsi->idx, ctx, NULL);
if (err)
dev_err(ice_pf_to_dev(vsi->back), "Failed to configure Tx MAC anti-spoof %s for VSI %d, error %d\n",
enable ? "ON" : "OFF", vsi->vsi_num, err);
else
vsi->info.sec_flags = ctx->info.sec_flags;
kfree(ctx);
return err;
}
/**
* ice_vsi_ena_spoofchk - enable Tx spoof checking for this VSI
* @vsi: VSI to enable Tx spoof checking for
*/
static int ice_vsi_ena_spoofchk(struct ice_vsi *vsi)
{
struct ice_vsi_vlan_ops *vlan_ops;
int err;
vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
err = vlan_ops->ena_tx_filtering(vsi);
if (err)
return err;
return ice_cfg_mac_antispoof(vsi, true);
}
/**
* ice_vsi_dis_spoofchk - disable Tx spoof checking for this VSI
* @vsi: VSI to disable Tx spoof checking for
*/
static int ice_vsi_dis_spoofchk(struct ice_vsi *vsi)
{
struct ice_vsi_vlan_ops *vlan_ops;
int err;
vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
err = vlan_ops->dis_tx_filtering(vsi);
if (err)
return err;
return ice_cfg_mac_antispoof(vsi, false);
}
/**
* ice_vsi_apply_spoofchk - Apply Tx spoof checking setting to a VSI
* @vsi: VSI associated to the VF
* @enable: whether to enable or disable the spoof checking
*/
int ice_vsi_apply_spoofchk(struct ice_vsi *vsi, bool enable)
{
int err;
if (enable)
err = ice_vsi_ena_spoofchk(vsi);
else
err = ice_vsi_dis_spoofchk(vsi);
return err;
}
/**
* ice_is_vf_trusted
* @vf: pointer to the VF info
*/
bool ice_is_vf_trusted(struct ice_vf *vf)
{
return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
}
/**
* ice_vf_has_no_qs_ena - check if the VF has any Rx or Tx queues enabled
* @vf: the VF to check
*
* Returns true if the VF has no Rx and no Tx queues enabled and returns false
* otherwise
*/
bool ice_vf_has_no_qs_ena(struct ice_vf *vf)
{
return (!bitmap_weight(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF) &&
!bitmap_weight(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF));
}
/**
* ice_is_vf_link_up - check if the VF's link is up
* @vf: VF to check if link is up
*/
bool ice_is_vf_link_up(struct ice_vf *vf)
{
struct ice_port_info *pi = ice_vf_get_port_info(vf);
if (ice_check_vf_init(vf))
return false;
if (ice_vf_has_no_qs_ena(vf))
return false;
else if (vf->link_forced)
return vf->link_up;
else
return pi->phy.link_info.link_info &
ICE_AQ_LINK_UP;
}
/**
* ice_vf_set_host_trust_cfg - set trust setting based on pre-reset value
* @vf: VF to configure trust setting for
*/
static void ice_vf_set_host_trust_cfg(struct ice_vf *vf)
{
if (vf->trusted)
set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
else
clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
}
/**
* ice_vf_rebuild_host_mac_cfg - add broadcast and the VF's perm_addr/LAA
* @vf: VF to add MAC filters for
*
* Called after a VF VSI has been re-added/rebuilt during reset. The PF driver
* always re-adds a broadcast filter and the VF's perm_addr/LAA after reset.
*/
static int ice_vf_rebuild_host_mac_cfg(struct ice_vf *vf)
{
struct device *dev = ice_pf_to_dev(vf->pf);
struct ice_vsi *vsi = ice_get_vf_vsi(vf);
u8 broadcast[ETH_ALEN];
int status;
if (ice_is_eswitch_mode_switchdev(vf->pf))
return 0;
eth_broadcast_addr(broadcast);
status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
if (status) {
dev_err(dev, "failed to add broadcast MAC filter for VF %u, error %d\n",
vf->vf_id, status);
return status;
}
vf->num_mac++;
if (is_valid_ether_addr(vf->hw_lan_addr.addr)) {
status = ice_fltr_add_mac(vsi, vf->hw_lan_addr.addr,
ICE_FWD_TO_VSI);
if (status) {
dev_err(dev, "failed to add default unicast MAC filter %pM for VF %u, error %d\n",
&vf->hw_lan_addr.addr[0], vf->vf_id,
status);
return status;
}
vf->num_mac++;
ether_addr_copy(vf->dev_lan_addr.addr, vf->hw_lan_addr.addr);
}
return 0;
}
/**
* ice_vf_rebuild_host_vlan_cfg - add VLAN 0 filter or rebuild the Port VLAN
* @vf: VF to add MAC filters for
* @vsi: Pointer to VSI
*
* Called after a VF VSI has been re-added/rebuilt during reset. The PF driver
* always re-adds either a VLAN 0 or port VLAN based filter after reset.
*/
static int ice_vf_rebuild_host_vlan_cfg(struct ice_vf *vf, struct ice_vsi *vsi)
{
struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
struct device *dev = ice_pf_to_dev(vf->pf);
int err;
if (ice_vf_is_port_vlan_ena(vf)) {
err = vlan_ops->set_port_vlan(vsi, &vf->port_vlan_info);
if (err) {
dev_err(dev, "failed to configure port VLAN via VSI parameters for VF %u, error %d\n",
vf->vf_id, err);
return err;
}
err = vlan_ops->add_vlan(vsi, &vf->port_vlan_info);
} else {
err = ice_vsi_add_vlan_zero(vsi);
}
if (err) {
dev_err(dev, "failed to add VLAN %u filter for VF %u during VF rebuild, error %d\n",
ice_vf_is_port_vlan_ena(vf) ?
ice_vf_get_port_vlan_id(vf) : 0, vf->vf_id, err);
return err;
}
err = vlan_ops->ena_rx_filtering(vsi);
if (err)
dev_warn(dev, "failed to enable Rx VLAN filtering for VF %d VSI %d during VF rebuild, error %d\n",
vf->vf_id, vsi->idx, err);
return 0;
}
/**
* ice_vf_rebuild_host_tx_rate_cfg - re-apply the Tx rate limiting configuration
* @vf: VF to re-apply the configuration for
*
* Called after a VF VSI has been re-added/rebuild during reset. The PF driver
* needs to re-apply the host configured Tx rate limiting configuration.
*/
static int ice_vf_rebuild_host_tx_rate_cfg(struct ice_vf *vf)
{
struct device *dev = ice_pf_to_dev(vf->pf);
struct ice_vsi *vsi = ice_get_vf_vsi(vf);
int err;
if (vf->min_tx_rate) {
err = ice_set_min_bw_limit(vsi, (u64)vf->min_tx_rate * 1000);
if (err) {
dev_err(dev, "failed to set min Tx rate to %d Mbps for VF %u, error %d\n",
vf->min_tx_rate, vf->vf_id, err);
return err;
}
}
if (vf->max_tx_rate) {
err = ice_set_max_bw_limit(vsi, (u64)vf->max_tx_rate * 1000);
if (err) {
dev_err(dev, "failed to set max Tx rate to %d Mbps for VF %u, error %d\n",
vf->max_tx_rate, vf->vf_id, err);
return err;
}
}
return 0;
}
/**
* ice_vf_rebuild_aggregator_node_cfg - rebuild aggregator node config
* @vsi: Pointer to VSI
*
* This function moves VSI into corresponding scheduler aggregator node
* based on cached value of "aggregator node info" per VSI
*/
static void ice_vf_rebuild_aggregator_node_cfg(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
int status;
if (!vsi->agg_node)
return;
dev = ice_pf_to_dev(pf);
if (vsi->agg_node->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
dev_dbg(dev,
"agg_id %u already has reached max_num_vsis %u\n",
vsi->agg_node->agg_id, vsi->agg_node->num_vsis);
return;
}
status = ice_move_vsi_to_agg(pf->hw.port_info, vsi->agg_node->agg_id,
vsi->idx, vsi->tc_cfg.ena_tc);
if (status)
dev_dbg(dev, "unable to move VSI idx %u into aggregator %u node",
vsi->idx, vsi->agg_node->agg_id);
else
vsi->agg_node->num_vsis++;
}
/**
* ice_vf_rebuild_host_cfg - host admin configuration is persistent across reset
* @vf: VF to rebuild host configuration on
*/
void ice_vf_rebuild_host_cfg(struct ice_vf *vf)
{
struct device *dev = ice_pf_to_dev(vf->pf);
struct ice_vsi *vsi = ice_get_vf_vsi(vf);
ice_vf_set_host_trust_cfg(vf);
if (ice_vf_rebuild_host_mac_cfg(vf))
dev_err(dev, "failed to rebuild default MAC configuration for VF %d\n",
vf->vf_id);
if (ice_vf_rebuild_host_vlan_cfg(vf, vsi))
dev_err(dev, "failed to rebuild VLAN configuration for VF %u\n",
vf->vf_id);
if (ice_vf_rebuild_host_tx_rate_cfg(vf))
dev_err(dev, "failed to rebuild Tx rate limiting configuration for VF %u\n",
vf->vf_id);
if (ice_vsi_apply_spoofchk(vsi, vf->spoofchk))
dev_err(dev, "failed to rebuild spoofchk configuration for VF %d\n",
vf->vf_id);
/* rebuild aggregator node config for main VF VSI */
ice_vf_rebuild_aggregator_node_cfg(vsi);
}
/**
* ice_vf_ctrl_invalidate_vsi - invalidate ctrl_vsi_idx to remove VSI access
* @vf: VF that control VSI is being invalidated on
*/
void ice_vf_ctrl_invalidate_vsi(struct ice_vf *vf)
{
vf->ctrl_vsi_idx = ICE_NO_VSI;
}
/**
* ice_vf_ctrl_vsi_release - invalidate the VF's control VSI after freeing it
* @vf: VF that control VSI is being released on
*/
void ice_vf_ctrl_vsi_release(struct ice_vf *vf)
{
ice_vsi_release(vf->pf->vsi[vf->ctrl_vsi_idx]);
ice_vf_ctrl_invalidate_vsi(vf);
}
/**
* ice_vf_ctrl_vsi_setup - Set up a VF control VSI
* @vf: VF to setup control VSI for
*
* Returns pointer to the successfully allocated VSI struct on success,
* otherwise returns NULL on failure.
*/
struct ice_vsi *ice_vf_ctrl_vsi_setup(struct ice_vf *vf)
{
struct ice_port_info *pi = ice_vf_get_port_info(vf);
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
vsi = ice_vsi_setup(pf, pi, ICE_VSI_CTRL, vf, NULL);
if (!vsi) {
dev_err(ice_pf_to_dev(pf), "Failed to create VF control VSI\n");
ice_vf_ctrl_invalidate_vsi(vf);
}
return vsi;
}
/**
* ice_vf_invalidate_vsi - invalidate vsi_idx/vsi_num to remove VSI access
* @vf: VF to remove access to VSI for
*/
void ice_vf_invalidate_vsi(struct ice_vf *vf)
{
vf->lan_vsi_idx = ICE_NO_VSI;
vf->lan_vsi_num = ICE_NO_VSI;
}
/**
* ice_vf_set_initialized - VF is ready for VIRTCHNL communication
* @vf: VF to set in initialized state
*
* After this function the VF will be ready to receive/handle the
* VIRTCHNL_OP_GET_VF_RESOURCES message
*/
void ice_vf_set_initialized(struct ice_vf *vf)
{
ice_set_vf_state_qs_dis(vf);
clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
set_bit(ICE_VF_STATE_INIT, vf->vf_states);
memset(&vf->vlan_v2_caps, 0, sizeof(vf->vlan_v2_caps));
}