linux/mm/page_io.c
Usama Arif 0ca0c24e32 mm: store zero pages to be swapped out in a bitmap
Patch series "mm: store zero pages to be swapped out in a bitmap", v8.

As shown in the patch series that introduced the zswap same-filled
optimization [1], 10-20% of the pages stored in zswap are same-filled. 
This is also observed across Meta's server fleet.  By using VM counters in
swap_writepage (not included in this patchseries) it was found that less
than 1% of the same-filled pages to be swapped out are non-zero pages.

For conventional swap setup (without zswap), rather than reading/writing
these pages to flash resulting in increased I/O and flash wear, a bitmap
can be used to mark these pages as zero at write time, and the pages can
be filled at read time if the bit corresponding to the page is set.

When using zswap with swap, this also means that a zswap_entry does not
need to be allocated for zero filled pages resulting in memory savings
which would offset the memory used for the bitmap.

A similar attempt was made earlier in [2] where zswap would only track
zero-filled pages instead of same-filled.  This patchseries adds
zero-filled pages optimization to swap (hence it can be used even if zswap
is disabled) and removes the same-filled code from zswap (as only 1% of
the same-filled pages are non-zero), simplifying code.

[1] https://lore.kernel.org/all/20171018104832epcms5p1b2232e2236258de3d03d1344dde9fce0@epcms5p1/
[2] https://lore.kernel.org/lkml/20240325235018.2028408-1-yosryahmed@google.com/


This patch (of 2):

Approximately 10-20% of pages to be swapped out are zero pages [1].
Rather than reading/writing these pages to flash resulting
in increased I/O and flash wear, a bitmap can be used to mark these
pages as zero at write time, and the pages can be filled at
read time if the bit corresponding to the page is set.
With this patch, NVMe writes in Meta server fleet decreased
by almost 10% with conventional swap setup (zswap disabled).

[1] https://lore.kernel.org/all/20171018104832epcms5p1b2232e2236258de3d03d1344dde9fce0@epcms5p1/

Link: https://lkml.kernel.org/r/20240823190545.979059-1-usamaarif642@gmail.com
Link: https://lkml.kernel.org/r/20240823190545.979059-2-usamaarif642@gmail.com
Signed-off-by: Usama Arif <usamaarif642@gmail.com>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:47 -07:00

671 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/mm/page_io.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Swap reorganised 29.12.95,
* Asynchronous swapping added 30.12.95. Stephen Tweedie
* Removed race in async swapping. 14.4.1996. Bruno Haible
* Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
* Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
*/
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/gfp.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/swapops.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/psi.h>
#include <linux/uio.h>
#include <linux/sched/task.h>
#include <linux/delayacct.h>
#include <linux/zswap.h>
#include "swap.h"
static void __end_swap_bio_write(struct bio *bio)
{
struct folio *folio = bio_first_folio_all(bio);
if (bio->bi_status) {
/*
* We failed to write the page out to swap-space.
* Re-dirty the page in order to avoid it being reclaimed.
* Also print a dire warning that things will go BAD (tm)
* very quickly.
*
* Also clear PG_reclaim to avoid folio_rotate_reclaimable()
*/
folio_mark_dirty(folio);
pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
(unsigned long long)bio->bi_iter.bi_sector);
folio_clear_reclaim(folio);
}
folio_end_writeback(folio);
}
static void end_swap_bio_write(struct bio *bio)
{
__end_swap_bio_write(bio);
bio_put(bio);
}
static void __end_swap_bio_read(struct bio *bio)
{
struct folio *folio = bio_first_folio_all(bio);
if (bio->bi_status) {
pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
(unsigned long long)bio->bi_iter.bi_sector);
} else {
folio_mark_uptodate(folio);
}
folio_unlock(folio);
}
static void end_swap_bio_read(struct bio *bio)
{
__end_swap_bio_read(bio);
bio_put(bio);
}
int generic_swapfile_activate(struct swap_info_struct *sis,
struct file *swap_file,
sector_t *span)
{
struct address_space *mapping = swap_file->f_mapping;
struct inode *inode = mapping->host;
unsigned blocks_per_page;
unsigned long page_no;
unsigned blkbits;
sector_t probe_block;
sector_t last_block;
sector_t lowest_block = -1;
sector_t highest_block = 0;
int nr_extents = 0;
int ret;
blkbits = inode->i_blkbits;
blocks_per_page = PAGE_SIZE >> blkbits;
/*
* Map all the blocks into the extent tree. This code doesn't try
* to be very smart.
*/
probe_block = 0;
page_no = 0;
last_block = i_size_read(inode) >> blkbits;
while ((probe_block + blocks_per_page) <= last_block &&
page_no < sis->max) {
unsigned block_in_page;
sector_t first_block;
cond_resched();
first_block = probe_block;
ret = bmap(inode, &first_block);
if (ret || !first_block)
goto bad_bmap;
/*
* It must be PAGE_SIZE aligned on-disk
*/
if (first_block & (blocks_per_page - 1)) {
probe_block++;
goto reprobe;
}
for (block_in_page = 1; block_in_page < blocks_per_page;
block_in_page++) {
sector_t block;
block = probe_block + block_in_page;
ret = bmap(inode, &block);
if (ret || !block)
goto bad_bmap;
if (block != first_block + block_in_page) {
/* Discontiguity */
probe_block++;
goto reprobe;
}
}
first_block >>= (PAGE_SHIFT - blkbits);
if (page_no) { /* exclude the header page */
if (first_block < lowest_block)
lowest_block = first_block;
if (first_block > highest_block)
highest_block = first_block;
}
/*
* We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
*/
ret = add_swap_extent(sis, page_no, 1, first_block);
if (ret < 0)
goto out;
nr_extents += ret;
page_no++;
probe_block += blocks_per_page;
reprobe:
continue;
}
ret = nr_extents;
*span = 1 + highest_block - lowest_block;
if (page_no == 0)
page_no = 1; /* force Empty message */
sis->max = page_no;
sis->pages = page_no - 1;
sis->highest_bit = page_no - 1;
out:
return ret;
bad_bmap:
pr_err("swapon: swapfile has holes\n");
ret = -EINVAL;
goto out;
}
static bool is_folio_zero_filled(struct folio *folio)
{
unsigned int pos, last_pos;
unsigned long *data;
unsigned int i;
last_pos = PAGE_SIZE / sizeof(*data) - 1;
for (i = 0; i < folio_nr_pages(folio); i++) {
data = kmap_local_folio(folio, i * PAGE_SIZE);
/*
* Check last word first, incase the page is zero-filled at
* the start and has non-zero data at the end, which is common
* in real-world workloads.
*/
if (data[last_pos]) {
kunmap_local(data);
return false;
}
for (pos = 0; pos < last_pos; pos++) {
if (data[pos]) {
kunmap_local(data);
return false;
}
}
kunmap_local(data);
}
return true;
}
static void swap_zeromap_folio_set(struct folio *folio)
{
struct swap_info_struct *sis = swp_swap_info(folio->swap);
swp_entry_t entry;
unsigned int i;
for (i = 0; i < folio_nr_pages(folio); i++) {
entry = page_swap_entry(folio_page(folio, i));
set_bit(swp_offset(entry), sis->zeromap);
}
}
static void swap_zeromap_folio_clear(struct folio *folio)
{
struct swap_info_struct *sis = swp_swap_info(folio->swap);
swp_entry_t entry;
unsigned int i;
for (i = 0; i < folio_nr_pages(folio); i++) {
entry = page_swap_entry(folio_page(folio, i));
clear_bit(swp_offset(entry), sis->zeromap);
}
}
/*
* Return the index of the first subpage which is not zero-filled
* according to swap_info_struct->zeromap.
* If all pages are zero-filled according to zeromap, it will return
* folio_nr_pages(folio).
*/
static unsigned int swap_zeromap_folio_test(struct folio *folio)
{
struct swap_info_struct *sis = swp_swap_info(folio->swap);
swp_entry_t entry;
unsigned int i;
for (i = 0; i < folio_nr_pages(folio); i++) {
entry = page_swap_entry(folio_page(folio, i));
if (!test_bit(swp_offset(entry), sis->zeromap))
return i;
}
return i;
}
/*
* We may have stale swap cache pages in memory: notice
* them here and get rid of the unnecessary final write.
*/
int swap_writepage(struct page *page, struct writeback_control *wbc)
{
struct folio *folio = page_folio(page);
int ret;
if (folio_free_swap(folio)) {
folio_unlock(folio);
return 0;
}
/*
* Arch code may have to preserve more data than just the page
* contents, e.g. memory tags.
*/
ret = arch_prepare_to_swap(folio);
if (ret) {
folio_mark_dirty(folio);
folio_unlock(folio);
return ret;
}
/*
* Use a bitmap (zeromap) to avoid doing IO for zero-filled pages.
* The bits in zeromap are protected by the locked swapcache folio
* and atomic updates are used to protect against read-modify-write
* corruption due to other zero swap entries seeing concurrent updates.
*/
if (is_folio_zero_filled(folio)) {
swap_zeromap_folio_set(folio);
folio_unlock(folio);
return 0;
} else {
/*
* Clear bits this folio occupies in the zeromap to prevent
* zero data being read in from any previous zero writes that
* occupied the same swap entries.
*/
swap_zeromap_folio_clear(folio);
}
if (zswap_store(folio)) {
folio_unlock(folio);
return 0;
}
if (!mem_cgroup_zswap_writeback_enabled(folio_memcg(folio))) {
folio_mark_dirty(folio);
return AOP_WRITEPAGE_ACTIVATE;
}
__swap_writepage(folio, wbc);
return 0;
}
static inline void count_swpout_vm_event(struct folio *folio)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (unlikely(folio_test_pmd_mappable(folio))) {
count_memcg_folio_events(folio, THP_SWPOUT, 1);
count_vm_event(THP_SWPOUT);
}
count_mthp_stat(folio_order(folio), MTHP_STAT_SWPOUT);
#endif
count_vm_events(PSWPOUT, folio_nr_pages(folio));
}
#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
static void bio_associate_blkg_from_page(struct bio *bio, struct folio *folio)
{
struct cgroup_subsys_state *css;
struct mem_cgroup *memcg;
memcg = folio_memcg(folio);
if (!memcg)
return;
rcu_read_lock();
css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
bio_associate_blkg_from_css(bio, css);
rcu_read_unlock();
}
#else
#define bio_associate_blkg_from_page(bio, folio) do { } while (0)
#endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
struct swap_iocb {
struct kiocb iocb;
struct bio_vec bvec[SWAP_CLUSTER_MAX];
int pages;
int len;
};
static mempool_t *sio_pool;
int sio_pool_init(void)
{
if (!sio_pool) {
mempool_t *pool = mempool_create_kmalloc_pool(
SWAP_CLUSTER_MAX, sizeof(struct swap_iocb));
if (cmpxchg(&sio_pool, NULL, pool))
mempool_destroy(pool);
}
if (!sio_pool)
return -ENOMEM;
return 0;
}
static void sio_write_complete(struct kiocb *iocb, long ret)
{
struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
struct page *page = sio->bvec[0].bv_page;
int p;
if (ret != sio->len) {
/*
* In the case of swap-over-nfs, this can be a
* temporary failure if the system has limited
* memory for allocating transmit buffers.
* Mark the page dirty and avoid
* folio_rotate_reclaimable but rate-limit the
* messages.
*/
pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n",
ret, swap_dev_pos(page_swap_entry(page)));
for (p = 0; p < sio->pages; p++) {
page = sio->bvec[p].bv_page;
set_page_dirty(page);
ClearPageReclaim(page);
}
}
for (p = 0; p < sio->pages; p++)
end_page_writeback(sio->bvec[p].bv_page);
mempool_free(sio, sio_pool);
}
static void swap_writepage_fs(struct folio *folio, struct writeback_control *wbc)
{
struct swap_iocb *sio = NULL;
struct swap_info_struct *sis = swp_swap_info(folio->swap);
struct file *swap_file = sis->swap_file;
loff_t pos = swap_dev_pos(folio->swap);
count_swpout_vm_event(folio);
folio_start_writeback(folio);
folio_unlock(folio);
if (wbc->swap_plug)
sio = *wbc->swap_plug;
if (sio) {
if (sio->iocb.ki_filp != swap_file ||
sio->iocb.ki_pos + sio->len != pos) {
swap_write_unplug(sio);
sio = NULL;
}
}
if (!sio) {
sio = mempool_alloc(sio_pool, GFP_NOIO);
init_sync_kiocb(&sio->iocb, swap_file);
sio->iocb.ki_complete = sio_write_complete;
sio->iocb.ki_pos = pos;
sio->pages = 0;
sio->len = 0;
}
bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
sio->len += folio_size(folio);
sio->pages += 1;
if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) {
swap_write_unplug(sio);
sio = NULL;
}
if (wbc->swap_plug)
*wbc->swap_plug = sio;
}
static void swap_writepage_bdev_sync(struct folio *folio,
struct writeback_control *wbc, struct swap_info_struct *sis)
{
struct bio_vec bv;
struct bio bio;
bio_init(&bio, sis->bdev, &bv, 1,
REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc));
bio.bi_iter.bi_sector = swap_folio_sector(folio);
bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
bio_associate_blkg_from_page(&bio, folio);
count_swpout_vm_event(folio);
folio_start_writeback(folio);
folio_unlock(folio);
submit_bio_wait(&bio);
__end_swap_bio_write(&bio);
}
static void swap_writepage_bdev_async(struct folio *folio,
struct writeback_control *wbc, struct swap_info_struct *sis)
{
struct bio *bio;
bio = bio_alloc(sis->bdev, 1,
REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
GFP_NOIO);
bio->bi_iter.bi_sector = swap_folio_sector(folio);
bio->bi_end_io = end_swap_bio_write;
bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
bio_associate_blkg_from_page(bio, folio);
count_swpout_vm_event(folio);
folio_start_writeback(folio);
folio_unlock(folio);
submit_bio(bio);
}
void __swap_writepage(struct folio *folio, struct writeback_control *wbc)
{
struct swap_info_struct *sis = swp_swap_info(folio->swap);
VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
/*
* ->flags can be updated non-atomicially (scan_swap_map_slots),
* but that will never affect SWP_FS_OPS, so the data_race
* is safe.
*/
if (data_race(sis->flags & SWP_FS_OPS))
swap_writepage_fs(folio, wbc);
/*
* ->flags can be updated non-atomicially (scan_swap_map_slots),
* but that will never affect SWP_SYNCHRONOUS_IO, so the data_race
* is safe.
*/
else if (data_race(sis->flags & SWP_SYNCHRONOUS_IO))
swap_writepage_bdev_sync(folio, wbc, sis);
else
swap_writepage_bdev_async(folio, wbc, sis);
}
void swap_write_unplug(struct swap_iocb *sio)
{
struct iov_iter from;
struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
int ret;
iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len);
ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
if (ret != -EIOCBQUEUED)
sio_write_complete(&sio->iocb, ret);
}
static void sio_read_complete(struct kiocb *iocb, long ret)
{
struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
int p;
if (ret == sio->len) {
for (p = 0; p < sio->pages; p++) {
struct folio *folio = page_folio(sio->bvec[p].bv_page);
folio_mark_uptodate(folio);
folio_unlock(folio);
}
count_vm_events(PSWPIN, sio->pages);
} else {
for (p = 0; p < sio->pages; p++) {
struct folio *folio = page_folio(sio->bvec[p].bv_page);
folio_unlock(folio);
}
pr_alert_ratelimited("Read-error on swap-device\n");
}
mempool_free(sio, sio_pool);
}
static bool swap_read_folio_zeromap(struct folio *folio)
{
unsigned int idx = swap_zeromap_folio_test(folio);
if (idx == 0)
return false;
/*
* Swapping in a large folio that is partially in the zeromap is not
* currently handled. Return true without marking the folio uptodate so
* that an IO error is emitted (e.g. do_swap_page() will sigbus).
*/
if (WARN_ON_ONCE(idx < folio_nr_pages(folio)))
return true;
folio_zero_range(folio, 0, folio_size(folio));
folio_mark_uptodate(folio);
return true;
}
static void swap_read_folio_fs(struct folio *folio, struct swap_iocb **plug)
{
struct swap_info_struct *sis = swp_swap_info(folio->swap);
struct swap_iocb *sio = NULL;
loff_t pos = swap_dev_pos(folio->swap);
if (plug)
sio = *plug;
if (sio) {
if (sio->iocb.ki_filp != sis->swap_file ||
sio->iocb.ki_pos + sio->len != pos) {
swap_read_unplug(sio);
sio = NULL;
}
}
if (!sio) {
sio = mempool_alloc(sio_pool, GFP_KERNEL);
init_sync_kiocb(&sio->iocb, sis->swap_file);
sio->iocb.ki_pos = pos;
sio->iocb.ki_complete = sio_read_complete;
sio->pages = 0;
sio->len = 0;
}
bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
sio->len += folio_size(folio);
sio->pages += 1;
if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) {
swap_read_unplug(sio);
sio = NULL;
}
if (plug)
*plug = sio;
}
static void swap_read_folio_bdev_sync(struct folio *folio,
struct swap_info_struct *sis)
{
struct bio_vec bv;
struct bio bio;
bio_init(&bio, sis->bdev, &bv, 1, REQ_OP_READ);
bio.bi_iter.bi_sector = swap_folio_sector(folio);
bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
/*
* Keep this task valid during swap readpage because the oom killer may
* attempt to access it in the page fault retry time check.
*/
get_task_struct(current);
count_vm_event(PSWPIN);
submit_bio_wait(&bio);
__end_swap_bio_read(&bio);
put_task_struct(current);
}
static void swap_read_folio_bdev_async(struct folio *folio,
struct swap_info_struct *sis)
{
struct bio *bio;
bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
bio->bi_iter.bi_sector = swap_folio_sector(folio);
bio->bi_end_io = end_swap_bio_read;
bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
count_vm_event(PSWPIN);
submit_bio(bio);
}
void swap_read_folio(struct folio *folio, struct swap_iocb **plug)
{
struct swap_info_struct *sis = swp_swap_info(folio->swap);
bool synchronous = sis->flags & SWP_SYNCHRONOUS_IO;
bool workingset = folio_test_workingset(folio);
unsigned long pflags;
bool in_thrashing;
VM_BUG_ON_FOLIO(!folio_test_swapcache(folio) && !synchronous, folio);
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
/*
* Count submission time as memory stall and delay. When the device
* is congested, or the submitting cgroup IO-throttled, submission
* can be a significant part of overall IO time.
*/
if (workingset) {
delayacct_thrashing_start(&in_thrashing);
psi_memstall_enter(&pflags);
}
delayacct_swapin_start();
if (swap_read_folio_zeromap(folio)) {
folio_unlock(folio);
goto finish;
} else if (zswap_load(folio)) {
folio_unlock(folio);
goto finish;
}
/* We have to read from slower devices. Increase zswap protection. */
zswap_folio_swapin(folio);
if (data_race(sis->flags & SWP_FS_OPS)) {
swap_read_folio_fs(folio, plug);
} else if (synchronous) {
swap_read_folio_bdev_sync(folio, sis);
} else {
swap_read_folio_bdev_async(folio, sis);
}
finish:
if (workingset) {
delayacct_thrashing_end(&in_thrashing);
psi_memstall_leave(&pflags);
}
delayacct_swapin_end();
}
void __swap_read_unplug(struct swap_iocb *sio)
{
struct iov_iter from;
struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
int ret;
iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len);
ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
if (ret != -EIOCBQUEUED)
sio_read_complete(&sio->iocb, ret);
}