linux/drivers/thermal/tegra/soctherm.c
Wei Ni 1dcc242c7c thermal: tegra: enable OC hw throttle
Parse Over Current settings from DT and program them to
generate interrupts. Also enable hw throttling whenever
there are OC events. Log the OC events as debug messages.

Signed-off-by: Wei Ni <wni@nvidia.com>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
2019-05-13 20:35:34 -07:00

2333 lines
65 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2014 - 2018, NVIDIA CORPORATION. All rights reserved.
*
* Author:
* Mikko Perttunen <mperttunen@nvidia.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/debugfs.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/thermal.h>
#include <dt-bindings/thermal/tegra124-soctherm.h>
#include "../thermal_core.h"
#include "soctherm.h"
#define SENSOR_CONFIG0 0
#define SENSOR_CONFIG0_STOP BIT(0)
#define SENSOR_CONFIG0_CPTR_OVER BIT(2)
#define SENSOR_CONFIG0_OVER BIT(3)
#define SENSOR_CONFIG0_TCALC_OVER BIT(4)
#define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8)
#define SENSOR_CONFIG0_TALL_SHIFT 8
#define SENSOR_CONFIG1 4
#define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff
#define SENSOR_CONFIG1_TSAMPLE_SHIFT 0
#define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15)
#define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15
#define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24)
#define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24
#define SENSOR_CONFIG1_TEMP_ENABLE BIT(31)
/*
* SENSOR_CONFIG2 is defined in soctherm.h
* because, it will be used by tegra_soctherm_fuse.c
*/
#define SENSOR_STATUS0 0xc
#define SENSOR_STATUS0_VALID_MASK BIT(31)
#define SENSOR_STATUS0_CAPTURE_MASK 0xffff
#define SENSOR_STATUS1 0x10
#define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31)
#define SENSOR_STATUS1_TEMP_MASK 0xffff
#define READBACK_VALUE_MASK 0xff00
#define READBACK_VALUE_SHIFT 8
#define READBACK_ADD_HALF BIT(7)
#define READBACK_NEGATE BIT(0)
/*
* THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
* because it will be used by tegraxxx_soctherm.c
*/
#define THERMCTL_LVL0_CPU0_EN_MASK BIT(8)
#define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5)
#define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1
#define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2
#define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3)
#define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1
#define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2
#define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2)
#define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3
#define THERMCTL_LVL0_UP_STATS 0x10
#define THERMCTL_LVL0_DN_STATS 0x14
#define THERMCTL_INTR_STATUS 0x84
#define TH_INTR_MD0_MASK BIT(25)
#define TH_INTR_MU0_MASK BIT(24)
#define TH_INTR_GD0_MASK BIT(17)
#define TH_INTR_GU0_MASK BIT(16)
#define TH_INTR_CD0_MASK BIT(9)
#define TH_INTR_CU0_MASK BIT(8)
#define TH_INTR_PD0_MASK BIT(1)
#define TH_INTR_PU0_MASK BIT(0)
#define TH_INTR_IGNORE_MASK 0xFCFCFCFC
#define THERMCTL_STATS_CTL 0x94
#define STATS_CTL_CLR_DN 0x8
#define STATS_CTL_EN_DN 0x4
#define STATS_CTL_CLR_UP 0x2
#define STATS_CTL_EN_UP 0x1
#define OC1_CFG 0x310
#define OC1_CFG_LONG_LATENCY_MASK BIT(6)
#define OC1_CFG_HW_RESTORE_MASK BIT(5)
#define OC1_CFG_PWR_GOOD_MASK_MASK BIT(4)
#define OC1_CFG_THROTTLE_MODE_MASK (0x3 << 2)
#define OC1_CFG_ALARM_POLARITY_MASK BIT(1)
#define OC1_CFG_EN_THROTTLE_MASK BIT(0)
#define OC1_CNT_THRESHOLD 0x314
#define OC1_THROTTLE_PERIOD 0x318
#define OC1_ALARM_COUNT 0x31c
#define OC1_FILTER 0x320
#define OC1_STATS 0x3a8
#define OC_INTR_STATUS 0x39c
#define OC_INTR_ENABLE 0x3a0
#define OC_INTR_DISABLE 0x3a4
#define OC_STATS_CTL 0x3c4
#define OC_STATS_CTL_CLR_ALL 0x2
#define OC_STATS_CTL_EN_ALL 0x1
#define OC_INTR_OC1_MASK BIT(0)
#define OC_INTR_OC2_MASK BIT(1)
#define OC_INTR_OC3_MASK BIT(2)
#define OC_INTR_OC4_MASK BIT(3)
#define OC_INTR_OC5_MASK BIT(4)
#define THROT_GLOBAL_CFG 0x400
#define THROT_GLOBAL_ENB_MASK BIT(0)
#define CPU_PSKIP_STATUS 0x418
#define XPU_PSKIP_STATUS_M_MASK (0xff << 12)
#define XPU_PSKIP_STATUS_N_MASK (0xff << 4)
#define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1)
#define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0)
#define THROT_PRIORITY_LOCK 0x424
#define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff
#define THROT_STATUS 0x428
#define THROT_STATUS_BREACH_MASK BIT(12)
#define THROT_STATUS_STATE_MASK (0xff << 4)
#define THROT_STATUS_ENABLED_MASK BIT(0)
#define THROT_PSKIP_CTRL_LITE_CPU 0x430
#define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31)
#define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8)
#define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff
#define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16)
#define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8)
#define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7
#define THROT_VECT_NONE 0x0 /* 3'b000 */
#define THROT_VECT_LOW 0x1 /* 3'b001 */
#define THROT_VECT_MED 0x3 /* 3'b011 */
#define THROT_VECT_HIGH 0x7 /* 3'b111 */
#define THROT_PSKIP_RAMP_LITE_CPU 0x434
#define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31)
#define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8)
#define THROT_PSKIP_RAMP_STEP_MASK 0xff
#define THROT_PRIORITY_LITE 0x444
#define THROT_PRIORITY_LITE_PRIO_MASK 0xff
#define THROT_DELAY_LITE 0x448
#define THROT_DELAY_LITE_DELAY_MASK 0xff
/* car register offsets needed for enabling HW throttling */
#define CAR_SUPER_CCLKG_DIVIDER 0x36c
#define CDIVG_USE_THERM_CONTROLS_MASK BIT(30)
/* ccroc register offsets needed for enabling HW throttling for Tegra132 */
#define CCROC_SUPER_CCLKG_DIVIDER 0x024
#define CCROC_GLOBAL_CFG 0x148
#define CCROC_THROT_PSKIP_RAMP_CPU 0x150
#define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31)
#define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8)
#define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff
#define CCROC_THROT_PSKIP_CTRL_CPU 0x154
#define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31)
#define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8)
#define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff
/* get val from register(r) mask bits(m) */
#define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1))
/* set val(v) to mask bits(m) of register(r) */
#define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \
(((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
/* get dividend from the depth */
#define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1)
/* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-sochterm.h
* level vector
* NONE 3'b000
* LOW 3'b001
* MED 3'b011
* HIGH 3'b111
*/
#define THROT_LEVEL_TO_DEPTH(level) ((0x1 << (level)) - 1)
/* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
#define THROT_OFFSET 0x30
#define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \
(THROT_OFFSET * throt) + (8 * dev))
#define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \
(THROT_OFFSET * throt) + (8 * dev))
/* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
#define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \
(THROT_OFFSET * throt))
#define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \
(THROT_OFFSET * throt))
#define ALARM_OFFSET 0x14
#define ALARM_CFG(throt) (OC1_CFG + \
(ALARM_OFFSET * (throt - THROTTLE_OC1)))
#define ALARM_CNT_THRESHOLD(throt) (OC1_CNT_THRESHOLD + \
(ALARM_OFFSET * (throt - THROTTLE_OC1)))
#define ALARM_THROTTLE_PERIOD(throt) (OC1_THROTTLE_PERIOD + \
(ALARM_OFFSET * (throt - THROTTLE_OC1)))
#define ALARM_ALARM_COUNT(throt) (OC1_ALARM_COUNT + \
(ALARM_OFFSET * (throt - THROTTLE_OC1)))
#define ALARM_FILTER(throt) (OC1_FILTER + \
(ALARM_OFFSET * (throt - THROTTLE_OC1)))
#define ALARM_STATS(throt) (OC1_STATS + \
(4 * (throt - THROTTLE_OC1)))
/* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
#define CCROC_THROT_OFFSET 0x0c
#define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \
(CCROC_THROT_OFFSET * vect))
#define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \
(CCROC_THROT_OFFSET * vect))
/* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
#define THERMCTL_LVL_REGS_SIZE 0x20
#define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
#define OC_THROTTLE_MODE_DISABLED 0
#define OC_THROTTLE_MODE_BRIEF 2
static const int min_low_temp = -127000;
static const int max_high_temp = 127000;
enum soctherm_throttle_id {
THROTTLE_LIGHT = 0,
THROTTLE_HEAVY,
THROTTLE_OC1,
THROTTLE_OC2,
THROTTLE_OC3,
THROTTLE_OC4,
THROTTLE_OC5, /* OC5 is reserved */
THROTTLE_SIZE,
};
enum soctherm_oc_irq_id {
TEGRA_SOC_OC_IRQ_1,
TEGRA_SOC_OC_IRQ_2,
TEGRA_SOC_OC_IRQ_3,
TEGRA_SOC_OC_IRQ_4,
TEGRA_SOC_OC_IRQ_5,
TEGRA_SOC_OC_IRQ_MAX,
};
enum soctherm_throttle_dev_id {
THROTTLE_DEV_CPU = 0,
THROTTLE_DEV_GPU,
THROTTLE_DEV_SIZE,
};
static const char *const throt_names[] = {
[THROTTLE_LIGHT] = "light",
[THROTTLE_HEAVY] = "heavy",
[THROTTLE_OC1] = "oc1",
[THROTTLE_OC2] = "oc2",
[THROTTLE_OC3] = "oc3",
[THROTTLE_OC4] = "oc4",
[THROTTLE_OC5] = "oc5",
};
struct tegra_soctherm;
struct tegra_thermctl_zone {
void __iomem *reg;
struct device *dev;
struct tegra_soctherm *ts;
struct thermal_zone_device *tz;
const struct tegra_tsensor_group *sg;
};
struct soctherm_oc_cfg {
u32 active_low;
u32 throt_period;
u32 alarm_cnt_thresh;
u32 alarm_filter;
u32 mode;
bool intr_en;
};
struct soctherm_throt_cfg {
const char *name;
unsigned int id;
u8 priority;
u8 cpu_throt_level;
u32 cpu_throt_depth;
u32 gpu_throt_level;
struct soctherm_oc_cfg oc_cfg;
struct thermal_cooling_device *cdev;
bool init;
};
struct tegra_soctherm {
struct reset_control *reset;
struct clk *clock_tsensor;
struct clk *clock_soctherm;
void __iomem *regs;
void __iomem *clk_regs;
void __iomem *ccroc_regs;
int thermal_irq;
int edp_irq;
u32 *calib;
struct thermal_zone_device **thermctl_tzs;
struct tegra_soctherm_soc *soc;
struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
struct dentry *debugfs_dir;
struct mutex thermctl_lock;
};
struct soctherm_oc_irq_chip_data {
struct mutex irq_lock; /* serialize OC IRQs */
struct irq_chip irq_chip;
struct irq_domain *domain;
int irq_enable;
};
static struct soctherm_oc_irq_chip_data soc_irq_cdata;
/**
* ccroc_writel() - writes a value to a CCROC register
* @ts: pointer to a struct tegra_soctherm
* @v: the value to write
* @reg: the register offset
*
* Writes @v to @reg. No return value.
*/
static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
{
writel(value, (ts->ccroc_regs + reg));
}
/**
* ccroc_readl() - reads specified register from CCROC IP block
* @ts: pointer to a struct tegra_soctherm
* @reg: register address to be read
*
* Return: the value of the register
*/
static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
{
return readl(ts->ccroc_regs + reg);
}
static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
{
const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
void __iomem *base = tegra->regs + sensor->base;
unsigned int val;
val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
writel(val, base + SENSOR_CONFIG0);
val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
val |= SENSOR_CONFIG1_TEMP_ENABLE;
writel(val, base + SENSOR_CONFIG1);
writel(tegra->calib[i], base + SENSOR_CONFIG2);
}
/*
* Translate from soctherm readback format to millicelsius.
* The soctherm readback format in bits is as follows:
* TTTTTTTT H______N
* where T's contain the temperature in Celsius,
* H denotes an addition of 0.5 Celsius and N denotes negation
* of the final value.
*/
static int translate_temp(u16 val)
{
int t;
t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
if (val & READBACK_ADD_HALF)
t += 500;
if (val & READBACK_NEGATE)
t *= -1;
return t;
}
static int tegra_thermctl_get_temp(void *data, int *out_temp)
{
struct tegra_thermctl_zone *zone = data;
u32 val;
val = readl(zone->reg);
val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
*out_temp = translate_temp(val);
return 0;
}
/**
* enforce_temp_range() - check and enforce temperature range [min, max]
* @trip_temp: the trip temperature to check
*
* Checks and enforces the permitted temperature range that SOC_THERM
* HW can support This is
* done while taking care of precision.
*
* Return: The precision adjusted capped temperature in millicelsius.
*/
static int enforce_temp_range(struct device *dev, int trip_temp)
{
int temp;
temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
if (temp != trip_temp)
dev_info(dev, "soctherm: trip temperature %d forced to %d\n",
trip_temp, temp);
return temp;
}
/**
* thermtrip_program() - Configures the hardware to shut down the
* system if a given sensor group reaches a given temperature
* @dev: ptr to the struct device for the SOC_THERM IP block
* @sg: pointer to the sensor group to set the thermtrip temperature for
* @trip_temp: the temperature in millicelsius to trigger the thermal trip at
*
* Sets the thermal trip threshold of the given sensor group to be the
* @trip_temp. If this threshold is crossed, the hardware will shut
* down.
*
* Note that, although @trip_temp is specified in millicelsius, the
* hardware is programmed in degrees Celsius.
*
* Return: 0 upon success, or %-EINVAL upon failure.
*/
static int thermtrip_program(struct device *dev,
const struct tegra_tsensor_group *sg,
int trip_temp)
{
struct tegra_soctherm *ts = dev_get_drvdata(dev);
int temp;
u32 r;
if (!sg || !sg->thermtrip_threshold_mask)
return -EINVAL;
temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
return 0;
}
/**
* throttrip_program() - Configures the hardware to throttle the
* pulse if a given sensor group reaches a given temperature
* @dev: ptr to the struct device for the SOC_THERM IP block
* @sg: pointer to the sensor group to set the thermtrip temperature for
* @stc: pointer to the throttle need to be triggered
* @trip_temp: the temperature in millicelsius to trigger the thermal trip at
*
* Sets the thermal trip threshold and throttle event of the given sensor
* group. If this threshold is crossed, the hardware will trigger the
* throttle.
*
* Note that, although @trip_temp is specified in millicelsius, the
* hardware is programmed in degrees Celsius.
*
* Return: 0 upon success, or %-EINVAL upon failure.
*/
static int throttrip_program(struct device *dev,
const struct tegra_tsensor_group *sg,
struct soctherm_throt_cfg *stc,
int trip_temp)
{
struct tegra_soctherm *ts = dev_get_drvdata(dev);
int temp, cpu_throt, gpu_throt;
unsigned int throt;
u32 r, reg_off;
if (!sg || !stc || !stc->init)
return -EINVAL;
temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
/* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
throt = stc->id;
reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
if (throt == THROTTLE_LIGHT) {
cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
} else {
cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
if (throt != THROTTLE_HEAVY)
dev_warn(dev,
"invalid throt id %d - assuming HEAVY",
throt);
}
r = readl(ts->regs + reg_off);
r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
writel(r, ts->regs + reg_off);
return 0;
}
static struct soctherm_throt_cfg *
find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
{
unsigned int i;
for (i = 0; ts->throt_cfgs[i].name; i++)
if (!strcmp(ts->throt_cfgs[i].name, name))
return &ts->throt_cfgs[i];
return NULL;
}
static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
{
int i, temp = min_low_temp;
struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
return temp;
if (tt) {
for (i = 0; i < ts->soc->num_ttgs; i++) {
if (tt[i].id == id)
return tt[i].temp;
}
}
return temp;
}
static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp)
{
struct tegra_thermctl_zone *zone = data;
struct thermal_zone_device *tz = zone->tz;
struct tegra_soctherm *ts = zone->ts;
const struct tegra_tsensor_group *sg = zone->sg;
struct device *dev = zone->dev;
enum thermal_trip_type type;
int ret;
if (!tz)
return -EINVAL;
ret = tz->ops->get_trip_type(tz, trip, &type);
if (ret)
return ret;
if (type == THERMAL_TRIP_CRITICAL) {
/*
* If thermtrips property is set in DT,
* doesn't need to program critical type trip to HW,
* if not, program critical trip to HW.
*/
if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
return thermtrip_program(dev, sg, temp);
else
return 0;
} else if (type == THERMAL_TRIP_HOT) {
int i;
for (i = 0; i < THROTTLE_SIZE; i++) {
struct thermal_cooling_device *cdev;
struct soctherm_throt_cfg *stc;
if (!ts->throt_cfgs[i].init)
continue;
cdev = ts->throt_cfgs[i].cdev;
if (get_thermal_instance(tz, cdev, trip))
stc = find_throttle_cfg_by_name(ts, cdev->type);
else
continue;
return throttrip_program(dev, sg, stc, temp);
}
}
return 0;
}
static int tegra_thermctl_get_trend(void *data, int trip,
enum thermal_trend *trend)
{
struct tegra_thermctl_zone *zone = data;
struct thermal_zone_device *tz = zone->tz;
int trip_temp, temp, last_temp, ret;
if (!tz)
return -EINVAL;
ret = tz->ops->get_trip_temp(zone->tz, trip, &trip_temp);
if (ret)
return ret;
temp = READ_ONCE(tz->temperature);
last_temp = READ_ONCE(tz->last_temperature);
if (temp > trip_temp) {
if (temp >= last_temp)
*trend = THERMAL_TREND_RAISING;
else
*trend = THERMAL_TREND_STABLE;
} else if (temp < trip_temp) {
*trend = THERMAL_TREND_DROPPING;
} else {
*trend = THERMAL_TREND_STABLE;
}
return 0;
}
static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
{
u32 r;
/* multiple zones could be handling and setting trips at once */
mutex_lock(&zn->ts->thermctl_lock);
r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
mutex_unlock(&zn->ts->thermctl_lock);
}
static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
{
u32 r;
/* multiple zones could be handling and setting trips at once */
mutex_lock(&zn->ts->thermctl_lock);
r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
mutex_unlock(&zn->ts->thermctl_lock);
}
static int tegra_thermctl_set_trips(void *data, int lo, int hi)
{
struct tegra_thermctl_zone *zone = data;
u32 r;
thermal_irq_disable(zone);
r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
thermal_irq_enable(zone);
return 0;
}
static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = {
.get_temp = tegra_thermctl_get_temp,
.set_trip_temp = tegra_thermctl_set_trip_temp,
.get_trend = tegra_thermctl_get_trend,
.set_trips = tegra_thermctl_set_trips,
};
static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
{
int ntrips, i, ret;
enum thermal_trip_type type;
ntrips = of_thermal_get_ntrips(tz);
if (ntrips <= 0)
return -EINVAL;
for (i = 0; i < ntrips; i++) {
ret = tz->ops->get_trip_type(tz, i, &type);
if (ret)
return -EINVAL;
if (type == THERMAL_TRIP_HOT) {
ret = tz->ops->get_trip_temp(tz, i, temp);
if (!ret)
*trip = i;
return ret;
}
}
return -EINVAL;
}
/**
* tegra_soctherm_set_hwtrips() - set HW trip point from DT data
* @dev: struct device * of the SOC_THERM instance
*
* Configure the SOC_THERM HW trip points, setting "THERMTRIP"
* "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
* type trip_temp
* from thermal zone.
* After they have been configured, THERMTRIP or THROTTLE will take
* action when the configured SoC thermal sensor group reaches a
* certain temperature.
*
* Return: 0 upon success, or a negative error code on failure.
* "Success" does not mean that trips was enabled; it could also
* mean that no node was found in DT.
* THERMTRIP has been enabled successfully when a message similar to
* this one appears on the serial console:
* "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
* THROTTLE has been enabled successfully when a message similar to
* this one appears on the serial console:
* ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
*/
static int tegra_soctherm_set_hwtrips(struct device *dev,
const struct tegra_tsensor_group *sg,
struct thermal_zone_device *tz)
{
struct tegra_soctherm *ts = dev_get_drvdata(dev);
struct soctherm_throt_cfg *stc;
int i, trip, temperature, ret;
/* Get thermtrips. If missing, try to get critical trips. */
temperature = tsensor_group_thermtrip_get(ts, sg->id);
if (min_low_temp == temperature)
if (tz->ops->get_crit_temp(tz, &temperature))
temperature = max_high_temp;
ret = thermtrip_program(dev, sg, temperature);
if (ret) {
dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
return ret;
}
dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
sg->name, temperature);
ret = get_hot_temp(tz, &trip, &temperature);
if (ret) {
dev_info(dev, "throttrip: %s: missing hot temperature\n",
sg->name);
return 0;
}
for (i = 0; i < THROTTLE_OC1; i++) {
struct thermal_cooling_device *cdev;
if (!ts->throt_cfgs[i].init)
continue;
cdev = ts->throt_cfgs[i].cdev;
if (get_thermal_instance(tz, cdev, trip))
stc = find_throttle_cfg_by_name(ts, cdev->type);
else
continue;
ret = throttrip_program(dev, sg, stc, temperature);
if (ret) {
dev_err(dev, "throttrip: %s: error during enable\n",
sg->name);
return ret;
}
dev_info(dev,
"throttrip: will throttle when %s reaches %d mC\n",
sg->name, temperature);
break;
}
if (i == THROTTLE_SIZE)
dev_info(dev, "throttrip: %s: missing throttle cdev\n",
sg->name);
return 0;
}
static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
{
struct tegra_soctherm *ts = dev_id;
u32 r;
/* Case for no lock:
* Although interrupts are enabled in set_trips, there is still no need
* to lock here because the interrupts are disabled before programming
* new trip points. Hence there cant be a interrupt on the same sensor.
* An interrupt can however occur on a sensor while trips are being
* programmed on a different one. This beign a LEVEL interrupt won't
* cause a new interrupt but this is taken care of by the re-reading of
* the STATUS register in the thread function.
*/
r = readl(ts->regs + THERMCTL_INTR_STATUS);
writel(r, ts->regs + THERMCTL_INTR_DISABLE);
return IRQ_WAKE_THREAD;
}
/**
* soctherm_thermal_isr_thread() - Handles a thermal interrupt request
* @irq: The interrupt number being requested; not used
* @dev_id: Opaque pointer to tegra_soctherm;
*
* Clears the interrupt status register if there are expected
* interrupt bits set.
* The interrupt(s) are then handled by updating the corresponding
* thermal zones.
*
* An error is logged if any unexpected interrupt bits are set.
*
* Disabled interrupts are re-enabled.
*
* Return: %IRQ_HANDLED. Interrupt was handled and no further processing
* is needed.
*/
static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
{
struct tegra_soctherm *ts = dev_id;
struct thermal_zone_device *tz;
u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
st = readl(ts->regs + THERMCTL_INTR_STATUS);
/* deliberately clear expected interrupts handled in SW */
cp |= st & TH_INTR_CD0_MASK;
cp |= st & TH_INTR_CU0_MASK;
gp |= st & TH_INTR_GD0_MASK;
gp |= st & TH_INTR_GU0_MASK;
pl |= st & TH_INTR_PD0_MASK;
pl |= st & TH_INTR_PU0_MASK;
me |= st & TH_INTR_MD0_MASK;
me |= st & TH_INTR_MU0_MASK;
ex |= cp | gp | pl | me;
if (ex) {
writel(ex, ts->regs + THERMCTL_INTR_STATUS);
st &= ~ex;
if (cp) {
tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
thermal_zone_device_update(tz,
THERMAL_EVENT_UNSPECIFIED);
}
if (gp) {
tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
thermal_zone_device_update(tz,
THERMAL_EVENT_UNSPECIFIED);
}
if (pl) {
tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
thermal_zone_device_update(tz,
THERMAL_EVENT_UNSPECIFIED);
}
if (me) {
tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
thermal_zone_device_update(tz,
THERMAL_EVENT_UNSPECIFIED);
}
}
/* deliberately ignore expected interrupts NOT handled in SW */
ex |= TH_INTR_IGNORE_MASK;
st &= ~ex;
if (st) {
/* Whine about any other unexpected INTR bits still set */
pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
writel(st, ts->regs + THERMCTL_INTR_STATUS);
}
return IRQ_HANDLED;
}
/**
* soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
* @alarm: The soctherm throttle id
* @enable: Flag indicating enable the soctherm over-current
* interrupt or disable it
*
* Enables a specific over-current pins @alarm to raise an interrupt if the flag
* is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
*/
static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
enum soctherm_throttle_id alarm,
bool enable)
{
u32 r;
if (!enable)
return;
r = readl(ts->regs + OC_INTR_ENABLE);
switch (alarm) {
case THROTTLE_OC1:
r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
break;
case THROTTLE_OC2:
r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
break;
case THROTTLE_OC3:
r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
break;
case THROTTLE_OC4:
r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
break;
default:
r = 0;
break;
}
writel(r, ts->regs + OC_INTR_ENABLE);
}
/**
* soctherm_handle_alarm() - Handles soctherm alarms
* @alarm: The soctherm throttle id
*
* "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
* a warning or informative message.
*
* Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
*/
static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
{
int rv = -EINVAL;
switch (alarm) {
case THROTTLE_OC1:
pr_debug("soctherm: Successfully handled OC1 alarm\n");
rv = 0;
break;
case THROTTLE_OC2:
pr_debug("soctherm: Successfully handled OC2 alarm\n");
rv = 0;
break;
case THROTTLE_OC3:
pr_debug("soctherm: Successfully handled OC3 alarm\n");
rv = 0;
break;
case THROTTLE_OC4:
pr_debug("soctherm: Successfully handled OC4 alarm\n");
rv = 0;
break;
default:
break;
}
if (rv)
pr_err("soctherm: ERROR in handling %s alarm\n",
throt_names[alarm]);
return rv;
}
/**
* soctherm_edp_isr_thread() - log an over-current interrupt request
* @irq: OC irq number. Currently not being used. See description
* @arg: a void pointer for callback, currently not being used
*
* Over-current events are handled in hardware. This function is called to log
* and handle any OC events that happened. Additionally, it checks every
* over-current interrupt registers for registers are set but
* was not expected (i.e. any discrepancy in interrupt status) by the function,
* the discrepancy will logged.
*
* Return: %IRQ_HANDLED
*/
static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
{
struct tegra_soctherm *ts = arg;
u32 st, ex, oc1, oc2, oc3, oc4;
st = readl(ts->regs + OC_INTR_STATUS);
/* deliberately clear expected interrupts handled in SW */
oc1 = st & OC_INTR_OC1_MASK;
oc2 = st & OC_INTR_OC2_MASK;
oc3 = st & OC_INTR_OC3_MASK;
oc4 = st & OC_INTR_OC4_MASK;
ex = oc1 | oc2 | oc3 | oc4;
pr_err("soctherm: OC ALARM 0x%08x\n", ex);
if (ex) {
writel(st, ts->regs + OC_INTR_STATUS);
st &= ~ex;
if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
handle_nested_irq(
irq_find_mapping(soc_irq_cdata.domain, 0));
if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
handle_nested_irq(
irq_find_mapping(soc_irq_cdata.domain, 1));
if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
handle_nested_irq(
irq_find_mapping(soc_irq_cdata.domain, 2));
if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
handle_nested_irq(
irq_find_mapping(soc_irq_cdata.domain, 3));
}
if (st) {
pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
writel(st, ts->regs + OC_INTR_STATUS);
}
return IRQ_HANDLED;
}
/**
* soctherm_edp_isr() - Disables any active interrupts
* @irq: The interrupt request number
* @arg: Opaque pointer to an argument
*
* Writes to the OC_INTR_DISABLE register the over current interrupt status,
* masking any asserted interrupts. Doing this prevents the same interrupts
* from triggering this isr repeatedly. The thread woken by this isr will
* handle asserted interrupts and subsequently unmask/re-enable them.
*
* The OC_INTR_DISABLE register indicates which OC interrupts
* have been disabled.
*
* Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
*/
static irqreturn_t soctherm_edp_isr(int irq, void *arg)
{
struct tegra_soctherm *ts = arg;
u32 r;
if (!ts)
return IRQ_NONE;
r = readl(ts->regs + OC_INTR_STATUS);
writel(r, ts->regs + OC_INTR_DISABLE);
return IRQ_WAKE_THREAD;
}
/**
* soctherm_oc_irq_lock() - locks the over-current interrupt request
* @data: Interrupt request data
*
* Looks up the chip data from @data and locks the mutex associated with
* a particular over-current interrupt request.
*/
static void soctherm_oc_irq_lock(struct irq_data *data)
{
struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
mutex_lock(&d->irq_lock);
}
/**
* soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
* @data: Interrupt request data
*
* Looks up the interrupt request data @data and unlocks the mutex associated
* with a particular over-current interrupt request.
*/
static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
{
struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
mutex_unlock(&d->irq_lock);
}
/**
* soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
* @data: irq_data structure of the chip
*
* Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
* to respond to over-current interrupts.
*
*/
static void soctherm_oc_irq_enable(struct irq_data *data)
{
struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
d->irq_enable |= BIT(data->hwirq);
}
/**
* soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
* @irq_data: The interrupt request information
*
* Clears the interrupt request enable bit of the overcurrent
* interrupt request chip data.
*
* Return: Nothing is returned (void)
*/
static void soctherm_oc_irq_disable(struct irq_data *data)
{
struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
d->irq_enable &= ~BIT(data->hwirq);
}
static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
{
return 0;
}
/**
* soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
* @h: Interrupt request domain
* @virq: Virtual interrupt request number
* @hw: Hardware interrupt request number
*
* Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
* interrupt request is called, the irq_domain takes the request's virtual
* request number (much like a virtual memory address) and maps it to a
* physical hardware request number.
*
* When a mapping doesn't already exist for a virtual request number, the
* irq_domain calls this function to associate the virtual request number with
* a hardware request number.
*
* Return: 0
*/
static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
irq_hw_number_t hw)
{
struct soctherm_oc_irq_chip_data *data = h->host_data;
irq_set_chip_data(virq, data);
irq_set_chip(virq, &data->irq_chip);
irq_set_nested_thread(virq, 1);
return 0;
}
/**
* soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
* @d: Interrupt request domain
* @intspec: Array of u32s from DTs "interrupt" property
* @intsize: Number of values inside the intspec array
* @out_hwirq: HW IRQ value associated with this interrupt
* @out_type: The IRQ SENSE type for this interrupt.
*
* This Device Tree IRQ specifier translation function will translate a
* specific "interrupt" as defined by 2 DT values where the cell values map
* the hwirq number + 1 and linux irq flags. Since the output is the hwirq
* number, this function will subtract 1 from the value listed in DT.
*
* Return: 0
*/
static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
irq_hw_number_t *out_hwirq, unsigned int *out_type)
{
if (WARN_ON(intsize < 2))
return -EINVAL;
/*
* The HW value is 1 index less than the DT IRQ values.
* i.e. OC4 goes to HW index 3.
*/
*out_hwirq = intspec[0] - 1;
*out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
return 0;
}
static const struct irq_domain_ops soctherm_oc_domain_ops = {
.map = soctherm_oc_irq_map,
.xlate = soctherm_irq_domain_xlate_twocell,
};
/**
* soctherm_oc_int_init() - Initial enabling of the over
* current interrupts
* @np: The devicetree node for soctherm
* @num_irqs: The number of new interrupt requests
*
* Sets the over current interrupt request chip data
*
* Return: 0 on success or if overcurrent interrupts are not enabled,
* -ENOMEM (out of memory), or irq_base if the function failed to
* allocate the irqs
*/
static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
{
if (!num_irqs) {
pr_info("%s(): OC interrupts are not enabled\n", __func__);
return 0;
}
mutex_init(&soc_irq_cdata.irq_lock);
soc_irq_cdata.irq_enable = 0;
soc_irq_cdata.irq_chip.name = "soc_therm_oc";
soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
soctherm_oc_irq_sync_unlock;
soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
soc_irq_cdata.irq_chip.irq_set_wake = NULL;
soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
&soctherm_oc_domain_ops,
&soc_irq_cdata);
if (!soc_irq_cdata.domain) {
pr_err("%s: Failed to create IRQ domain\n", __func__);
return -ENOMEM;
}
pr_debug("%s(): OC interrupts enabled successful\n", __func__);
return 0;
}
#ifdef CONFIG_DEBUG_FS
static int regs_show(struct seq_file *s, void *data)
{
struct platform_device *pdev = s->private;
struct tegra_soctherm *ts = platform_get_drvdata(pdev);
const struct tegra_tsensor *tsensors = ts->soc->tsensors;
const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
u32 r, state;
int i, level;
seq_puts(s, "-----TSENSE (convert HW)-----\n");
for (i = 0; i < ts->soc->num_tsensors; i++) {
r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
seq_printf(s, "%s: ", tsensors[i].name);
seq_printf(s, "En(%d) ", state);
if (!state) {
seq_puts(s, "\n");
continue;
}
state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
seq_printf(s, "tiddq(%d) ", state);
state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
seq_printf(s, "ten_count(%d) ", state);
state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
seq_printf(s, "tsample(%d) ", state + 1);
r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
seq_printf(s, "Temp(%d/", state);
state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
seq_printf(s, "%d) ", translate_temp(state));
r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
seq_printf(s, "Capture(%d/", state);
state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
seq_printf(s, "%d) ", state);
r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
seq_printf(s, "Stop(%d) ", state);
state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
seq_printf(s, "Tall(%d) ", state);
state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
seq_printf(s, "Over(%d/", state);
state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
seq_printf(s, "%d/", state);
state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
seq_printf(s, "%d) ", state);
r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
seq_printf(s, "Therm_A/B(%d/", state);
state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
seq_printf(s, "%d)\n", (s16)state);
}
r = readl(ts->regs + SENSOR_PDIV);
seq_printf(s, "PDIV: 0x%x\n", r);
r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
seq_printf(s, "HOTSPOT: 0x%x\n", r);
seq_puts(s, "\n");
seq_puts(s, "-----SOC_THERM-----\n");
r = readl(ts->regs + SENSOR_TEMP1);
state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
seq_printf(s, " GPU(%d) ", translate_temp(state));
r = readl(ts->regs + SENSOR_TEMP2);
state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
seq_printf(s, " PLLX(%d) ", translate_temp(state));
state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
seq_printf(s, " MEM(%d)\n", translate_temp(state));
for (i = 0; i < ts->soc->num_ttgs; i++) {
seq_printf(s, "%s:\n", ttgs[i]->name);
for (level = 0; level < 4; level++) {
s32 v;
u32 mask;
u16 off = ttgs[i]->thermctl_lvl0_offset;
r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
state = REG_GET_MASK(r, mask);
v = sign_extend32(state, ts->soc->bptt - 1);
v *= ts->soc->thresh_grain;
seq_printf(s, " %d: Up/Dn(%d /", level, v);
mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
state = REG_GET_MASK(r, mask);
v = sign_extend32(state, ts->soc->bptt - 1);
v *= ts->soc->thresh_grain;
seq_printf(s, "%d ) ", v);
mask = THERMCTL_LVL0_CPU0_EN_MASK;
state = REG_GET_MASK(r, mask);
seq_printf(s, "En(%d) ", state);
mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
state = REG_GET_MASK(r, mask);
seq_puts(s, "CPU Throt");
if (!state)
seq_printf(s, "(%s) ", "none");
else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
seq_printf(s, "(%s) ", "L");
else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
seq_printf(s, "(%s) ", "H");
else
seq_printf(s, "(%s) ", "H+L");
mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
state = REG_GET_MASK(r, mask);
seq_puts(s, "GPU Throt");
if (!state)
seq_printf(s, "(%s) ", "none");
else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
seq_printf(s, "(%s) ", "L");
else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
seq_printf(s, "(%s) ", "H");
else
seq_printf(s, "(%s) ", "H+L");
mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
state = REG_GET_MASK(r, mask);
seq_printf(s, "Status(%s)\n",
state == 0 ? "LO" :
state == 1 ? "In" :
state == 2 ? "Res" : "HI");
}
}
r = readl(ts->regs + THERMCTL_STATS_CTL);
seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
r & STATS_CTL_EN_UP ? "En" : "--",
r & STATS_CTL_EN_DN ? "En" : "--");
for (level = 0; level < 4; level++) {
u16 off;
off = THERMCTL_LVL0_UP_STATS;
r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
seq_printf(s, " Level_%d Up(%d) ", level, r);
off = THERMCTL_LVL0_DN_STATS;
r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
seq_printf(s, "Dn(%d)\n", r);
}
r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
seq_printf(s, "Thermtrip Any En(%d)\n", state);
for (i = 0; i < ts->soc->num_ttgs; i++) {
state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
seq_printf(s, " %s En(%d) ", ttgs[i]->name, state);
state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
state *= ts->soc->thresh_grain;
seq_printf(s, "Thresh(%d)\n", state);
}
r = readl(ts->regs + THROT_GLOBAL_CFG);
seq_puts(s, "\n");
seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
seq_puts(s, "---------------------------------------------------\n");
r = readl(ts->regs + THROT_STATUS);
state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
seq_printf(s, "THROT STATUS: breach(%d) ", state);
state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
seq_printf(s, "state(%d) ", state);
state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
seq_printf(s, "enabled(%d)\n", state);
r = readl(ts->regs + CPU_PSKIP_STATUS);
if (ts->soc->use_ccroc) {
state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
} else {
state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
seq_printf(s, "N(%d) ", state);
state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
seq_printf(s, "enabled(%d)\n", state);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(regs);
static void soctherm_debug_init(struct platform_device *pdev)
{
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
struct dentry *root, *file;
root = debugfs_create_dir("soctherm", NULL);
if (!root) {
dev_err(&pdev->dev, "failed to create debugfs directory\n");
return;
}
tegra->debugfs_dir = root;
file = debugfs_create_file("reg_contents", 0644, root,
pdev, &regs_fops);
if (!file) {
dev_err(&pdev->dev, "failed to create debugfs file\n");
debugfs_remove_recursive(tegra->debugfs_dir);
tegra->debugfs_dir = NULL;
}
}
#else
static inline void soctherm_debug_init(struct platform_device *pdev) {}
#endif
static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
{
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
int err;
if (!tegra->clock_soctherm || !tegra->clock_tsensor)
return -EINVAL;
reset_control_assert(tegra->reset);
if (enable) {
err = clk_prepare_enable(tegra->clock_soctherm);
if (err) {
reset_control_deassert(tegra->reset);
return err;
}
err = clk_prepare_enable(tegra->clock_tsensor);
if (err) {
clk_disable_unprepare(tegra->clock_soctherm);
reset_control_deassert(tegra->reset);
return err;
}
} else {
clk_disable_unprepare(tegra->clock_tsensor);
clk_disable_unprepare(tegra->clock_soctherm);
}
reset_control_deassert(tegra->reset);
return 0;
}
static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
unsigned long *max_state)
{
*max_state = 1;
return 0;
}
static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
unsigned long *cur_state)
{
struct tegra_soctherm *ts = cdev->devdata;
u32 r;
r = readl(ts->regs + THROT_STATUS);
if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
*cur_state = 1;
else
*cur_state = 0;
return 0;
}
static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
unsigned long cur_state)
{
return 0;
}
static const struct thermal_cooling_device_ops throt_cooling_ops = {
.get_max_state = throt_get_cdev_max_state,
.get_cur_state = throt_get_cdev_cur_state,
.set_cur_state = throt_set_cdev_state,
};
static int soctherm_thermtrips_parse(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct tegra_soctherm *ts = dev_get_drvdata(dev);
struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
const int max_num_prop = ts->soc->num_ttgs * 2;
u32 *tlb;
int i, j, n, ret;
if (!tt)
return -ENOMEM;
n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
if (n <= 0) {
dev_info(dev,
"missing thermtrips, will use critical trips as shut down temp\n");
return n;
}
n = min(max_num_prop, n);
tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
if (!tlb)
return -ENOMEM;
ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
tlb, n);
if (ret) {
dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
return ret;
}
i = 0;
for (j = 0; j < n; j = j + 2) {
if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
continue;
tt[i].id = tlb[j];
tt[i].temp = tlb[j + 1];
i++;
}
return 0;
}
static void soctherm_oc_cfg_parse(struct device *dev,
struct device_node *np_oc,
struct soctherm_throt_cfg *stc)
{
u32 val;
if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
stc->oc_cfg.active_low = 1;
else
stc->oc_cfg.active_low = 0;
if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
stc->oc_cfg.intr_en = 1;
stc->oc_cfg.alarm_cnt_thresh = val;
}
if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
stc->oc_cfg.throt_period = val;
if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
stc->oc_cfg.alarm_filter = val;
/* BRIEF throttling by default, do not support STICKY */
stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
}
static int soctherm_throt_cfg_parse(struct device *dev,
struct device_node *np,
struct soctherm_throt_cfg *stc)
{
struct tegra_soctherm *ts = dev_get_drvdata(dev);
int ret;
u32 val;
ret = of_property_read_u32(np, "nvidia,priority", &val);
if (ret) {
dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
return -EINVAL;
}
stc->priority = val;
ret = of_property_read_u32(np, ts->soc->use_ccroc ?
"nvidia,cpu-throt-level" :
"nvidia,cpu-throt-percent", &val);
if (!ret) {
if (ts->soc->use_ccroc &&
val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
stc->cpu_throt_level = val;
else if (!ts->soc->use_ccroc && val <= 100)
stc->cpu_throt_depth = val;
else
goto err;
} else {
goto err;
}
ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
stc->gpu_throt_level = val;
else
goto err;
return 0;
err:
dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
stc->name);
return -EINVAL;
}
/**
* soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
* and register them as cooling devices.
*/
static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct tegra_soctherm *ts = dev_get_drvdata(dev);
struct device_node *np_stc, *np_stcc;
const char *name;
int i;
for (i = 0; i < THROTTLE_SIZE; i++) {
ts->throt_cfgs[i].name = throt_names[i];
ts->throt_cfgs[i].id = i;
ts->throt_cfgs[i].init = false;
}
np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
if (!np_stc) {
dev_info(dev,
"throttle-cfg: no throttle-cfgs - not enabling\n");
return;
}
for_each_child_of_node(np_stc, np_stcc) {
struct soctherm_throt_cfg *stc;
struct thermal_cooling_device *tcd;
int err;
name = np_stcc->name;
stc = find_throttle_cfg_by_name(ts, name);
if (!stc) {
dev_err(dev,
"throttle-cfg: could not find %s\n", name);
continue;
}
if (stc->init) {
dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
of_node_put(np_stcc);
break;
}
err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
if (err)
continue;
if (stc->id >= THROTTLE_OC1) {
soctherm_oc_cfg_parse(dev, np_stcc, stc);
stc->init = true;
} else {
tcd = thermal_of_cooling_device_register(np_stcc,
(char *)name, ts,
&throt_cooling_ops);
if (IS_ERR_OR_NULL(tcd)) {
dev_err(dev,
"throttle-cfg: %s: failed to register cooling device\n",
name);
continue;
}
stc->cdev = tcd;
stc->init = true;
}
}
of_node_put(np_stc);
}
/**
* throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
* @level: describing the level LOW/MED/HIGH of throttling
*
* It's necessary to set up the CPU-local CCROC NV_THERM instance with
* the M/N values desired for each level. This function does this.
*
* This function pre-programs the CCROC NV_THERM levels in terms of
* pre-configured "Low", "Medium" or "Heavy" throttle levels which are
* mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
*/
static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
{
u8 depth, dividend;
u32 r;
switch (level) {
case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
depth = 50;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_MED:
depth = 75;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
depth = 80;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
return;
default:
return;
}
dividend = THROT_DEPTH_DIVIDEND(depth);
/* setup PSKIP in ccroc nv_therm registers */
r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
}
/**
* throttlectl_cpu_level_select() - program CPU pulse skipper config
* @throt: the LIGHT/HEAVY of throttle event id
*
* Pulse skippers are used to throttle clock frequencies. This
* function programs the pulse skippers based on @throt and platform
* data. This function is used on SoCs which have CPU-local pulse
* skipper control, such as T13x. It programs soctherm's interface to
* Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
* vectors. PSKIP_BYPASS mode is set as required per HW spec.
*/
static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt)
{
u32 r, throt_vect;
/* Denver:CCROC NV_THERM interface N:3 Mapping */
switch (ts->throt_cfgs[throt].cpu_throt_level) {
case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
throt_vect = THROT_VECT_LOW;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_MED:
throt_vect = THROT_VECT_MED;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
throt_vect = THROT_VECT_HIGH;
break;
default:
throt_vect = THROT_VECT_NONE;
break;
}
r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
/* bypass sequencer in soc_therm as it is programmed in ccroc */
r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
}
/**
* throttlectl_cpu_mn() - program CPU pulse skipper configuration
* @throt: the LIGHT/HEAVY of throttle event id
*
* Pulse skippers are used to throttle clock frequencies. This
* function programs the pulse skippers based on @throt and platform
* data. This function is used for CPUs that have "remote" pulse
* skipper control, e.g., the CPU pulse skipper is controlled by the
* SOC_THERM IP block. (SOC_THERM is located outside the CPU
* complex.)
*/
static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt)
{
u32 r;
int depth;
u8 dividend;
depth = ts->throt_cfgs[throt].cpu_throt_depth;
dividend = THROT_DEPTH_DIVIDEND(depth);
r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
}
/**
* throttlectl_gpu_level_select() - selects throttling level for GPU
* @throt: the LIGHT/HEAVY of throttle event id
*
* This function programs soctherm's interface to GK20a NV_THERM to select
* pre-configured "Low", "Medium" or "Heavy" throttle levels.
*
* Return: boolean true if HW was programmed
*/
static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt)
{
u32 r, level, throt_vect;
level = ts->throt_cfgs[throt].gpu_throt_level;
throt_vect = THROT_LEVEL_TO_DEPTH(level);
r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
}
static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt)
{
u32 r;
struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
if (oc->mode == OC_THROTTLE_MODE_DISABLED)
return -EINVAL;
r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
writel(r, ts->regs + ALARM_CFG(throt));
writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
soctherm_oc_intr_enable(ts, throt, oc->intr_en);
return 0;
}
/**
* soctherm_throttle_program() - programs pulse skippers' configuration
* @throt: the LIGHT/HEAVY of the throttle event id.
*
* Pulse skippers are used to throttle clock frequencies.
* This function programs the pulse skippers.
*/
static void soctherm_throttle_program(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt)
{
u32 r;
struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
if (!stc.init)
return;
if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
return;
/* Setup PSKIP parameters */
if (ts->soc->use_ccroc)
throttlectl_cpu_level_select(ts, throt);
else
throttlectl_cpu_mn(ts, throt);
throttlectl_gpu_level_select(ts, throt);
r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
writel(r, ts->regs + THROT_DELAY_CTRL(throt));
r = readl(ts->regs + THROT_PRIORITY_LOCK);
r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
if (r >= stc.priority)
return;
r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
stc.priority);
writel(r, ts->regs + THROT_PRIORITY_LOCK);
}
static void tegra_soctherm_throttle(struct device *dev)
{
struct tegra_soctherm *ts = dev_get_drvdata(dev);
u32 v;
int i;
/* configure LOW, MED and HIGH levels for CCROC NV_THERM */
if (ts->soc->use_ccroc) {
throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
}
/* Thermal HW throttle programming */
for (i = 0; i < THROTTLE_SIZE; i++)
soctherm_throttle_program(ts, i);
v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
if (ts->soc->use_ccroc) {
ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
} else {
writel(v, ts->regs + THROT_GLOBAL_CFG);
v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
}
/* initialize stats collection */
v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
writel(v, ts->regs + THERMCTL_STATS_CTL);
}
static int soctherm_interrupts_init(struct platform_device *pdev,
struct tegra_soctherm *tegra)
{
struct device_node *np = pdev->dev.of_node;
int ret;
ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
if (ret < 0) {
dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
return ret;
}
tegra->thermal_irq = platform_get_irq(pdev, 0);
if (tegra->thermal_irq < 0) {
dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
return 0;
}
tegra->edp_irq = platform_get_irq(pdev, 1);
if (tegra->edp_irq < 0) {
dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
return 0;
}
ret = devm_request_threaded_irq(&pdev->dev,
tegra->thermal_irq,
soctherm_thermal_isr,
soctherm_thermal_isr_thread,
IRQF_ONESHOT,
dev_name(&pdev->dev),
tegra);
if (ret < 0) {
dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
return ret;
}
ret = devm_request_threaded_irq(&pdev->dev,
tegra->edp_irq,
soctherm_edp_isr,
soctherm_edp_isr_thread,
IRQF_ONESHOT,
"soctherm_edp",
tegra);
if (ret < 0) {
dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
return ret;
}
return 0;
}
static void soctherm_init(struct platform_device *pdev)
{
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
int i;
u32 pdiv, hotspot;
/* Initialize raw sensors */
for (i = 0; i < tegra->soc->num_tsensors; ++i)
enable_tsensor(tegra, i);
/* program pdiv and hotspot offsets per THERM */
pdiv = readl(tegra->regs + SENSOR_PDIV);
hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
for (i = 0; i < tegra->soc->num_ttgs; ++i) {
pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
ttgs[i]->pdiv);
/* hotspot offset from PLLX, doesn't need to configure PLLX */
if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
continue;
hotspot = REG_SET_MASK(hotspot,
ttgs[i]->pllx_hotspot_mask,
ttgs[i]->pllx_hotspot_diff);
}
writel(pdiv, tegra->regs + SENSOR_PDIV);
writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
/* Configure hw throttle */
tegra_soctherm_throttle(&pdev->dev);
}
static const struct of_device_id tegra_soctherm_of_match[] = {
#ifdef CONFIG_ARCH_TEGRA_124_SOC
{
.compatible = "nvidia,tegra124-soctherm",
.data = &tegra124_soctherm,
},
#endif
#ifdef CONFIG_ARCH_TEGRA_132_SOC
{
.compatible = "nvidia,tegra132-soctherm",
.data = &tegra132_soctherm,
},
#endif
#ifdef CONFIG_ARCH_TEGRA_210_SOC
{
.compatible = "nvidia,tegra210-soctherm",
.data = &tegra210_soctherm,
},
#endif
{ },
};
MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
static int tegra_soctherm_probe(struct platform_device *pdev)
{
const struct of_device_id *match;
struct tegra_soctherm *tegra;
struct thermal_zone_device *z;
struct tsensor_shared_calib shared_calib;
struct resource *res;
struct tegra_soctherm_soc *soc;
unsigned int i;
int err;
match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
if (!match)
return -ENODEV;
soc = (struct tegra_soctherm_soc *)match->data;
if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
return -EINVAL;
tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
if (!tegra)
return -ENOMEM;
mutex_init(&tegra->thermctl_lock);
dev_set_drvdata(&pdev->dev, tegra);
tegra->soc = soc;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"soctherm-reg");
tegra->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tegra->regs)) {
dev_err(&pdev->dev, "can't get soctherm registers");
return PTR_ERR(tegra->regs);
}
if (!tegra->soc->use_ccroc) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"car-reg");
tegra->clk_regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tegra->clk_regs)) {
dev_err(&pdev->dev, "can't get car clk registers");
return PTR_ERR(tegra->clk_regs);
}
} else {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"ccroc-reg");
tegra->ccroc_regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tegra->ccroc_regs)) {
dev_err(&pdev->dev, "can't get ccroc registers");
return PTR_ERR(tegra->ccroc_regs);
}
}
tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
if (IS_ERR(tegra->reset)) {
dev_err(&pdev->dev, "can't get soctherm reset\n");
return PTR_ERR(tegra->reset);
}
tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
if (IS_ERR(tegra->clock_tsensor)) {
dev_err(&pdev->dev, "can't get tsensor clock\n");
return PTR_ERR(tegra->clock_tsensor);
}
tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
if (IS_ERR(tegra->clock_soctherm)) {
dev_err(&pdev->dev, "can't get soctherm clock\n");
return PTR_ERR(tegra->clock_soctherm);
}
tegra->calib = devm_kcalloc(&pdev->dev,
soc->num_tsensors, sizeof(u32),
GFP_KERNEL);
if (!tegra->calib)
return -ENOMEM;
/* calculate shared calibration data */
err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
if (err)
return err;
/* calculate tsensor calibaration data */
for (i = 0; i < soc->num_tsensors; ++i) {
err = tegra_calc_tsensor_calib(&soc->tsensors[i],
&shared_calib,
&tegra->calib[i]);
if (err)
return err;
}
tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
soc->num_ttgs, sizeof(z),
GFP_KERNEL);
if (!tegra->thermctl_tzs)
return -ENOMEM;
err = soctherm_clk_enable(pdev, true);
if (err)
return err;
soctherm_thermtrips_parse(pdev);
soctherm_init_hw_throt_cdev(pdev);
soctherm_init(pdev);
for (i = 0; i < soc->num_ttgs; ++i) {
struct tegra_thermctl_zone *zone =
devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
if (!zone) {
err = -ENOMEM;
goto disable_clocks;
}
zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
zone->dev = &pdev->dev;
zone->sg = soc->ttgs[i];
zone->ts = tegra;
z = devm_thermal_zone_of_sensor_register(&pdev->dev,
soc->ttgs[i]->id, zone,
&tegra_of_thermal_ops);
if (IS_ERR(z)) {
err = PTR_ERR(z);
dev_err(&pdev->dev, "failed to register sensor: %d\n",
err);
goto disable_clocks;
}
zone->tz = z;
tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
/* Configure hw trip points */
err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
if (err)
goto disable_clocks;
}
err = soctherm_interrupts_init(pdev, tegra);
soctherm_debug_init(pdev);
return 0;
disable_clocks:
soctherm_clk_enable(pdev, false);
return err;
}
static int tegra_soctherm_remove(struct platform_device *pdev)
{
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
debugfs_remove_recursive(tegra->debugfs_dir);
soctherm_clk_enable(pdev, false);
return 0;
}
static int __maybe_unused soctherm_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
soctherm_clk_enable(pdev, false);
return 0;
}
static int __maybe_unused soctherm_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
struct tegra_soctherm_soc *soc = tegra->soc;
int err, i;
err = soctherm_clk_enable(pdev, true);
if (err) {
dev_err(&pdev->dev,
"Resume failed: enable clocks failed\n");
return err;
}
soctherm_init(pdev);
for (i = 0; i < soc->num_ttgs; ++i) {
struct thermal_zone_device *tz;
tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
if (err) {
dev_err(&pdev->dev,
"Resume failed: set hwtrips failed\n");
return err;
}
}
return 0;
}
static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
static struct platform_driver tegra_soctherm_driver = {
.probe = tegra_soctherm_probe,
.remove = tegra_soctherm_remove,
.driver = {
.name = "tegra_soctherm",
.pm = &tegra_soctherm_pm,
.of_match_table = tegra_soctherm_of_match,
},
};
module_platform_driver(tegra_soctherm_driver);
MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
MODULE_LICENSE("GPL v2");