mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-06 02:24:14 +08:00
49da7e64f3
1. Provides infrastructure for vector IO using recvmmsg/sendmmsg. 1.1. Multi-message read. 1.2. Multi-message write. 1.3. Optimized queue support for multi-packet enqueue/dequeue. 1.4. BQL/DQL support. 2. Implements transports for several transports as well support for direct wiring of PWEs to NIC. Allows direct connection of VMs to host, other VMs and network devices with no switch in use. 2.1. Raw socket >4 times higher PPS and 10 times higher tcp RX than existing pcap based transport (> 4Gbit) 2.2. New tap transport using socket RX and tap xmit. Similar performance improvements (>4Gbit) 2.3. GRE transport - direct wiring to GRE PWE 2.4. L2TPv3 transport - direct wiring to L2TPv3 PWE 3. Tuning, performance and offload related setting support via ethtool. 4. Initial BPF support - used in tap/raw to avoid software looping 5. Scatter Gather support. 6. VNET and checksum offload support for raw socket transport. 7. TSO/GSO support where applicable or available 8. Migrates all error messages to netdevice_*() and rate limits them where needed. Signed-off-by: Anton Ivanov <anton.ivanov@cambridgegreys.com> Signed-off-by: Richard Weinberger <richard@nod.at>
215 lines
8.9 KiB
Plaintext
215 lines
8.9 KiB
Plaintext
# SPDX-License-Identifier: GPL-2.0
|
|
|
|
menu "UML Network Devices"
|
|
depends on NET
|
|
|
|
# UML virtual driver
|
|
config UML_NET
|
|
bool "Virtual network device"
|
|
help
|
|
While the User-Mode port cannot directly talk to any physical
|
|
hardware devices, this choice and the following transport options
|
|
provide one or more virtual network devices through which the UML
|
|
kernels can talk to each other, the host, and with the host's help,
|
|
machines on the outside world.
|
|
|
|
For more information, including explanations of the networking and
|
|
sample configurations, see
|
|
<http://user-mode-linux.sourceforge.net/old/networking.html>.
|
|
|
|
If you'd like to be able to enable networking in the User-Mode
|
|
linux environment, say Y; otherwise say N. Note that you must
|
|
enable at least one of the following transport options to actually
|
|
make use of UML networking.
|
|
|
|
config UML_NET_ETHERTAP
|
|
bool "Ethertap transport"
|
|
depends on UML_NET
|
|
help
|
|
The Ethertap User-Mode Linux network transport allows a single
|
|
running UML to exchange packets with its host over one of the
|
|
host's Ethertap devices, such as /dev/tap0. Additional running
|
|
UMLs can use additional Ethertap devices, one per running UML.
|
|
While the UML believes it's on a (multi-device, broadcast) virtual
|
|
Ethernet network, it's in fact communicating over a point-to-point
|
|
link with the host.
|
|
|
|
To use this, your host kernel must have support for Ethertap
|
|
devices. Also, if your host kernel is 2.4.x, it must have
|
|
CONFIG_NETLINK_DEV configured as Y or M.
|
|
|
|
For more information, see
|
|
<http://user-mode-linux.sourceforge.net/old/networking.html> That site
|
|
has examples of the UML command line to use to enable Ethertap
|
|
networking.
|
|
|
|
If you'd like to set up an IP network with the host and/or the
|
|
outside world, say Y to this, the Daemon Transport and/or the
|
|
Slip Transport. You'll need at least one of them, but may choose
|
|
more than one without conflict. If you don't need UML networking,
|
|
say N.
|
|
|
|
config UML_NET_TUNTAP
|
|
bool "TUN/TAP transport"
|
|
depends on UML_NET
|
|
help
|
|
The UML TUN/TAP network transport allows a UML instance to exchange
|
|
packets with the host over a TUN/TAP device. This option will only
|
|
work with a 2.4 host, unless you've applied the TUN/TAP patch to
|
|
your 2.2 host kernel.
|
|
|
|
To use this transport, your host kernel must have support for TUN/TAP
|
|
devices, either built-in or as a module.
|
|
|
|
config UML_NET_SLIP
|
|
bool "SLIP transport"
|
|
depends on UML_NET
|
|
help
|
|
The slip User-Mode Linux network transport allows a running UML to
|
|
network with its host over a point-to-point link. Unlike Ethertap,
|
|
which can carry any Ethernet frame (and hence even non-IP packets),
|
|
the slip transport can only carry IP packets.
|
|
|
|
To use this, your host must support slip devices.
|
|
|
|
For more information, see
|
|
<http://user-mode-linux.sourceforge.net/old/networking.html>.
|
|
has examples of the UML command line to use to enable slip
|
|
networking, and details of a few quirks with it.
|
|
|
|
The Ethertap Transport is preferred over slip because of its
|
|
limitations. If you prefer slip, however, say Y here. Otherwise
|
|
choose the Multicast transport (to network multiple UMLs on
|
|
multiple hosts), Ethertap (to network with the host and the
|
|
outside world), and/or the Daemon transport (to network multiple
|
|
UMLs on a single host). You may choose more than one without
|
|
conflict. If you don't need UML networking, say N.
|
|
|
|
config UML_NET_DAEMON
|
|
bool "Daemon transport"
|
|
depends on UML_NET
|
|
help
|
|
This User-Mode Linux network transport allows one or more running
|
|
UMLs on a single host to communicate with each other, but not to
|
|
the host.
|
|
|
|
To use this form of networking, you'll need to run the UML
|
|
networking daemon on the host.
|
|
|
|
For more information, see
|
|
<http://user-mode-linux.sourceforge.net/old/networking.html> That site
|
|
has examples of the UML command line to use to enable Daemon
|
|
networking.
|
|
|
|
If you'd like to set up a network with other UMLs on a single host,
|
|
say Y. If you need a network between UMLs on multiple physical
|
|
hosts, choose the Multicast Transport. To set up a network with
|
|
the host and/or other IP machines, say Y to the Ethertap or Slip
|
|
transports. You'll need at least one of them, but may choose
|
|
more than one without conflict. If you don't need UML networking,
|
|
say N.
|
|
|
|
config UML_NET_VECTOR
|
|
bool "Vector I/O high performance network devices"
|
|
depends on UML_NET
|
|
help
|
|
This User-Mode Linux network driver uses multi-message send
|
|
and receive functions. The host running the UML guest must have
|
|
a linux kernel version above 3.0 and a libc version > 2.13.
|
|
This driver provides tap, raw, gre and l2tpv3 network transports
|
|
with up to 4 times higher network throughput than the UML network
|
|
drivers.
|
|
|
|
config UML_NET_VDE
|
|
bool "VDE transport"
|
|
depends on UML_NET
|
|
help
|
|
This User-Mode Linux network transport allows one or more running
|
|
UMLs on a single host to communicate with each other and also
|
|
with the rest of the world using Virtual Distributed Ethernet,
|
|
an improved fork of uml_switch.
|
|
|
|
You must have libvdeplug installed in order to build the vde
|
|
transport into UML.
|
|
|
|
To use this form of networking, you will need to run vde_switch
|
|
on the host.
|
|
|
|
For more information, see <http://wiki.virtualsquare.org/>
|
|
That site has a good overview of what VDE is and also examples
|
|
of the UML command line to use to enable VDE networking.
|
|
|
|
If you need UML networking with VDE,
|
|
say Y.
|
|
|
|
config UML_NET_MCAST
|
|
bool "Multicast transport"
|
|
depends on UML_NET
|
|
help
|
|
This Multicast User-Mode Linux network transport allows multiple
|
|
UMLs (even ones running on different host machines!) to talk to
|
|
each other over a virtual ethernet network. However, it requires
|
|
at least one UML with one of the other transports to act as a
|
|
bridge if any of them need to be able to talk to their hosts or any
|
|
other IP machines.
|
|
|
|
To use this, your host kernel(s) must support IP Multicasting.
|
|
|
|
For more information, see
|
|
<http://user-mode-linux.sourceforge.net/old/networking.html> That site
|
|
has examples of the UML command line to use to enable Multicast
|
|
networking, and notes about the security of this approach.
|
|
|
|
If you need UMLs on multiple physical hosts to communicate as if
|
|
they shared an Ethernet network, say Y. If you need to communicate
|
|
with other IP machines, make sure you select one of the other
|
|
transports (possibly in addition to Multicast; they're not
|
|
exclusive). If you don't need to network UMLs say N to each of
|
|
the transports.
|
|
|
|
config UML_NET_PCAP
|
|
bool "pcap transport"
|
|
depends on UML_NET
|
|
help
|
|
The pcap transport makes a pcap packet stream on the host look
|
|
like an ethernet device inside UML. This is useful for making
|
|
UML act as a network monitor for the host. You must have libcap
|
|
installed in order to build the pcap transport into UML.
|
|
|
|
For more information, see
|
|
<http://user-mode-linux.sourceforge.net/old/networking.html> That site
|
|
has examples of the UML command line to use to enable this option.
|
|
|
|
If you intend to use UML as a network monitor for the host, say
|
|
Y here. Otherwise, say N.
|
|
|
|
config UML_NET_SLIRP
|
|
bool "SLiRP transport"
|
|
depends on UML_NET
|
|
help
|
|
The SLiRP User-Mode Linux network transport allows a running UML
|
|
to network by invoking a program that can handle SLIP encapsulated
|
|
packets. This is commonly (but not limited to) the application
|
|
known as SLiRP, a program that can re-socket IP packets back onto
|
|
the host on which it is run. Only IP packets are supported,
|
|
unlike other network transports that can handle all Ethernet
|
|
frames. In general, slirp allows the UML the same IP connectivity
|
|
to the outside world that the host user is permitted, and unlike
|
|
other transports, SLiRP works without the need of root level
|
|
privleges, setuid binaries, or SLIP devices on the host. This
|
|
also means not every type of connection is possible, but most
|
|
situations can be accommodated with carefully crafted slirp
|
|
commands that can be passed along as part of the network device's
|
|
setup string. The effect of this transport on the UML is similar
|
|
that of a host behind a firewall that masquerades all network
|
|
connections passing through it (but is less secure).
|
|
|
|
To use this you should first have slirp compiled somewhere
|
|
accessible on the host, and have read its documentation. If you
|
|
don't need UML networking, say N.
|
|
|
|
Startup example: "eth0=slirp,FE:FD:01:02:03:04,/usr/local/bin/slirp"
|
|
|
|
endmenu
|
|
|