linux/drivers/net/ethernet/intel/ice/ice_controlq.c
Anirudh Venkataramanan 940b61af02 ice: Initialize PF and setup miscellaneous interrupt
This patch continues the initialization flow as follows:

1) Allocate and initialize necessary fields (like vsi, num_alloc_vsi,
   irq_tracker, etc) in the ice_pf instance.

2) Setup the miscellaneous interrupt handler. This also known as the
   "other interrupt causes" (OIC) handler and is used to handle non
   hotpath interrupts (like control queue events, link events,
   exceptions, etc.

3) Implement a background task to process admin queue receive (ARQ)
   events received by the driver.

CC: Shannon Nelson <shannon.nelson@oracle.com>
Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Acked-by: Shannon Nelson <shannon.nelson@oracle.com>
Tested-by: Tony Brelinski <tonyx.brelinski@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-26 10:34:49 -07:00

1067 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
#include "ice_common.h"
/**
* ice_adminq_init_regs - Initialize AdminQ registers
* @hw: pointer to the hardware structure
*
* This assumes the alloc_sq and alloc_rq functions have already been called
*/
static void ice_adminq_init_regs(struct ice_hw *hw)
{
struct ice_ctl_q_info *cq = &hw->adminq;
cq->sq.head = PF_FW_ATQH;
cq->sq.tail = PF_FW_ATQT;
cq->sq.len = PF_FW_ATQLEN;
cq->sq.bah = PF_FW_ATQBAH;
cq->sq.bal = PF_FW_ATQBAL;
cq->sq.len_mask = PF_FW_ATQLEN_ATQLEN_M;
cq->sq.len_ena_mask = PF_FW_ATQLEN_ATQENABLE_M;
cq->sq.head_mask = PF_FW_ATQH_ATQH_M;
cq->rq.head = PF_FW_ARQH;
cq->rq.tail = PF_FW_ARQT;
cq->rq.len = PF_FW_ARQLEN;
cq->rq.bah = PF_FW_ARQBAH;
cq->rq.bal = PF_FW_ARQBAL;
cq->rq.len_mask = PF_FW_ARQLEN_ARQLEN_M;
cq->rq.len_ena_mask = PF_FW_ARQLEN_ARQENABLE_M;
cq->rq.head_mask = PF_FW_ARQH_ARQH_M;
}
/**
* ice_check_sq_alive
* @hw: pointer to the hw struct
* @cq: pointer to the specific Control queue
*
* Returns true if Queue is enabled else false.
*/
bool ice_check_sq_alive(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
/* check both queue-length and queue-enable fields */
if (cq->sq.len && cq->sq.len_mask && cq->sq.len_ena_mask)
return (rd32(hw, cq->sq.len) & (cq->sq.len_mask |
cq->sq.len_ena_mask)) ==
(cq->num_sq_entries | cq->sq.len_ena_mask);
return false;
}
/**
* ice_alloc_ctrlq_sq_ring - Allocate Control Transmit Queue (ATQ) rings
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*/
static enum ice_status
ice_alloc_ctrlq_sq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
size_t size = cq->num_sq_entries * sizeof(struct ice_aq_desc);
cq->sq.desc_buf.va = dmam_alloc_coherent(ice_hw_to_dev(hw), size,
&cq->sq.desc_buf.pa,
GFP_KERNEL | __GFP_ZERO);
if (!cq->sq.desc_buf.va)
return ICE_ERR_NO_MEMORY;
cq->sq.desc_buf.size = size;
cq->sq.cmd_buf = devm_kcalloc(ice_hw_to_dev(hw), cq->num_sq_entries,
sizeof(struct ice_sq_cd), GFP_KERNEL);
if (!cq->sq.cmd_buf) {
dmam_free_coherent(ice_hw_to_dev(hw), cq->sq.desc_buf.size,
cq->sq.desc_buf.va, cq->sq.desc_buf.pa);
cq->sq.desc_buf.va = NULL;
cq->sq.desc_buf.pa = 0;
cq->sq.desc_buf.size = 0;
return ICE_ERR_NO_MEMORY;
}
return 0;
}
/**
* ice_alloc_ctrlq_rq_ring - Allocate Control Receive Queue (ARQ) rings
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*/
static enum ice_status
ice_alloc_ctrlq_rq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
size_t size = cq->num_rq_entries * sizeof(struct ice_aq_desc);
cq->rq.desc_buf.va = dmam_alloc_coherent(ice_hw_to_dev(hw), size,
&cq->rq.desc_buf.pa,
GFP_KERNEL | __GFP_ZERO);
if (!cq->rq.desc_buf.va)
return ICE_ERR_NO_MEMORY;
cq->rq.desc_buf.size = size;
return 0;
}
/**
* ice_free_ctrlq_sq_ring - Free Control Transmit Queue (ATQ) rings
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* This assumes the posted send buffers have already been cleaned
* and de-allocated
*/
static void ice_free_ctrlq_sq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
dmam_free_coherent(ice_hw_to_dev(hw), cq->sq.desc_buf.size,
cq->sq.desc_buf.va, cq->sq.desc_buf.pa);
cq->sq.desc_buf.va = NULL;
cq->sq.desc_buf.pa = 0;
cq->sq.desc_buf.size = 0;
}
/**
* ice_free_ctrlq_rq_ring - Free Control Receive Queue (ARQ) rings
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* This assumes the posted receive buffers have already been cleaned
* and de-allocated
*/
static void ice_free_ctrlq_rq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
dmam_free_coherent(ice_hw_to_dev(hw), cq->rq.desc_buf.size,
cq->rq.desc_buf.va, cq->rq.desc_buf.pa);
cq->rq.desc_buf.va = NULL;
cq->rq.desc_buf.pa = 0;
cq->rq.desc_buf.size = 0;
}
/**
* ice_alloc_rq_bufs - Allocate pre-posted buffers for the ARQ
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*/
static enum ice_status
ice_alloc_rq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
int i;
/* We'll be allocating the buffer info memory first, then we can
* allocate the mapped buffers for the event processing
*/
cq->rq.dma_head = devm_kcalloc(ice_hw_to_dev(hw), cq->num_rq_entries,
sizeof(cq->rq.desc_buf), GFP_KERNEL);
if (!cq->rq.dma_head)
return ICE_ERR_NO_MEMORY;
cq->rq.r.rq_bi = (struct ice_dma_mem *)cq->rq.dma_head;
/* allocate the mapped buffers */
for (i = 0; i < cq->num_rq_entries; i++) {
struct ice_aq_desc *desc;
struct ice_dma_mem *bi;
bi = &cq->rq.r.rq_bi[i];
bi->va = dmam_alloc_coherent(ice_hw_to_dev(hw),
cq->rq_buf_size, &bi->pa,
GFP_KERNEL | __GFP_ZERO);
if (!bi->va)
goto unwind_alloc_rq_bufs;
bi->size = cq->rq_buf_size;
/* now configure the descriptors for use */
desc = ICE_CTL_Q_DESC(cq->rq, i);
desc->flags = cpu_to_le16(ICE_AQ_FLAG_BUF);
if (cq->rq_buf_size > ICE_AQ_LG_BUF)
desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB);
desc->opcode = 0;
/* This is in accordance with Admin queue design, there is no
* register for buffer size configuration
*/
desc->datalen = cpu_to_le16(bi->size);
desc->retval = 0;
desc->cookie_high = 0;
desc->cookie_low = 0;
desc->params.generic.addr_high =
cpu_to_le32(upper_32_bits(bi->pa));
desc->params.generic.addr_low =
cpu_to_le32(lower_32_bits(bi->pa));
desc->params.generic.param0 = 0;
desc->params.generic.param1 = 0;
}
return 0;
unwind_alloc_rq_bufs:
/* don't try to free the one that failed... */
i--;
for (; i >= 0; i--) {
dmam_free_coherent(ice_hw_to_dev(hw), cq->rq.r.rq_bi[i].size,
cq->rq.r.rq_bi[i].va, cq->rq.r.rq_bi[i].pa);
cq->rq.r.rq_bi[i].va = NULL;
cq->rq.r.rq_bi[i].pa = 0;
cq->rq.r.rq_bi[i].size = 0;
}
devm_kfree(ice_hw_to_dev(hw), cq->rq.dma_head);
return ICE_ERR_NO_MEMORY;
}
/**
* ice_alloc_sq_bufs - Allocate empty buffer structs for the ATQ
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*/
static enum ice_status
ice_alloc_sq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
int i;
/* No mapped memory needed yet, just the buffer info structures */
cq->sq.dma_head = devm_kcalloc(ice_hw_to_dev(hw), cq->num_sq_entries,
sizeof(cq->sq.desc_buf), GFP_KERNEL);
if (!cq->sq.dma_head)
return ICE_ERR_NO_MEMORY;
cq->sq.r.sq_bi = (struct ice_dma_mem *)cq->sq.dma_head;
/* allocate the mapped buffers */
for (i = 0; i < cq->num_sq_entries; i++) {
struct ice_dma_mem *bi;
bi = &cq->sq.r.sq_bi[i];
bi->va = dmam_alloc_coherent(ice_hw_to_dev(hw),
cq->sq_buf_size, &bi->pa,
GFP_KERNEL | __GFP_ZERO);
if (!bi->va)
goto unwind_alloc_sq_bufs;
bi->size = cq->sq_buf_size;
}
return 0;
unwind_alloc_sq_bufs:
/* don't try to free the one that failed... */
i--;
for (; i >= 0; i--) {
dmam_free_coherent(ice_hw_to_dev(hw), cq->sq.r.sq_bi[i].size,
cq->sq.r.sq_bi[i].va, cq->sq.r.sq_bi[i].pa);
cq->sq.r.sq_bi[i].va = NULL;
cq->sq.r.sq_bi[i].pa = 0;
cq->sq.r.sq_bi[i].size = 0;
}
devm_kfree(ice_hw_to_dev(hw), cq->sq.dma_head);
return ICE_ERR_NO_MEMORY;
}
/**
* ice_free_rq_bufs - Free ARQ buffer info elements
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*/
static void ice_free_rq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
int i;
/* free descriptors */
for (i = 0; i < cq->num_rq_entries; i++) {
dmam_free_coherent(ice_hw_to_dev(hw), cq->rq.r.rq_bi[i].size,
cq->rq.r.rq_bi[i].va, cq->rq.r.rq_bi[i].pa);
cq->rq.r.rq_bi[i].va = NULL;
cq->rq.r.rq_bi[i].pa = 0;
cq->rq.r.rq_bi[i].size = 0;
}
/* free the dma header */
devm_kfree(ice_hw_to_dev(hw), cq->rq.dma_head);
}
/**
* ice_free_sq_bufs - Free ATQ buffer info elements
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*/
static void ice_free_sq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
int i;
/* only unmap if the address is non-NULL */
for (i = 0; i < cq->num_sq_entries; i++)
if (cq->sq.r.sq_bi[i].pa) {
dmam_free_coherent(ice_hw_to_dev(hw),
cq->sq.r.sq_bi[i].size,
cq->sq.r.sq_bi[i].va,
cq->sq.r.sq_bi[i].pa);
cq->sq.r.sq_bi[i].va = NULL;
cq->sq.r.sq_bi[i].pa = 0;
cq->sq.r.sq_bi[i].size = 0;
}
/* free the buffer info list */
devm_kfree(ice_hw_to_dev(hw), cq->sq.cmd_buf);
/* free the dma header */
devm_kfree(ice_hw_to_dev(hw), cq->sq.dma_head);
}
/**
* ice_cfg_sq_regs - configure Control ATQ registers
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* Configure base address and length registers for the transmit queue
*/
static enum ice_status
ice_cfg_sq_regs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
u32 reg = 0;
/* Clear Head and Tail */
wr32(hw, cq->sq.head, 0);
wr32(hw, cq->sq.tail, 0);
/* set starting point */
wr32(hw, cq->sq.len, (cq->num_sq_entries | cq->sq.len_ena_mask));
wr32(hw, cq->sq.bal, lower_32_bits(cq->sq.desc_buf.pa));
wr32(hw, cq->sq.bah, upper_32_bits(cq->sq.desc_buf.pa));
/* Check one register to verify that config was applied */
reg = rd32(hw, cq->sq.bal);
if (reg != lower_32_bits(cq->sq.desc_buf.pa))
return ICE_ERR_AQ_ERROR;
return 0;
}
/**
* ice_cfg_rq_regs - configure Control ARQ register
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* Configure base address and length registers for the receive (event q)
*/
static enum ice_status
ice_cfg_rq_regs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
u32 reg = 0;
/* Clear Head and Tail */
wr32(hw, cq->rq.head, 0);
wr32(hw, cq->rq.tail, 0);
/* set starting point */
wr32(hw, cq->rq.len, (cq->num_rq_entries | cq->rq.len_ena_mask));
wr32(hw, cq->rq.bal, lower_32_bits(cq->rq.desc_buf.pa));
wr32(hw, cq->rq.bah, upper_32_bits(cq->rq.desc_buf.pa));
/* Update tail in the HW to post pre-allocated buffers */
wr32(hw, cq->rq.tail, (u32)(cq->num_rq_entries - 1));
/* Check one register to verify that config was applied */
reg = rd32(hw, cq->rq.bal);
if (reg != lower_32_bits(cq->rq.desc_buf.pa))
return ICE_ERR_AQ_ERROR;
return 0;
}
/**
* ice_init_sq - main initialization routine for Control ATQ
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* This is the main initialization routine for the Control Send Queue
* Prior to calling this function, drivers *MUST* set the following fields
* in the cq->structure:
* - cq->num_sq_entries
* - cq->sq_buf_size
*
* Do *NOT* hold the lock when calling this as the memory allocation routines
* called are not going to be atomic context safe
*/
static enum ice_status ice_init_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
enum ice_status ret_code;
if (cq->sq.count > 0) {
/* queue already initialized */
ret_code = ICE_ERR_NOT_READY;
goto init_ctrlq_exit;
}
/* verify input for valid configuration */
if (!cq->num_sq_entries || !cq->sq_buf_size) {
ret_code = ICE_ERR_CFG;
goto init_ctrlq_exit;
}
cq->sq.next_to_use = 0;
cq->sq.next_to_clean = 0;
/* allocate the ring memory */
ret_code = ice_alloc_ctrlq_sq_ring(hw, cq);
if (ret_code)
goto init_ctrlq_exit;
/* allocate buffers in the rings */
ret_code = ice_alloc_sq_bufs(hw, cq);
if (ret_code)
goto init_ctrlq_free_rings;
/* initialize base registers */
ret_code = ice_cfg_sq_regs(hw, cq);
if (ret_code)
goto init_ctrlq_free_rings;
/* success! */
cq->sq.count = cq->num_sq_entries;
goto init_ctrlq_exit;
init_ctrlq_free_rings:
ice_free_ctrlq_sq_ring(hw, cq);
init_ctrlq_exit:
return ret_code;
}
/**
* ice_init_rq - initialize ARQ
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* The main initialization routine for the Admin Receive (Event) Queue.
* Prior to calling this function, drivers *MUST* set the following fields
* in the cq->structure:
* - cq->num_rq_entries
* - cq->rq_buf_size
*
* Do *NOT* hold the lock when calling this as the memory allocation routines
* called are not going to be atomic context safe
*/
static enum ice_status ice_init_rq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
enum ice_status ret_code;
if (cq->rq.count > 0) {
/* queue already initialized */
ret_code = ICE_ERR_NOT_READY;
goto init_ctrlq_exit;
}
/* verify input for valid configuration */
if (!cq->num_rq_entries || !cq->rq_buf_size) {
ret_code = ICE_ERR_CFG;
goto init_ctrlq_exit;
}
cq->rq.next_to_use = 0;
cq->rq.next_to_clean = 0;
/* allocate the ring memory */
ret_code = ice_alloc_ctrlq_rq_ring(hw, cq);
if (ret_code)
goto init_ctrlq_exit;
/* allocate buffers in the rings */
ret_code = ice_alloc_rq_bufs(hw, cq);
if (ret_code)
goto init_ctrlq_free_rings;
/* initialize base registers */
ret_code = ice_cfg_rq_regs(hw, cq);
if (ret_code)
goto init_ctrlq_free_rings;
/* success! */
cq->rq.count = cq->num_rq_entries;
goto init_ctrlq_exit;
init_ctrlq_free_rings:
ice_free_ctrlq_rq_ring(hw, cq);
init_ctrlq_exit:
return ret_code;
}
/**
* ice_shutdown_sq - shutdown the Control ATQ
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* The main shutdown routine for the Control Transmit Queue
*/
static enum ice_status
ice_shutdown_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
enum ice_status ret_code = 0;
mutex_lock(&cq->sq_lock);
if (!cq->sq.count) {
ret_code = ICE_ERR_NOT_READY;
goto shutdown_sq_out;
}
/* Stop firmware AdminQ processing */
wr32(hw, cq->sq.head, 0);
wr32(hw, cq->sq.tail, 0);
wr32(hw, cq->sq.len, 0);
wr32(hw, cq->sq.bal, 0);
wr32(hw, cq->sq.bah, 0);
cq->sq.count = 0; /* to indicate uninitialized queue */
/* free ring buffers and the ring itself */
ice_free_sq_bufs(hw, cq);
ice_free_ctrlq_sq_ring(hw, cq);
shutdown_sq_out:
mutex_unlock(&cq->sq_lock);
return ret_code;
}
/**
* ice_aq_ver_check - Check the reported AQ API version.
* @fw_branch: The "branch" of FW, typically describes the device type
* @fw_major: The major version of the FW API
* @fw_minor: The minor version increment of the FW API
*
* Checks if the driver should load on a given AQ API version.
*
* Return: 'true' iff the driver should attempt to load. 'false' otherwise.
*/
static bool ice_aq_ver_check(u8 fw_branch, u8 fw_major, u8 fw_minor)
{
if (fw_branch != EXP_FW_API_VER_BRANCH)
return false;
if (fw_major != EXP_FW_API_VER_MAJOR)
return false;
if (fw_minor != EXP_FW_API_VER_MINOR)
return false;
return true;
}
/**
* ice_shutdown_rq - shutdown Control ARQ
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* The main shutdown routine for the Control Receive Queue
*/
static enum ice_status
ice_shutdown_rq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
enum ice_status ret_code = 0;
mutex_lock(&cq->rq_lock);
if (!cq->rq.count) {
ret_code = ICE_ERR_NOT_READY;
goto shutdown_rq_out;
}
/* Stop Control Queue processing */
wr32(hw, cq->rq.head, 0);
wr32(hw, cq->rq.tail, 0);
wr32(hw, cq->rq.len, 0);
wr32(hw, cq->rq.bal, 0);
wr32(hw, cq->rq.bah, 0);
/* set rq.count to 0 to indicate uninitialized queue */
cq->rq.count = 0;
/* free ring buffers and the ring itself */
ice_free_rq_bufs(hw, cq);
ice_free_ctrlq_rq_ring(hw, cq);
shutdown_rq_out:
mutex_unlock(&cq->rq_lock);
return ret_code;
}
/**
* ice_init_check_adminq - Check version for Admin Queue to know if its alive
* @hw: pointer to the hardware structure
*/
static enum ice_status ice_init_check_adminq(struct ice_hw *hw)
{
struct ice_ctl_q_info *cq = &hw->adminq;
enum ice_status status;
status = ice_aq_get_fw_ver(hw, NULL);
if (status)
goto init_ctrlq_free_rq;
if (!ice_aq_ver_check(hw->api_branch, hw->api_maj_ver,
hw->api_min_ver)) {
status = ICE_ERR_FW_API_VER;
goto init_ctrlq_free_rq;
}
return 0;
init_ctrlq_free_rq:
ice_shutdown_rq(hw, cq);
ice_shutdown_sq(hw, cq);
mutex_destroy(&cq->sq_lock);
mutex_destroy(&cq->rq_lock);
return status;
}
/**
* ice_init_ctrlq - main initialization routine for any control Queue
* @hw: pointer to the hardware structure
* @q_type: specific Control queue type
*
* Prior to calling this function, drivers *MUST* set the following fields
* in the cq->structure:
* - cq->num_sq_entries
* - cq->num_rq_entries
* - cq->rq_buf_size
* - cq->sq_buf_size
*
*/
static enum ice_status ice_init_ctrlq(struct ice_hw *hw, enum ice_ctl_q q_type)
{
struct ice_ctl_q_info *cq;
enum ice_status ret_code;
switch (q_type) {
case ICE_CTL_Q_ADMIN:
ice_adminq_init_regs(hw);
cq = &hw->adminq;
break;
default:
return ICE_ERR_PARAM;
}
cq->qtype = q_type;
/* verify input for valid configuration */
if (!cq->num_rq_entries || !cq->num_sq_entries ||
!cq->rq_buf_size || !cq->sq_buf_size) {
return ICE_ERR_CFG;
}
mutex_init(&cq->sq_lock);
mutex_init(&cq->rq_lock);
/* setup SQ command write back timeout */
cq->sq_cmd_timeout = ICE_CTL_Q_SQ_CMD_TIMEOUT;
/* allocate the ATQ */
ret_code = ice_init_sq(hw, cq);
if (ret_code)
goto init_ctrlq_destroy_locks;
/* allocate the ARQ */
ret_code = ice_init_rq(hw, cq);
if (ret_code)
goto init_ctrlq_free_sq;
/* success! */
return 0;
init_ctrlq_free_sq:
ice_shutdown_sq(hw, cq);
init_ctrlq_destroy_locks:
mutex_destroy(&cq->sq_lock);
mutex_destroy(&cq->rq_lock);
return ret_code;
}
/**
* ice_init_all_ctrlq - main initialization routine for all control queues
* @hw: pointer to the hardware structure
*
* Prior to calling this function, drivers *MUST* set the following fields
* in the cq->structure for all control queues:
* - cq->num_sq_entries
* - cq->num_rq_entries
* - cq->rq_buf_size
* - cq->sq_buf_size
*/
enum ice_status ice_init_all_ctrlq(struct ice_hw *hw)
{
enum ice_status ret_code;
/* Init FW admin queue */
ret_code = ice_init_ctrlq(hw, ICE_CTL_Q_ADMIN);
if (ret_code)
return ret_code;
return ice_init_check_adminq(hw);
}
/**
* ice_shutdown_ctrlq - shutdown routine for any control queue
* @hw: pointer to the hardware structure
* @q_type: specific Control queue type
*/
static void ice_shutdown_ctrlq(struct ice_hw *hw, enum ice_ctl_q q_type)
{
struct ice_ctl_q_info *cq;
switch (q_type) {
case ICE_CTL_Q_ADMIN:
cq = &hw->adminq;
if (ice_check_sq_alive(hw, cq))
ice_aq_q_shutdown(hw, true);
break;
default:
return;
}
ice_shutdown_sq(hw, cq);
ice_shutdown_rq(hw, cq);
mutex_destroy(&cq->sq_lock);
mutex_destroy(&cq->rq_lock);
}
/**
* ice_shutdown_all_ctrlq - shutdown routine for all control queues
* @hw: pointer to the hardware structure
*/
void ice_shutdown_all_ctrlq(struct ice_hw *hw)
{
/* Shutdown FW admin queue */
ice_shutdown_ctrlq(hw, ICE_CTL_Q_ADMIN);
}
/**
* ice_clean_sq - cleans Admin send queue (ATQ)
* @hw: pointer to the hardware structure
* @cq: pointer to the specific Control queue
*
* returns the number of free desc
*/
static u16 ice_clean_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
struct ice_ctl_q_ring *sq = &cq->sq;
u16 ntc = sq->next_to_clean;
struct ice_sq_cd *details;
struct ice_aq_desc *desc;
desc = ICE_CTL_Q_DESC(*sq, ntc);
details = ICE_CTL_Q_DETAILS(*sq, ntc);
while (rd32(hw, cq->sq.head) != ntc) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"ntc %d head %d.\n", ntc, rd32(hw, cq->sq.head));
memset(desc, 0, sizeof(*desc));
memset(details, 0, sizeof(*details));
ntc++;
if (ntc == sq->count)
ntc = 0;
desc = ICE_CTL_Q_DESC(*sq, ntc);
details = ICE_CTL_Q_DETAILS(*sq, ntc);
}
sq->next_to_clean = ntc;
return ICE_CTL_Q_DESC_UNUSED(sq);
}
/**
* ice_sq_done - check if FW has processed the Admin Send Queue (ATQ)
* @hw: pointer to the hw struct
* @cq: pointer to the specific Control queue
*
* Returns true if the firmware has processed all descriptors on the
* admin send queue. Returns false if there are still requests pending.
*/
static bool ice_sq_done(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
/* AQ designers suggest use of head for better
* timing reliability than DD bit
*/
return rd32(hw, cq->sq.head) == cq->sq.next_to_use;
}
/**
* ice_sq_send_cmd - send command to Control Queue (ATQ)
* @hw: pointer to the hw struct
* @cq: pointer to the specific Control queue
* @desc: prefilled descriptor describing the command (non DMA mem)
* @buf: buffer to use for indirect commands (or NULL for direct commands)
* @buf_size: size of buffer for indirect commands (or 0 for direct commands)
* @cd: pointer to command details structure
*
* This is the main send command routine for the ATQ. It runs the q,
* cleans the queue, etc.
*/
enum ice_status
ice_sq_send_cmd(struct ice_hw *hw, struct ice_ctl_q_info *cq,
struct ice_aq_desc *desc, void *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_dma_mem *dma_buf = NULL;
struct ice_aq_desc *desc_on_ring;
bool cmd_completed = false;
enum ice_status status = 0;
struct ice_sq_cd *details;
u32 total_delay = 0;
u16 retval = 0;
u32 val = 0;
mutex_lock(&cq->sq_lock);
cq->sq_last_status = ICE_AQ_RC_OK;
if (!cq->sq.count) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"Control Send queue not initialized.\n");
status = ICE_ERR_AQ_EMPTY;
goto sq_send_command_error;
}
if ((buf && !buf_size) || (!buf && buf_size)) {
status = ICE_ERR_PARAM;
goto sq_send_command_error;
}
if (buf) {
if (buf_size > cq->sq_buf_size) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"Invalid buffer size for Control Send queue: %d.\n",
buf_size);
status = ICE_ERR_INVAL_SIZE;
goto sq_send_command_error;
}
desc->flags |= cpu_to_le16(ICE_AQ_FLAG_BUF);
if (buf_size > ICE_AQ_LG_BUF)
desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB);
}
val = rd32(hw, cq->sq.head);
if (val >= cq->num_sq_entries) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"head overrun at %d in the Control Send Queue ring\n",
val);
status = ICE_ERR_AQ_EMPTY;
goto sq_send_command_error;
}
details = ICE_CTL_Q_DETAILS(cq->sq, cq->sq.next_to_use);
if (cd)
memcpy(details, cd, sizeof(*details));
else
memset(details, 0, sizeof(*details));
/* Call clean and check queue available function to reclaim the
* descriptors that were processed by FW/MBX; the function returns the
* number of desc available. The clean function called here could be
* called in a separate thread in case of asynchronous completions.
*/
if (ice_clean_sq(hw, cq) == 0) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"Error: Control Send Queue is full.\n");
status = ICE_ERR_AQ_FULL;
goto sq_send_command_error;
}
/* initialize the temp desc pointer with the right desc */
desc_on_ring = ICE_CTL_Q_DESC(cq->sq, cq->sq.next_to_use);
/* if the desc is available copy the temp desc to the right place */
memcpy(desc_on_ring, desc, sizeof(*desc_on_ring));
/* if buf is not NULL assume indirect command */
if (buf) {
dma_buf = &cq->sq.r.sq_bi[cq->sq.next_to_use];
/* copy the user buf into the respective DMA buf */
memcpy(dma_buf->va, buf, buf_size);
desc_on_ring->datalen = cpu_to_le16(buf_size);
/* Update the address values in the desc with the pa value
* for respective buffer
*/
desc_on_ring->params.generic.addr_high =
cpu_to_le32(upper_32_bits(dma_buf->pa));
desc_on_ring->params.generic.addr_low =
cpu_to_le32(lower_32_bits(dma_buf->pa));
}
/* Debug desc and buffer */
ice_debug(hw, ICE_DBG_AQ_MSG,
"ATQ: Control Send queue desc and buffer:\n");
ice_debug_cq(hw, ICE_DBG_AQ_CMD, (void *)desc_on_ring, buf, buf_size);
(cq->sq.next_to_use)++;
if (cq->sq.next_to_use == cq->sq.count)
cq->sq.next_to_use = 0;
wr32(hw, cq->sq.tail, cq->sq.next_to_use);
do {
if (ice_sq_done(hw, cq))
break;
mdelay(1);
total_delay++;
} while (total_delay < cq->sq_cmd_timeout);
/* if ready, copy the desc back to temp */
if (ice_sq_done(hw, cq)) {
memcpy(desc, desc_on_ring, sizeof(*desc));
if (buf) {
/* get returned length to copy */
u16 copy_size = le16_to_cpu(desc->datalen);
if (copy_size > buf_size) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"Return len %d > than buf len %d\n",
copy_size, buf_size);
status = ICE_ERR_AQ_ERROR;
} else {
memcpy(buf, dma_buf->va, copy_size);
}
}
retval = le16_to_cpu(desc->retval);
if (retval) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"Control Send Queue command completed with error 0x%x\n",
retval);
/* strip off FW internal code */
retval &= 0xff;
}
cmd_completed = true;
if (!status && retval != ICE_AQ_RC_OK)
status = ICE_ERR_AQ_ERROR;
cq->sq_last_status = (enum ice_aq_err)retval;
}
ice_debug(hw, ICE_DBG_AQ_MSG,
"ATQ: desc and buffer writeback:\n");
ice_debug_cq(hw, ICE_DBG_AQ_CMD, (void *)desc, buf, buf_size);
/* save writeback AQ if requested */
if (details->wb_desc)
memcpy(details->wb_desc, desc_on_ring,
sizeof(*details->wb_desc));
/* update the error if time out occurred */
if (!cmd_completed) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"Control Send Queue Writeback timeout.\n");
status = ICE_ERR_AQ_TIMEOUT;
}
sq_send_command_error:
mutex_unlock(&cq->sq_lock);
return status;
}
/**
* ice_fill_dflt_direct_cmd_desc - AQ descriptor helper function
* @desc: pointer to the temp descriptor (non DMA mem)
* @opcode: the opcode can be used to decide which flags to turn off or on
*
* Fill the desc with default values
*/
void ice_fill_dflt_direct_cmd_desc(struct ice_aq_desc *desc, u16 opcode)
{
/* zero out the desc */
memset(desc, 0, sizeof(*desc));
desc->opcode = cpu_to_le16(opcode);
desc->flags = cpu_to_le16(ICE_AQ_FLAG_SI);
}
/**
* ice_clean_rq_elem
* @hw: pointer to the hw struct
* @cq: pointer to the specific Control queue
* @e: event info from the receive descriptor, includes any buffers
* @pending: number of events that could be left to process
*
* This function cleans one Admin Receive Queue element and returns
* the contents through e. It can also return how many events are
* left to process through 'pending'.
*/
enum ice_status
ice_clean_rq_elem(struct ice_hw *hw, struct ice_ctl_q_info *cq,
struct ice_rq_event_info *e, u16 *pending)
{
u16 ntc = cq->rq.next_to_clean;
enum ice_status ret_code = 0;
struct ice_aq_desc *desc;
struct ice_dma_mem *bi;
u16 desc_idx;
u16 datalen;
u16 flags;
u16 ntu;
/* pre-clean the event info */
memset(&e->desc, 0, sizeof(e->desc));
/* take the lock before we start messing with the ring */
mutex_lock(&cq->rq_lock);
if (!cq->rq.count) {
ice_debug(hw, ICE_DBG_AQ_MSG,
"Control Receive queue not initialized.\n");
ret_code = ICE_ERR_AQ_EMPTY;
goto clean_rq_elem_err;
}
/* set next_to_use to head */
ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
if (ntu == ntc) {
/* nothing to do - shouldn't need to update ring's values */
ret_code = ICE_ERR_AQ_NO_WORK;
goto clean_rq_elem_out;
}
/* now clean the next descriptor */
desc = ICE_CTL_Q_DESC(cq->rq, ntc);
desc_idx = ntc;
flags = le16_to_cpu(desc->flags);
if (flags & ICE_AQ_FLAG_ERR) {
ret_code = ICE_ERR_AQ_ERROR;
cq->rq_last_status = (enum ice_aq_err)le16_to_cpu(desc->retval);
ice_debug(hw, ICE_DBG_AQ_MSG,
"Control Receive Queue Event received with error 0x%x\n",
cq->rq_last_status);
}
memcpy(&e->desc, desc, sizeof(e->desc));
datalen = le16_to_cpu(desc->datalen);
e->msg_len = min(datalen, e->buf_len);
if (e->msg_buf && e->msg_len)
memcpy(e->msg_buf, cq->rq.r.rq_bi[desc_idx].va, e->msg_len);
ice_debug(hw, ICE_DBG_AQ_MSG, "ARQ: desc and buffer:\n");
ice_debug_cq(hw, ICE_DBG_AQ_CMD, (void *)desc, e->msg_buf,
cq->rq_buf_size);
/* Restore the original datalen and buffer address in the desc,
* FW updates datalen to indicate the event message size
*/
bi = &cq->rq.r.rq_bi[ntc];
memset(desc, 0, sizeof(*desc));
desc->flags = cpu_to_le16(ICE_AQ_FLAG_BUF);
if (cq->rq_buf_size > ICE_AQ_LG_BUF)
desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB);
desc->datalen = cpu_to_le16(bi->size);
desc->params.generic.addr_high = cpu_to_le32(upper_32_bits(bi->pa));
desc->params.generic.addr_low = cpu_to_le32(lower_32_bits(bi->pa));
/* set tail = the last cleaned desc index. */
wr32(hw, cq->rq.tail, ntc);
/* ntc is updated to tail + 1 */
ntc++;
if (ntc == cq->num_rq_entries)
ntc = 0;
cq->rq.next_to_clean = ntc;
cq->rq.next_to_use = ntu;
clean_rq_elem_out:
/* Set pending if needed, unlock and return */
if (pending)
*pending = (u16)((ntc > ntu ? cq->rq.count : 0) + (ntu - ntc));
clean_rq_elem_err:
mutex_unlock(&cq->rq_lock);
return ret_code;
}