mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-15 23:14:31 +08:00
8d5c6b06a5
In order to split the various register manipulation from the main vgic code, introduce a vgic_ops structure, and start by abstracting the LR manipulation code with a couple of accessors. Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2078 lines
51 KiB
C
2078 lines
51 KiB
C
/*
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <linux/irqchip/arm-gic.h>
|
|
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
|
|
/*
|
|
* How the whole thing works (courtesy of Christoffer Dall):
|
|
*
|
|
* - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
|
|
* something is pending
|
|
* - VGIC pending interrupts are stored on the vgic.irq_state vgic
|
|
* bitmap (this bitmap is updated by both user land ioctls and guest
|
|
* mmio ops, and other in-kernel peripherals such as the
|
|
* arch. timers) and indicate the 'wire' state.
|
|
* - Every time the bitmap changes, the irq_pending_on_cpu oracle is
|
|
* recalculated
|
|
* - To calculate the oracle, we need info for each cpu from
|
|
* compute_pending_for_cpu, which considers:
|
|
* - PPI: dist->irq_state & dist->irq_enable
|
|
* - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
|
|
* - irq_spi_target is a 'formatted' version of the GICD_ICFGR
|
|
* registers, stored on each vcpu. We only keep one bit of
|
|
* information per interrupt, making sure that only one vcpu can
|
|
* accept the interrupt.
|
|
* - The same is true when injecting an interrupt, except that we only
|
|
* consider a single interrupt at a time. The irq_spi_cpu array
|
|
* contains the target CPU for each SPI.
|
|
*
|
|
* The handling of level interrupts adds some extra complexity. We
|
|
* need to track when the interrupt has been EOIed, so we can sample
|
|
* the 'line' again. This is achieved as such:
|
|
*
|
|
* - When a level interrupt is moved onto a vcpu, the corresponding
|
|
* bit in irq_active is set. As long as this bit is set, the line
|
|
* will be ignored for further interrupts. The interrupt is injected
|
|
* into the vcpu with the GICH_LR_EOI bit set (generate a
|
|
* maintenance interrupt on EOI).
|
|
* - When the interrupt is EOIed, the maintenance interrupt fires,
|
|
* and clears the corresponding bit in irq_active. This allow the
|
|
* interrupt line to be sampled again.
|
|
*/
|
|
|
|
#define VGIC_ADDR_UNDEF (-1)
|
|
#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
|
|
|
|
#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
|
|
#define IMPLEMENTER_ARM 0x43b
|
|
#define GICC_ARCH_VERSION_V2 0x2
|
|
|
|
/* Physical address of vgic virtual cpu interface */
|
|
static phys_addr_t vgic_vcpu_base;
|
|
|
|
/* Virtual control interface base address */
|
|
static void __iomem *vgic_vctrl_base;
|
|
|
|
static struct device_node *vgic_node;
|
|
|
|
#define ACCESS_READ_VALUE (1 << 0)
|
|
#define ACCESS_READ_RAZ (0 << 0)
|
|
#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
|
|
#define ACCESS_WRITE_IGNORED (0 << 1)
|
|
#define ACCESS_WRITE_SETBIT (1 << 1)
|
|
#define ACCESS_WRITE_CLEARBIT (2 << 1)
|
|
#define ACCESS_WRITE_VALUE (3 << 1)
|
|
#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
|
|
|
|
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
|
|
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
|
|
static void vgic_update_state(struct kvm *kvm);
|
|
static void vgic_kick_vcpus(struct kvm *kvm);
|
|
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
|
|
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
|
|
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
|
|
static u32 vgic_nr_lr;
|
|
|
|
static unsigned int vgic_maint_irq;
|
|
|
|
static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
|
|
int cpuid, u32 offset)
|
|
{
|
|
offset >>= 2;
|
|
if (!offset)
|
|
return x->percpu[cpuid].reg;
|
|
else
|
|
return x->shared.reg + offset - 1;
|
|
}
|
|
|
|
static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
|
|
int cpuid, int irq)
|
|
{
|
|
if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
return test_bit(irq, x->percpu[cpuid].reg_ul);
|
|
|
|
return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
|
|
}
|
|
|
|
static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
|
|
int irq, int val)
|
|
{
|
|
unsigned long *reg;
|
|
|
|
if (irq < VGIC_NR_PRIVATE_IRQS) {
|
|
reg = x->percpu[cpuid].reg_ul;
|
|
} else {
|
|
reg = x->shared.reg_ul;
|
|
irq -= VGIC_NR_PRIVATE_IRQS;
|
|
}
|
|
|
|
if (val)
|
|
set_bit(irq, reg);
|
|
else
|
|
clear_bit(irq, reg);
|
|
}
|
|
|
|
static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
|
|
{
|
|
if (unlikely(cpuid >= VGIC_MAX_CPUS))
|
|
return NULL;
|
|
return x->percpu[cpuid].reg_ul;
|
|
}
|
|
|
|
static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
|
|
{
|
|
return x->shared.reg_ul;
|
|
}
|
|
|
|
static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
|
|
{
|
|
offset >>= 2;
|
|
BUG_ON(offset > (VGIC_NR_IRQS / 4));
|
|
if (offset < 8)
|
|
return x->percpu[cpuid] + offset;
|
|
else
|
|
return x->shared + offset - 8;
|
|
}
|
|
|
|
#define VGIC_CFG_LEVEL 0
|
|
#define VGIC_CFG_EDGE 1
|
|
|
|
static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int irq_val;
|
|
|
|
irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
|
|
return irq_val == VGIC_CFG_EDGE;
|
|
}
|
|
|
|
static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
|
|
}
|
|
|
|
static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
|
|
}
|
|
|
|
static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
|
|
}
|
|
|
|
static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
|
|
}
|
|
|
|
static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
|
|
else
|
|
set_bit(irq - VGIC_NR_PRIVATE_IRQS,
|
|
vcpu->arch.vgic_cpu.pending_shared);
|
|
}
|
|
|
|
static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
|
|
else
|
|
clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
|
|
vcpu->arch.vgic_cpu.pending_shared);
|
|
}
|
|
|
|
static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
|
|
{
|
|
return *((u32 *)mmio->data) & mask;
|
|
}
|
|
|
|
static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
|
|
{
|
|
*((u32 *)mmio->data) = value & mask;
|
|
}
|
|
|
|
/**
|
|
* vgic_reg_access - access vgic register
|
|
* @mmio: pointer to the data describing the mmio access
|
|
* @reg: pointer to the virtual backing of vgic distributor data
|
|
* @offset: least significant 2 bits used for word offset
|
|
* @mode: ACCESS_ mode (see defines above)
|
|
*
|
|
* Helper to make vgic register access easier using one of the access
|
|
* modes defined for vgic register access
|
|
* (read,raz,write-ignored,setbit,clearbit,write)
|
|
*/
|
|
static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
|
|
phys_addr_t offset, int mode)
|
|
{
|
|
int word_offset = (offset & 3) * 8;
|
|
u32 mask = (1UL << (mmio->len * 8)) - 1;
|
|
u32 regval;
|
|
|
|
/*
|
|
* Any alignment fault should have been delivered to the guest
|
|
* directly (ARM ARM B3.12.7 "Prioritization of aborts").
|
|
*/
|
|
|
|
if (reg) {
|
|
regval = *reg;
|
|
} else {
|
|
BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
|
|
regval = 0;
|
|
}
|
|
|
|
if (mmio->is_write) {
|
|
u32 data = mmio_data_read(mmio, mask) << word_offset;
|
|
switch (ACCESS_WRITE_MASK(mode)) {
|
|
case ACCESS_WRITE_IGNORED:
|
|
return;
|
|
|
|
case ACCESS_WRITE_SETBIT:
|
|
regval |= data;
|
|
break;
|
|
|
|
case ACCESS_WRITE_CLEARBIT:
|
|
regval &= ~data;
|
|
break;
|
|
|
|
case ACCESS_WRITE_VALUE:
|
|
regval = (regval & ~(mask << word_offset)) | data;
|
|
break;
|
|
}
|
|
*reg = regval;
|
|
} else {
|
|
switch (ACCESS_READ_MASK(mode)) {
|
|
case ACCESS_READ_RAZ:
|
|
regval = 0;
|
|
/* fall through */
|
|
|
|
case ACCESS_READ_VALUE:
|
|
mmio_data_write(mmio, mask, regval >> word_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
u32 reg;
|
|
u32 word_offset = offset & 3;
|
|
|
|
switch (offset & ~3) {
|
|
case 0: /* GICD_CTLR */
|
|
reg = vcpu->kvm->arch.vgic.enabled;
|
|
vgic_reg_access(mmio, ®, word_offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
|
if (mmio->is_write) {
|
|
vcpu->kvm->arch.vgic.enabled = reg & 1;
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
break;
|
|
|
|
case 4: /* GICD_TYPER */
|
|
reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
|
|
reg |= (VGIC_NR_IRQS >> 5) - 1;
|
|
vgic_reg_access(mmio, ®, word_offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
|
|
break;
|
|
|
|
case 8: /* GICD_IIDR */
|
|
reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
|
|
vgic_reg_access(mmio, ®, word_offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
vgic_reg_access(mmio, NULL, offset,
|
|
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
|
|
if (mmio->is_write) {
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
|
|
if (mmio->is_write) {
|
|
if (offset < 4) /* Force SGI enabled */
|
|
*reg |= 0xffff;
|
|
vgic_retire_disabled_irqs(vcpu);
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
|
|
if (mmio->is_write) {
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
|
|
if (mmio->is_write) {
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
|
return false;
|
|
}
|
|
|
|
#define GICD_ITARGETSR_SIZE 32
|
|
#define GICD_CPUTARGETS_BITS 8
|
|
#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
|
|
static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
int i;
|
|
u32 val = 0;
|
|
|
|
irq -= VGIC_NR_PRIVATE_IRQS;
|
|
|
|
for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
|
|
val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
|
|
|
|
return val;
|
|
}
|
|
|
|
static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int i, c;
|
|
unsigned long *bmap;
|
|
u32 target;
|
|
|
|
irq -= VGIC_NR_PRIVATE_IRQS;
|
|
|
|
/*
|
|
* Pick the LSB in each byte. This ensures we target exactly
|
|
* one vcpu per IRQ. If the byte is null, assume we target
|
|
* CPU0.
|
|
*/
|
|
for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
|
|
int shift = i * GICD_CPUTARGETS_BITS;
|
|
target = ffs((val >> shift) & 0xffU);
|
|
target = target ? (target - 1) : 0;
|
|
dist->irq_spi_cpu[irq + i] = target;
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
|
|
if (c == target)
|
|
set_bit(irq + i, bmap);
|
|
else
|
|
clear_bit(irq + i, bmap);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 reg;
|
|
|
|
/* We treat the banked interrupts targets as read-only */
|
|
if (offset < 32) {
|
|
u32 roreg = 1 << vcpu->vcpu_id;
|
|
roreg |= roreg << 8;
|
|
roreg |= roreg << 16;
|
|
|
|
vgic_reg_access(mmio, &roreg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
|
|
return false;
|
|
}
|
|
|
|
reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
|
|
vgic_reg_access(mmio, ®, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
|
if (mmio->is_write) {
|
|
vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static u32 vgic_cfg_expand(u16 val)
|
|
{
|
|
u32 res = 0;
|
|
int i;
|
|
|
|
/*
|
|
* Turn a 16bit value like abcd...mnop into a 32bit word
|
|
* a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
|
|
*/
|
|
for (i = 0; i < 16; i++)
|
|
res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
|
|
|
|
return res;
|
|
}
|
|
|
|
static u16 vgic_cfg_compress(u32 val)
|
|
{
|
|
u16 res = 0;
|
|
int i;
|
|
|
|
/*
|
|
* Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
|
|
* abcd...mnop which is what we really care about.
|
|
*/
|
|
for (i = 0; i < 16; i++)
|
|
res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* The distributor uses 2 bits per IRQ for the CFG register, but the
|
|
* LSB is always 0. As such, we only keep the upper bit, and use the
|
|
* two above functions to compress/expand the bits
|
|
*/
|
|
static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
u32 val;
|
|
u32 *reg;
|
|
|
|
reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
|
|
vcpu->vcpu_id, offset >> 1);
|
|
|
|
if (offset & 4)
|
|
val = *reg >> 16;
|
|
else
|
|
val = *reg & 0xffff;
|
|
|
|
val = vgic_cfg_expand(val);
|
|
vgic_reg_access(mmio, &val, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
|
if (mmio->is_write) {
|
|
if (offset < 8) {
|
|
*reg = ~0U; /* Force PPIs/SGIs to 1 */
|
|
return false;
|
|
}
|
|
|
|
val = vgic_cfg_compress(val);
|
|
if (offset & 4) {
|
|
*reg &= 0xffff;
|
|
*reg |= val << 16;
|
|
} else {
|
|
*reg &= 0xffff << 16;
|
|
*reg |= val;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
u32 reg;
|
|
vgic_reg_access(mmio, ®, offset,
|
|
ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
|
|
if (mmio->is_write) {
|
|
vgic_dispatch_sgi(vcpu, reg);
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
|
|
* @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
|
|
*
|
|
* Move any pending IRQs that have already been assigned to LRs back to the
|
|
* emulated distributor state so that the complete emulated state can be read
|
|
* from the main emulation structures without investigating the LRs.
|
|
*
|
|
* Note that IRQs in the active state in the LRs get their pending state moved
|
|
* to the distributor but the active state stays in the LRs, because we don't
|
|
* track the active state on the distributor side.
|
|
*/
|
|
static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
int vcpu_id = vcpu->vcpu_id;
|
|
int i;
|
|
|
|
for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
|
|
struct vgic_lr lr = vgic_get_lr(vcpu, i);
|
|
|
|
/*
|
|
* There are three options for the state bits:
|
|
*
|
|
* 01: pending
|
|
* 10: active
|
|
* 11: pending and active
|
|
*
|
|
* If the LR holds only an active interrupt (not pending) then
|
|
* just leave it alone.
|
|
*/
|
|
if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
|
|
continue;
|
|
|
|
/*
|
|
* Reestablish the pending state on the distributor and the
|
|
* CPU interface. It may have already been pending, but that
|
|
* is fine, then we are only setting a few bits that were
|
|
* already set.
|
|
*/
|
|
vgic_dist_irq_set(vcpu, lr.irq);
|
|
if (lr.irq < VGIC_NR_SGIS)
|
|
dist->irq_sgi_sources[vcpu_id][lr.irq] |= 1 << lr.source;
|
|
lr.state &= ~LR_STATE_PENDING;
|
|
vgic_set_lr(vcpu, i, lr);
|
|
|
|
/*
|
|
* If there's no state left on the LR (it could still be
|
|
* active), then the LR does not hold any useful info and can
|
|
* be marked as free for other use.
|
|
*/
|
|
if (!(lr.state & LR_STATE_MASK))
|
|
vgic_retire_lr(i, lr.irq, vcpu);
|
|
|
|
/* Finally update the VGIC state. */
|
|
vgic_update_state(vcpu->kvm);
|
|
}
|
|
}
|
|
|
|
/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
|
|
static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int sgi;
|
|
int min_sgi = (offset & ~0x3) * 4;
|
|
int max_sgi = min_sgi + 3;
|
|
int vcpu_id = vcpu->vcpu_id;
|
|
u32 reg = 0;
|
|
|
|
/* Copy source SGIs from distributor side */
|
|
for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
|
|
int shift = 8 * (sgi - min_sgi);
|
|
reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift;
|
|
}
|
|
|
|
mmio_data_write(mmio, ~0, reg);
|
|
return false;
|
|
}
|
|
|
|
static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset, bool set)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int sgi;
|
|
int min_sgi = (offset & ~0x3) * 4;
|
|
int max_sgi = min_sgi + 3;
|
|
int vcpu_id = vcpu->vcpu_id;
|
|
u32 reg;
|
|
bool updated = false;
|
|
|
|
reg = mmio_data_read(mmio, ~0);
|
|
|
|
/* Clear pending SGIs on the distributor */
|
|
for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
|
|
u8 mask = reg >> (8 * (sgi - min_sgi));
|
|
if (set) {
|
|
if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask)
|
|
updated = true;
|
|
dist->irq_sgi_sources[vcpu_id][sgi] |= mask;
|
|
} else {
|
|
if (dist->irq_sgi_sources[vcpu_id][sgi] & mask)
|
|
updated = true;
|
|
dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask;
|
|
}
|
|
}
|
|
|
|
if (updated)
|
|
vgic_update_state(vcpu->kvm);
|
|
|
|
return updated;
|
|
}
|
|
|
|
static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
if (!mmio->is_write)
|
|
return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
|
|
else
|
|
return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
|
|
}
|
|
|
|
static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
if (!mmio->is_write)
|
|
return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
|
|
else
|
|
return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
|
|
}
|
|
|
|
/*
|
|
* I would have liked to use the kvm_bus_io_*() API instead, but it
|
|
* cannot cope with banked registers (only the VM pointer is passed
|
|
* around, and we need the vcpu). One of these days, someone please
|
|
* fix it!
|
|
*/
|
|
struct mmio_range {
|
|
phys_addr_t base;
|
|
unsigned long len;
|
|
bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset);
|
|
};
|
|
|
|
static const struct mmio_range vgic_dist_ranges[] = {
|
|
{
|
|
.base = GIC_DIST_CTRL,
|
|
.len = 12,
|
|
.handle_mmio = handle_mmio_misc,
|
|
},
|
|
{
|
|
.base = GIC_DIST_IGROUP,
|
|
.len = VGIC_NR_IRQS / 8,
|
|
.handle_mmio = handle_mmio_raz_wi,
|
|
},
|
|
{
|
|
.base = GIC_DIST_ENABLE_SET,
|
|
.len = VGIC_NR_IRQS / 8,
|
|
.handle_mmio = handle_mmio_set_enable_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_ENABLE_CLEAR,
|
|
.len = VGIC_NR_IRQS / 8,
|
|
.handle_mmio = handle_mmio_clear_enable_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_PENDING_SET,
|
|
.len = VGIC_NR_IRQS / 8,
|
|
.handle_mmio = handle_mmio_set_pending_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_PENDING_CLEAR,
|
|
.len = VGIC_NR_IRQS / 8,
|
|
.handle_mmio = handle_mmio_clear_pending_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_ACTIVE_SET,
|
|
.len = VGIC_NR_IRQS / 8,
|
|
.handle_mmio = handle_mmio_raz_wi,
|
|
},
|
|
{
|
|
.base = GIC_DIST_ACTIVE_CLEAR,
|
|
.len = VGIC_NR_IRQS / 8,
|
|
.handle_mmio = handle_mmio_raz_wi,
|
|
},
|
|
{
|
|
.base = GIC_DIST_PRI,
|
|
.len = VGIC_NR_IRQS,
|
|
.handle_mmio = handle_mmio_priority_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_TARGET,
|
|
.len = VGIC_NR_IRQS,
|
|
.handle_mmio = handle_mmio_target_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_CONFIG,
|
|
.len = VGIC_NR_IRQS / 4,
|
|
.handle_mmio = handle_mmio_cfg_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_SOFTINT,
|
|
.len = 4,
|
|
.handle_mmio = handle_mmio_sgi_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_SGI_PENDING_CLEAR,
|
|
.len = VGIC_NR_SGIS,
|
|
.handle_mmio = handle_mmio_sgi_clear,
|
|
},
|
|
{
|
|
.base = GIC_DIST_SGI_PENDING_SET,
|
|
.len = VGIC_NR_SGIS,
|
|
.handle_mmio = handle_mmio_sgi_set,
|
|
},
|
|
{}
|
|
};
|
|
|
|
static const
|
|
struct mmio_range *find_matching_range(const struct mmio_range *ranges,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
const struct mmio_range *r = ranges;
|
|
|
|
while (r->len) {
|
|
if (offset >= r->base &&
|
|
(offset + mmio->len) <= (r->base + r->len))
|
|
return r;
|
|
r++;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* vgic_handle_mmio - handle an in-kernel MMIO access
|
|
* @vcpu: pointer to the vcpu performing the access
|
|
* @run: pointer to the kvm_run structure
|
|
* @mmio: pointer to the data describing the access
|
|
*
|
|
* returns true if the MMIO access has been performed in kernel space,
|
|
* and false if it needs to be emulated in user space.
|
|
*/
|
|
bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
|
|
struct kvm_exit_mmio *mmio)
|
|
{
|
|
const struct mmio_range *range;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
unsigned long base = dist->vgic_dist_base;
|
|
bool updated_state;
|
|
unsigned long offset;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm) ||
|
|
mmio->phys_addr < base ||
|
|
(mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
|
|
return false;
|
|
|
|
/* We don't support ldrd / strd or ldm / stm to the emulated vgic */
|
|
if (mmio->len > 4) {
|
|
kvm_inject_dabt(vcpu, mmio->phys_addr);
|
|
return true;
|
|
}
|
|
|
|
offset = mmio->phys_addr - base;
|
|
range = find_matching_range(vgic_dist_ranges, mmio, offset);
|
|
if (unlikely(!range || !range->handle_mmio)) {
|
|
pr_warn("Unhandled access %d %08llx %d\n",
|
|
mmio->is_write, mmio->phys_addr, mmio->len);
|
|
return false;
|
|
}
|
|
|
|
spin_lock(&vcpu->kvm->arch.vgic.lock);
|
|
offset = mmio->phys_addr - range->base - base;
|
|
updated_state = range->handle_mmio(vcpu, mmio, offset);
|
|
spin_unlock(&vcpu->kvm->arch.vgic.lock);
|
|
kvm_prepare_mmio(run, mmio);
|
|
kvm_handle_mmio_return(vcpu, run);
|
|
|
|
if (updated_state)
|
|
vgic_kick_vcpus(vcpu->kvm);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
int nrcpus = atomic_read(&kvm->online_vcpus);
|
|
u8 target_cpus;
|
|
int sgi, mode, c, vcpu_id;
|
|
|
|
vcpu_id = vcpu->vcpu_id;
|
|
|
|
sgi = reg & 0xf;
|
|
target_cpus = (reg >> 16) & 0xff;
|
|
mode = (reg >> 24) & 3;
|
|
|
|
switch (mode) {
|
|
case 0:
|
|
if (!target_cpus)
|
|
return;
|
|
break;
|
|
|
|
case 1:
|
|
target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
|
|
break;
|
|
|
|
case 2:
|
|
target_cpus = 1 << vcpu_id;
|
|
break;
|
|
}
|
|
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
if (target_cpus & 1) {
|
|
/* Flag the SGI as pending */
|
|
vgic_dist_irq_set(vcpu, sgi);
|
|
dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
|
|
kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
|
|
}
|
|
|
|
target_cpus >>= 1;
|
|
}
|
|
}
|
|
|
|
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
|
|
unsigned long pending_private, pending_shared;
|
|
int vcpu_id;
|
|
|
|
vcpu_id = vcpu->vcpu_id;
|
|
pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
|
|
pend_shared = vcpu->arch.vgic_cpu.pending_shared;
|
|
|
|
pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
|
|
enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
|
|
bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
|
|
|
|
pending = vgic_bitmap_get_shared_map(&dist->irq_state);
|
|
enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
|
|
bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
|
|
bitmap_and(pend_shared, pend_shared,
|
|
vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
|
|
VGIC_NR_SHARED_IRQS);
|
|
|
|
pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
|
|
pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
|
|
return (pending_private < VGIC_NR_PRIVATE_IRQS ||
|
|
pending_shared < VGIC_NR_SHARED_IRQS);
|
|
}
|
|
|
|
/*
|
|
* Update the interrupt state and determine which CPUs have pending
|
|
* interrupts. Must be called with distributor lock held.
|
|
*/
|
|
static void vgic_update_state(struct kvm *kvm)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int c;
|
|
|
|
if (!dist->enabled) {
|
|
set_bit(0, &dist->irq_pending_on_cpu);
|
|
return;
|
|
}
|
|
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
if (compute_pending_for_cpu(vcpu)) {
|
|
pr_debug("CPU%d has pending interrupts\n", c);
|
|
set_bit(c, &dist->irq_pending_on_cpu);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct vgic_lr vgic_v2_get_lr(const struct kvm_vcpu *vcpu, int lr)
|
|
{
|
|
struct vgic_lr lr_desc;
|
|
u32 val = vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr];
|
|
|
|
lr_desc.irq = val & GICH_LR_VIRTUALID;
|
|
if (lr_desc.irq <= 15)
|
|
lr_desc.source = (val >> GICH_LR_PHYSID_CPUID_SHIFT) & 0x7;
|
|
else
|
|
lr_desc.source = 0;
|
|
lr_desc.state = 0;
|
|
|
|
if (val & GICH_LR_PENDING_BIT)
|
|
lr_desc.state |= LR_STATE_PENDING;
|
|
if (val & GICH_LR_ACTIVE_BIT)
|
|
lr_desc.state |= LR_STATE_ACTIVE;
|
|
if (val & GICH_LR_EOI)
|
|
lr_desc.state |= LR_EOI_INT;
|
|
|
|
return lr_desc;
|
|
}
|
|
|
|
static void vgic_v2_set_lr(struct kvm_vcpu *vcpu, int lr,
|
|
struct vgic_lr lr_desc)
|
|
{
|
|
u32 lr_val = (lr_desc.source << GICH_LR_PHYSID_CPUID_SHIFT) | lr_desc.irq;
|
|
|
|
if (lr_desc.state & LR_STATE_PENDING)
|
|
lr_val |= GICH_LR_PENDING_BIT;
|
|
if (lr_desc.state & LR_STATE_ACTIVE)
|
|
lr_val |= GICH_LR_ACTIVE_BIT;
|
|
if (lr_desc.state & LR_EOI_INT)
|
|
lr_val |= GICH_LR_EOI;
|
|
|
|
vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = lr_val;
|
|
}
|
|
|
|
static const struct vgic_ops vgic_ops = {
|
|
.get_lr = vgic_v2_get_lr,
|
|
.set_lr = vgic_v2_set_lr,
|
|
};
|
|
|
|
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
|
|
{
|
|
return vgic_ops.get_lr(vcpu, lr);
|
|
}
|
|
|
|
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
|
|
struct vgic_lr vlr)
|
|
{
|
|
vgic_ops.set_lr(vcpu, lr, vlr);
|
|
}
|
|
|
|
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
|
|
|
|
vlr.state = 0;
|
|
vgic_set_lr(vcpu, lr_nr, vlr);
|
|
clear_bit(lr_nr, vgic_cpu->lr_used);
|
|
vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
|
|
}
|
|
|
|
/*
|
|
* An interrupt may have been disabled after being made pending on the
|
|
* CPU interface (the classic case is a timer running while we're
|
|
* rebooting the guest - the interrupt would kick as soon as the CPU
|
|
* interface gets enabled, with deadly consequences).
|
|
*
|
|
* The solution is to examine already active LRs, and check the
|
|
* interrupt is still enabled. If not, just retire it.
|
|
*/
|
|
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
int lr;
|
|
|
|
for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
|
|
struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
|
|
|
|
if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
|
|
vgic_retire_lr(lr, vlr.irq, vcpu);
|
|
if (vgic_irq_is_active(vcpu, vlr.irq))
|
|
vgic_irq_clear_active(vcpu, vlr.irq);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Queue an interrupt to a CPU virtual interface. Return true on success,
|
|
* or false if it wasn't possible to queue it.
|
|
*/
|
|
static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_lr vlr;
|
|
int lr;
|
|
|
|
/* Sanitize the input... */
|
|
BUG_ON(sgi_source_id & ~7);
|
|
BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
|
|
BUG_ON(irq >= VGIC_NR_IRQS);
|
|
|
|
kvm_debug("Queue IRQ%d\n", irq);
|
|
|
|
lr = vgic_cpu->vgic_irq_lr_map[irq];
|
|
|
|
/* Do we have an active interrupt for the same CPUID? */
|
|
if (lr != LR_EMPTY) {
|
|
vlr = vgic_get_lr(vcpu, lr);
|
|
if (vlr.source == sgi_source_id) {
|
|
kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
|
|
BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
|
|
vlr.state |= LR_STATE_PENDING;
|
|
vgic_set_lr(vcpu, lr, vlr);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* Try to use another LR for this interrupt */
|
|
lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
|
|
vgic_cpu->nr_lr);
|
|
if (lr >= vgic_cpu->nr_lr)
|
|
return false;
|
|
|
|
kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
|
|
vgic_cpu->vgic_irq_lr_map[irq] = lr;
|
|
set_bit(lr, vgic_cpu->lr_used);
|
|
|
|
vlr.irq = irq;
|
|
vlr.source = sgi_source_id;
|
|
vlr.state = LR_STATE_PENDING;
|
|
if (!vgic_irq_is_edge(vcpu, irq))
|
|
vlr.state |= LR_EOI_INT;
|
|
|
|
vgic_set_lr(vcpu, lr, vlr);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
unsigned long sources;
|
|
int vcpu_id = vcpu->vcpu_id;
|
|
int c;
|
|
|
|
sources = dist->irq_sgi_sources[vcpu_id][irq];
|
|
|
|
for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
|
|
if (vgic_queue_irq(vcpu, c, irq))
|
|
clear_bit(c, &sources);
|
|
}
|
|
|
|
dist->irq_sgi_sources[vcpu_id][irq] = sources;
|
|
|
|
/*
|
|
* If the sources bitmap has been cleared it means that we
|
|
* could queue all the SGIs onto link registers (see the
|
|
* clear_bit above), and therefore we are done with them in
|
|
* our emulated gic and can get rid of them.
|
|
*/
|
|
if (!sources) {
|
|
vgic_dist_irq_clear(vcpu, irq);
|
|
vgic_cpu_irq_clear(vcpu, irq);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
if (vgic_irq_is_active(vcpu, irq))
|
|
return true; /* level interrupt, already queued */
|
|
|
|
if (vgic_queue_irq(vcpu, 0, irq)) {
|
|
if (vgic_irq_is_edge(vcpu, irq)) {
|
|
vgic_dist_irq_clear(vcpu, irq);
|
|
vgic_cpu_irq_clear(vcpu, irq);
|
|
} else {
|
|
vgic_irq_set_active(vcpu, irq);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Fill the list registers with pending interrupts before running the
|
|
* guest.
|
|
*/
|
|
static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int i, vcpu_id;
|
|
int overflow = 0;
|
|
|
|
vcpu_id = vcpu->vcpu_id;
|
|
|
|
/*
|
|
* We may not have any pending interrupt, or the interrupts
|
|
* may have been serviced from another vcpu. In all cases,
|
|
* move along.
|
|
*/
|
|
if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
|
|
pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
|
|
goto epilog;
|
|
}
|
|
|
|
/* SGIs */
|
|
for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
|
|
if (!vgic_queue_sgi(vcpu, i))
|
|
overflow = 1;
|
|
}
|
|
|
|
/* PPIs */
|
|
for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
|
|
if (!vgic_queue_hwirq(vcpu, i))
|
|
overflow = 1;
|
|
}
|
|
|
|
/* SPIs */
|
|
for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
|
|
if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
|
|
overflow = 1;
|
|
}
|
|
|
|
epilog:
|
|
if (overflow) {
|
|
vgic_cpu->vgic_v2.vgic_hcr |= GICH_HCR_UIE;
|
|
} else {
|
|
vgic_cpu->vgic_v2.vgic_hcr &= ~GICH_HCR_UIE;
|
|
/*
|
|
* We're about to run this VCPU, and we've consumed
|
|
* everything the distributor had in store for
|
|
* us. Claim we don't have anything pending. We'll
|
|
* adjust that if needed while exiting.
|
|
*/
|
|
clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
|
|
}
|
|
}
|
|
|
|
static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
bool level_pending = false;
|
|
|
|
kvm_debug("MISR = %08x\n", vgic_cpu->vgic_v2.vgic_misr);
|
|
|
|
if (vgic_cpu->vgic_v2.vgic_misr & GICH_MISR_EOI) {
|
|
/*
|
|
* Some level interrupts have been EOIed. Clear their
|
|
* active bit.
|
|
*/
|
|
int lr;
|
|
|
|
for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_v2.vgic_eisr,
|
|
vgic_cpu->nr_lr) {
|
|
struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
|
|
|
|
vgic_irq_clear_active(vcpu, vlr.irq);
|
|
WARN_ON(vlr.state & LR_STATE_MASK);
|
|
vlr.state = 0;
|
|
vgic_set_lr(vcpu, lr, vlr);
|
|
|
|
/* Any additional pending interrupt? */
|
|
if (vgic_dist_irq_is_pending(vcpu, vlr.irq)) {
|
|
vgic_cpu_irq_set(vcpu, vlr.irq);
|
|
level_pending = true;
|
|
} else {
|
|
vgic_cpu_irq_clear(vcpu, vlr.irq);
|
|
}
|
|
|
|
/*
|
|
* Despite being EOIed, the LR may not have
|
|
* been marked as empty.
|
|
*/
|
|
set_bit(lr, (unsigned long *)vgic_cpu->vgic_v2.vgic_elrsr);
|
|
}
|
|
}
|
|
|
|
if (vgic_cpu->vgic_v2.vgic_misr & GICH_MISR_U)
|
|
vgic_cpu->vgic_v2.vgic_hcr &= ~GICH_HCR_UIE;
|
|
|
|
return level_pending;
|
|
}
|
|
|
|
/*
|
|
* Sync back the VGIC state after a guest run. The distributor lock is
|
|
* needed so we don't get preempted in the middle of the state processing.
|
|
*/
|
|
static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int lr, pending;
|
|
bool level_pending;
|
|
|
|
level_pending = vgic_process_maintenance(vcpu);
|
|
|
|
/* Clear mappings for empty LRs */
|
|
for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_v2.vgic_elrsr,
|
|
vgic_cpu->nr_lr) {
|
|
struct vgic_lr vlr;
|
|
|
|
if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
|
|
continue;
|
|
|
|
vlr = vgic_get_lr(vcpu, lr);
|
|
|
|
BUG_ON(vlr.irq >= VGIC_NR_IRQS);
|
|
vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
|
|
}
|
|
|
|
/* Check if we still have something up our sleeve... */
|
|
pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_v2.vgic_elrsr,
|
|
vgic_cpu->nr_lr);
|
|
if (level_pending || pending < vgic_cpu->nr_lr)
|
|
set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
|
|
}
|
|
|
|
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return;
|
|
|
|
spin_lock(&dist->lock);
|
|
__kvm_vgic_flush_hwstate(vcpu);
|
|
spin_unlock(&dist->lock);
|
|
}
|
|
|
|
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return;
|
|
|
|
spin_lock(&dist->lock);
|
|
__kvm_vgic_sync_hwstate(vcpu);
|
|
spin_unlock(&dist->lock);
|
|
}
|
|
|
|
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return 0;
|
|
|
|
return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
|
|
}
|
|
|
|
static void vgic_kick_vcpus(struct kvm *kvm)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int c;
|
|
|
|
/*
|
|
* We've injected an interrupt, time to find out who deserves
|
|
* a good kick...
|
|
*/
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
if (kvm_vgic_vcpu_pending_irq(vcpu))
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
}
|
|
|
|
static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
|
|
{
|
|
int is_edge = vgic_irq_is_edge(vcpu, irq);
|
|
int state = vgic_dist_irq_is_pending(vcpu, irq);
|
|
|
|
/*
|
|
* Only inject an interrupt if:
|
|
* - edge triggered and we have a rising edge
|
|
* - level triggered and we change level
|
|
*/
|
|
if (is_edge)
|
|
return level > state;
|
|
else
|
|
return level != state;
|
|
}
|
|
|
|
static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
|
|
unsigned int irq_num, bool level)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int is_edge, is_level;
|
|
int enabled;
|
|
bool ret = true;
|
|
|
|
spin_lock(&dist->lock);
|
|
|
|
vcpu = kvm_get_vcpu(kvm, cpuid);
|
|
is_edge = vgic_irq_is_edge(vcpu, irq_num);
|
|
is_level = !is_edge;
|
|
|
|
if (!vgic_validate_injection(vcpu, irq_num, level)) {
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
|
|
cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
|
|
vcpu = kvm_get_vcpu(kvm, cpuid);
|
|
}
|
|
|
|
kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
|
|
|
|
if (level)
|
|
vgic_dist_irq_set(vcpu, irq_num);
|
|
else
|
|
vgic_dist_irq_clear(vcpu, irq_num);
|
|
|
|
enabled = vgic_irq_is_enabled(vcpu, irq_num);
|
|
|
|
if (!enabled) {
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
|
|
/*
|
|
* Level interrupt in progress, will be picked up
|
|
* when EOId.
|
|
*/
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
if (level) {
|
|
vgic_cpu_irq_set(vcpu, irq_num);
|
|
set_bit(cpuid, &dist->irq_pending_on_cpu);
|
|
}
|
|
|
|
out:
|
|
spin_unlock(&dist->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
|
|
* @kvm: The VM structure pointer
|
|
* @cpuid: The CPU for PPIs
|
|
* @irq_num: The IRQ number that is assigned to the device
|
|
* @level: Edge-triggered: true: to trigger the interrupt
|
|
* false: to ignore the call
|
|
* Level-sensitive true: activates an interrupt
|
|
* false: deactivates an interrupt
|
|
*
|
|
* The GIC is not concerned with devices being active-LOW or active-HIGH for
|
|
* level-sensitive interrupts. You can think of the level parameter as 1
|
|
* being HIGH and 0 being LOW and all devices being active-HIGH.
|
|
*/
|
|
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
|
|
bool level)
|
|
{
|
|
if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
|
|
vgic_kick_vcpus(kvm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t vgic_maintenance_handler(int irq, void *data)
|
|
{
|
|
/*
|
|
* We cannot rely on the vgic maintenance interrupt to be
|
|
* delivered synchronously. This means we can only use it to
|
|
* exit the VM, and we perform the handling of EOIed
|
|
* interrupts on the exit path (see vgic_process_maintenance).
|
|
*/
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
|
|
* @vcpu: pointer to the vcpu struct
|
|
*
|
|
* Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
|
|
* this vcpu and enable the VGIC for this VCPU
|
|
*/
|
|
int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int i;
|
|
|
|
if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
|
|
return -EBUSY;
|
|
|
|
for (i = 0; i < VGIC_NR_IRQS; i++) {
|
|
if (i < VGIC_NR_PPIS)
|
|
vgic_bitmap_set_irq_val(&dist->irq_enabled,
|
|
vcpu->vcpu_id, i, 1);
|
|
if (i < VGIC_NR_PRIVATE_IRQS)
|
|
vgic_bitmap_set_irq_val(&dist->irq_cfg,
|
|
vcpu->vcpu_id, i, VGIC_CFG_EDGE);
|
|
|
|
vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
|
|
}
|
|
|
|
/*
|
|
* By forcing VMCR to zero, the GIC will restore the binary
|
|
* points to their reset values. Anything else resets to zero
|
|
* anyway.
|
|
*/
|
|
vgic_cpu->vgic_v2.vgic_vmcr = 0;
|
|
|
|
vgic_cpu->nr_lr = vgic_nr_lr;
|
|
vgic_cpu->vgic_v2.vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vgic_init_maintenance_interrupt(void *info)
|
|
{
|
|
enable_percpu_irq(vgic_maint_irq, 0);
|
|
}
|
|
|
|
static int vgic_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *cpu)
|
|
{
|
|
switch (action) {
|
|
case CPU_STARTING:
|
|
case CPU_STARTING_FROZEN:
|
|
vgic_init_maintenance_interrupt(NULL);
|
|
break;
|
|
case CPU_DYING:
|
|
case CPU_DYING_FROZEN:
|
|
disable_percpu_irq(vgic_maint_irq);
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block vgic_cpu_nb = {
|
|
.notifier_call = vgic_cpu_notify,
|
|
};
|
|
|
|
int kvm_vgic_hyp_init(void)
|
|
{
|
|
int ret;
|
|
struct resource vctrl_res;
|
|
struct resource vcpu_res;
|
|
|
|
vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
|
|
if (!vgic_node) {
|
|
kvm_err("error: no compatible vgic node in DT\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0);
|
|
if (!vgic_maint_irq) {
|
|
kvm_err("error getting vgic maintenance irq from DT\n");
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler,
|
|
"vgic", kvm_get_running_vcpus());
|
|
if (ret) {
|
|
kvm_err("Cannot register interrupt %d\n", vgic_maint_irq);
|
|
goto out;
|
|
}
|
|
|
|
ret = __register_cpu_notifier(&vgic_cpu_nb);
|
|
if (ret) {
|
|
kvm_err("Cannot register vgic CPU notifier\n");
|
|
goto out_free_irq;
|
|
}
|
|
|
|
ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
|
|
if (ret) {
|
|
kvm_err("Cannot obtain VCTRL resource\n");
|
|
goto out_free_irq;
|
|
}
|
|
|
|
vgic_vctrl_base = of_iomap(vgic_node, 2);
|
|
if (!vgic_vctrl_base) {
|
|
kvm_err("Cannot ioremap VCTRL\n");
|
|
ret = -ENOMEM;
|
|
goto out_free_irq;
|
|
}
|
|
|
|
vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR);
|
|
vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1;
|
|
|
|
ret = create_hyp_io_mappings(vgic_vctrl_base,
|
|
vgic_vctrl_base + resource_size(&vctrl_res),
|
|
vctrl_res.start);
|
|
if (ret) {
|
|
kvm_err("Cannot map VCTRL into hyp\n");
|
|
goto out_unmap;
|
|
}
|
|
|
|
kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
|
|
vctrl_res.start, vgic_maint_irq);
|
|
on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
|
|
|
|
if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
|
|
kvm_err("Cannot obtain VCPU resource\n");
|
|
ret = -ENXIO;
|
|
goto out_unmap;
|
|
}
|
|
vgic_vcpu_base = vcpu_res.start;
|
|
|
|
goto out;
|
|
|
|
out_unmap:
|
|
iounmap(vgic_vctrl_base);
|
|
out_free_irq:
|
|
free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus());
|
|
out:
|
|
of_node_put(vgic_node);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_vgic_init - Initialize global VGIC state before running any VCPUs
|
|
* @kvm: pointer to the kvm struct
|
|
*
|
|
* Map the virtual CPU interface into the VM before running any VCPUs. We
|
|
* can't do this at creation time, because user space must first set the
|
|
* virtual CPU interface address in the guest physical address space. Also
|
|
* initialize the ITARGETSRn regs to 0 on the emulated distributor.
|
|
*/
|
|
int kvm_vgic_init(struct kvm *kvm)
|
|
{
|
|
int ret = 0, i;
|
|
|
|
if (!irqchip_in_kernel(kvm))
|
|
return 0;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
if (vgic_initialized(kvm))
|
|
goto out;
|
|
|
|
if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
|
|
IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
|
|
kvm_err("Need to set vgic cpu and dist addresses first\n");
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
|
|
vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE);
|
|
if (ret) {
|
|
kvm_err("Unable to remap VGIC CPU to VCPU\n");
|
|
goto out;
|
|
}
|
|
|
|
for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
|
|
vgic_set_target_reg(kvm, 0, i);
|
|
|
|
kvm->arch.vgic.ready = true;
|
|
out:
|
|
mutex_unlock(&kvm->lock);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_vgic_create(struct kvm *kvm)
|
|
{
|
|
int i, vcpu_lock_idx = -1, ret = 0;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
if (kvm->arch.vgic.vctrl_base) {
|
|
ret = -EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Any time a vcpu is run, vcpu_load is called which tries to grab the
|
|
* vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
|
|
* that no other VCPUs are run while we create the vgic.
|
|
*/
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (!mutex_trylock(&vcpu->mutex))
|
|
goto out_unlock;
|
|
vcpu_lock_idx = i;
|
|
}
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (vcpu->arch.has_run_once) {
|
|
ret = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
spin_lock_init(&kvm->arch.vgic.lock);
|
|
kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
|
|
kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
|
|
kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
|
|
|
|
out_unlock:
|
|
for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
|
|
vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
|
|
mutex_unlock(&vcpu->mutex);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&kvm->lock);
|
|
return ret;
|
|
}
|
|
|
|
static bool vgic_ioaddr_overlap(struct kvm *kvm)
|
|
{
|
|
phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
|
|
phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
|
|
|
|
if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
|
|
return 0;
|
|
if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
|
|
(cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
|
|
phys_addr_t addr, phys_addr_t size)
|
|
{
|
|
int ret;
|
|
|
|
if (addr & ~KVM_PHYS_MASK)
|
|
return -E2BIG;
|
|
|
|
if (addr & (SZ_4K - 1))
|
|
return -EINVAL;
|
|
|
|
if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
|
|
return -EEXIST;
|
|
if (addr + size < addr)
|
|
return -EINVAL;
|
|
|
|
*ioaddr = addr;
|
|
ret = vgic_ioaddr_overlap(kvm);
|
|
if (ret)
|
|
*ioaddr = VGIC_ADDR_UNDEF;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_vgic_addr - set or get vgic VM base addresses
|
|
* @kvm: pointer to the vm struct
|
|
* @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
|
|
* @addr: pointer to address value
|
|
* @write: if true set the address in the VM address space, if false read the
|
|
* address
|
|
*
|
|
* Set or get the vgic base addresses for the distributor and the virtual CPU
|
|
* interface in the VM physical address space. These addresses are properties
|
|
* of the emulated core/SoC and therefore user space initially knows this
|
|
* information.
|
|
*/
|
|
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
|
|
{
|
|
int r = 0;
|
|
struct vgic_dist *vgic = &kvm->arch.vgic;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
switch (type) {
|
|
case KVM_VGIC_V2_ADDR_TYPE_DIST:
|
|
if (write) {
|
|
r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
|
|
*addr, KVM_VGIC_V2_DIST_SIZE);
|
|
} else {
|
|
*addr = vgic->vgic_dist_base;
|
|
}
|
|
break;
|
|
case KVM_VGIC_V2_ADDR_TYPE_CPU:
|
|
if (write) {
|
|
r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
|
|
*addr, KVM_VGIC_V2_CPU_SIZE);
|
|
} else {
|
|
*addr = vgic->vgic_cpu_base;
|
|
}
|
|
break;
|
|
default:
|
|
r = -ENODEV;
|
|
}
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
return r;
|
|
}
|
|
|
|
static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
u32 reg, mask = 0, shift = 0;
|
|
bool updated = false;
|
|
|
|
switch (offset & ~0x3) {
|
|
case GIC_CPU_CTRL:
|
|
mask = GICH_VMCR_CTRL_MASK;
|
|
shift = GICH_VMCR_CTRL_SHIFT;
|
|
break;
|
|
case GIC_CPU_PRIMASK:
|
|
mask = GICH_VMCR_PRIMASK_MASK;
|
|
shift = GICH_VMCR_PRIMASK_SHIFT;
|
|
break;
|
|
case GIC_CPU_BINPOINT:
|
|
mask = GICH_VMCR_BINPOINT_MASK;
|
|
shift = GICH_VMCR_BINPOINT_SHIFT;
|
|
break;
|
|
case GIC_CPU_ALIAS_BINPOINT:
|
|
mask = GICH_VMCR_ALIAS_BINPOINT_MASK;
|
|
shift = GICH_VMCR_ALIAS_BINPOINT_SHIFT;
|
|
break;
|
|
}
|
|
|
|
if (!mmio->is_write) {
|
|
reg = (vgic_cpu->vgic_v2.vgic_vmcr & mask) >> shift;
|
|
mmio_data_write(mmio, ~0, reg);
|
|
} else {
|
|
reg = mmio_data_read(mmio, ~0);
|
|
reg = (reg << shift) & mask;
|
|
if (reg != (vgic_cpu->vgic_v2.vgic_vmcr & mask))
|
|
updated = true;
|
|
vgic_cpu->vgic_v2.vgic_vmcr &= ~mask;
|
|
vgic_cpu->vgic_v2.vgic_vmcr |= reg;
|
|
}
|
|
return updated;
|
|
}
|
|
|
|
static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
|
|
}
|
|
|
|
static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 reg;
|
|
|
|
if (mmio->is_write)
|
|
return false;
|
|
|
|
/* GICC_IIDR */
|
|
reg = (PRODUCT_ID_KVM << 20) |
|
|
(GICC_ARCH_VERSION_V2 << 16) |
|
|
(IMPLEMENTER_ARM << 0);
|
|
mmio_data_write(mmio, ~0, reg);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* CPU Interface Register accesses - these are not accessed by the VM, but by
|
|
* user space for saving and restoring VGIC state.
|
|
*/
|
|
static const struct mmio_range vgic_cpu_ranges[] = {
|
|
{
|
|
.base = GIC_CPU_CTRL,
|
|
.len = 12,
|
|
.handle_mmio = handle_cpu_mmio_misc,
|
|
},
|
|
{
|
|
.base = GIC_CPU_ALIAS_BINPOINT,
|
|
.len = 4,
|
|
.handle_mmio = handle_mmio_abpr,
|
|
},
|
|
{
|
|
.base = GIC_CPU_ACTIVEPRIO,
|
|
.len = 16,
|
|
.handle_mmio = handle_mmio_raz_wi,
|
|
},
|
|
{
|
|
.base = GIC_CPU_IDENT,
|
|
.len = 4,
|
|
.handle_mmio = handle_cpu_mmio_ident,
|
|
},
|
|
};
|
|
|
|
static int vgic_attr_regs_access(struct kvm_device *dev,
|
|
struct kvm_device_attr *attr,
|
|
u32 *reg, bool is_write)
|
|
{
|
|
const struct mmio_range *r = NULL, *ranges;
|
|
phys_addr_t offset;
|
|
int ret, cpuid, c;
|
|
struct kvm_vcpu *vcpu, *tmp_vcpu;
|
|
struct vgic_dist *vgic;
|
|
struct kvm_exit_mmio mmio;
|
|
|
|
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
|
|
cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
|
|
KVM_DEV_ARM_VGIC_CPUID_SHIFT;
|
|
|
|
mutex_lock(&dev->kvm->lock);
|
|
|
|
if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
vcpu = kvm_get_vcpu(dev->kvm, cpuid);
|
|
vgic = &dev->kvm->arch.vgic;
|
|
|
|
mmio.len = 4;
|
|
mmio.is_write = is_write;
|
|
if (is_write)
|
|
mmio_data_write(&mmio, ~0, *reg);
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
|
|
mmio.phys_addr = vgic->vgic_dist_base + offset;
|
|
ranges = vgic_dist_ranges;
|
|
break;
|
|
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
|
|
mmio.phys_addr = vgic->vgic_cpu_base + offset;
|
|
ranges = vgic_cpu_ranges;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
r = find_matching_range(ranges, &mmio, offset);
|
|
|
|
if (unlikely(!r || !r->handle_mmio)) {
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
|
|
spin_lock(&vgic->lock);
|
|
|
|
/*
|
|
* Ensure that no other VCPU is running by checking the vcpu->cpu
|
|
* field. If no other VPCUs are running we can safely access the VGIC
|
|
* state, because even if another VPU is run after this point, that
|
|
* VCPU will not touch the vgic state, because it will block on
|
|
* getting the vgic->lock in kvm_vgic_sync_hwstate().
|
|
*/
|
|
kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
|
|
if (unlikely(tmp_vcpu->cpu != -1)) {
|
|
ret = -EBUSY;
|
|
goto out_vgic_unlock;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move all pending IRQs from the LRs on all VCPUs so the pending
|
|
* state can be properly represented in the register state accessible
|
|
* through this API.
|
|
*/
|
|
kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
|
|
vgic_unqueue_irqs(tmp_vcpu);
|
|
|
|
offset -= r->base;
|
|
r->handle_mmio(vcpu, &mmio, offset);
|
|
|
|
if (!is_write)
|
|
*reg = mmio_data_read(&mmio, ~0);
|
|
|
|
ret = 0;
|
|
out_vgic_unlock:
|
|
spin_unlock(&vgic->lock);
|
|
out:
|
|
mutex_unlock(&dev->kvm->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
{
|
|
int r;
|
|
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
|
|
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
|
|
u64 addr;
|
|
unsigned long type = (unsigned long)attr->attr;
|
|
|
|
if (copy_from_user(&addr, uaddr, sizeof(addr)))
|
|
return -EFAULT;
|
|
|
|
r = kvm_vgic_addr(dev->kvm, type, &addr, true);
|
|
return (r == -ENODEV) ? -ENXIO : r;
|
|
}
|
|
|
|
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
|
|
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
|
|
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
|
|
u32 reg;
|
|
|
|
if (get_user(reg, uaddr))
|
|
return -EFAULT;
|
|
|
|
return vgic_attr_regs_access(dev, attr, ®, true);
|
|
}
|
|
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|
|
|
|
static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
{
|
|
int r = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
|
|
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
|
|
u64 addr;
|
|
unsigned long type = (unsigned long)attr->attr;
|
|
|
|
r = kvm_vgic_addr(dev->kvm, type, &addr, false);
|
|
if (r)
|
|
return (r == -ENODEV) ? -ENXIO : r;
|
|
|
|
if (copy_to_user(uaddr, &addr, sizeof(addr)))
|
|
return -EFAULT;
|
|
break;
|
|
}
|
|
|
|
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
|
|
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
|
|
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
|
|
u32 reg = 0;
|
|
|
|
r = vgic_attr_regs_access(dev, attr, ®, false);
|
|
if (r)
|
|
return r;
|
|
r = put_user(reg, uaddr);
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int vgic_has_attr_regs(const struct mmio_range *ranges,
|
|
phys_addr_t offset)
|
|
{
|
|
struct kvm_exit_mmio dev_attr_mmio;
|
|
|
|
dev_attr_mmio.len = 4;
|
|
if (find_matching_range(ranges, &dev_attr_mmio, offset))
|
|
return 0;
|
|
else
|
|
return -ENXIO;
|
|
}
|
|
|
|
static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
{
|
|
phys_addr_t offset;
|
|
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_ADDR:
|
|
switch (attr->attr) {
|
|
case KVM_VGIC_V2_ADDR_TYPE_DIST:
|
|
case KVM_VGIC_V2_ADDR_TYPE_CPU:
|
|
return 0;
|
|
}
|
|
break;
|
|
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
|
|
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
|
|
return vgic_has_attr_regs(vgic_dist_ranges, offset);
|
|
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
|
|
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
|
|
return vgic_has_attr_regs(vgic_cpu_ranges, offset);
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
|
|
static void vgic_destroy(struct kvm_device *dev)
|
|
{
|
|
kfree(dev);
|
|
}
|
|
|
|
static int vgic_create(struct kvm_device *dev, u32 type)
|
|
{
|
|
return kvm_vgic_create(dev->kvm);
|
|
}
|
|
|
|
struct kvm_device_ops kvm_arm_vgic_v2_ops = {
|
|
.name = "kvm-arm-vgic",
|
|
.create = vgic_create,
|
|
.destroy = vgic_destroy,
|
|
.set_attr = vgic_set_attr,
|
|
.get_attr = vgic_get_attr,
|
|
.has_attr = vgic_has_attr,
|
|
};
|