linux/drivers/media/v4l2-core/v4l2-mem2mem.c
Ezequiel Garcia cbd9463da1 media: v4l2-mem2mem: Avoid calling .device_run in v4l2_m2m_job_finish
v4l2_m2m_job_finish() is typically called when
DMA operations complete, in interrupt handlers or DMA
completion callbacks. Calling .device_run from v4l2_m2m_job_finish
creates a nasty re-entrancy path into the driver.

Moreover, some implementation of .device_run might need to sleep,
as is the case for drivers supporting the Request API,
where controls are applied via v4l2_ctrl_request_setup,
which takes the ctrl handler mutex.

This commit adds a deferred context that calls v4l2_m2m_try_run,
and gets scheduled by v4l2_m2m_job_finish().

Before this change, device_run would be called from these
paths:

vb2_m2m_request_queue, or
v4l2_m2m_streamon, or
v4l2_m2m_qbuf
  v4l2_m2m_try_schedule
    v4l2_m2m_try_run
      .device_run

v4l2_m2m_job_finish
  v4l2_m2m_try_run
    .device_run

After this change, the latter is now gone and instead:

v4l2_m2m_device_run_work
  v4l2_m2m_try_run
    .device_run

Signed-off-by: Ezequiel Garcia <ezequiel@collabora.com>
Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2018-11-23 06:37:47 -05:00

1138 lines
31 KiB
C

/*
* Memory-to-memory device framework for Video for Linux 2 and videobuf.
*
* Helper functions for devices that use videobuf buffers for both their
* source and destination.
*
* Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
* Pawel Osciak, <pawel@osciak.com>
* Marek Szyprowski, <m.szyprowski@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <media/media-device.h>
#include <media/videobuf2-v4l2.h>
#include <media/v4l2-mem2mem.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-event.h>
MODULE_DESCRIPTION("Mem to mem device framework for videobuf");
MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>");
MODULE_LICENSE("GPL");
static bool debug;
module_param(debug, bool, 0644);
#define dprintk(fmt, arg...) \
do { \
if (debug) \
printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\
} while (0)
/* Instance is already queued on the job_queue */
#define TRANS_QUEUED (1 << 0)
/* Instance is currently running in hardware */
#define TRANS_RUNNING (1 << 1)
/* Instance is currently aborting */
#define TRANS_ABORT (1 << 2)
/* Offset base for buffers on the destination queue - used to distinguish
* between source and destination buffers when mmapping - they receive the same
* offsets but for different queues */
#define DST_QUEUE_OFF_BASE (1 << 30)
enum v4l2_m2m_entity_type {
MEM2MEM_ENT_TYPE_SOURCE,
MEM2MEM_ENT_TYPE_SINK,
MEM2MEM_ENT_TYPE_PROC
};
static const char * const m2m_entity_name[] = {
"source",
"sink",
"proc"
};
/**
* struct v4l2_m2m_dev - per-device context
* @source: &struct media_entity pointer with the source entity
* Used only when the M2M device is registered via
* v4l2_m2m_unregister_media_controller().
* @source_pad: &struct media_pad with the source pad.
* Used only when the M2M device is registered via
* v4l2_m2m_unregister_media_controller().
* @sink: &struct media_entity pointer with the sink entity
* Used only when the M2M device is registered via
* v4l2_m2m_unregister_media_controller().
* @sink_pad: &struct media_pad with the sink pad.
* Used only when the M2M device is registered via
* v4l2_m2m_unregister_media_controller().
* @proc: &struct media_entity pointer with the M2M device itself.
* @proc_pads: &struct media_pad with the @proc pads.
* Used only when the M2M device is registered via
* v4l2_m2m_unregister_media_controller().
* @intf_devnode: &struct media_intf devnode pointer with the interface
* with controls the M2M device.
* @curr_ctx: currently running instance
* @job_queue: instances queued to run
* @job_spinlock: protects job_queue
* @job_work: worker to run queued jobs.
* @m2m_ops: driver callbacks
*/
struct v4l2_m2m_dev {
struct v4l2_m2m_ctx *curr_ctx;
#ifdef CONFIG_MEDIA_CONTROLLER
struct media_entity *source;
struct media_pad source_pad;
struct media_entity sink;
struct media_pad sink_pad;
struct media_entity proc;
struct media_pad proc_pads[2];
struct media_intf_devnode *intf_devnode;
#endif
struct list_head job_queue;
spinlock_t job_spinlock;
struct work_struct job_work;
const struct v4l2_m2m_ops *m2m_ops;
};
static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx,
enum v4l2_buf_type type)
{
if (V4L2_TYPE_IS_OUTPUT(type))
return &m2m_ctx->out_q_ctx;
else
return &m2m_ctx->cap_q_ctx;
}
struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
enum v4l2_buf_type type)
{
struct v4l2_m2m_queue_ctx *q_ctx;
q_ctx = get_queue_ctx(m2m_ctx, type);
if (!q_ctx)
return NULL;
return &q_ctx->q;
}
EXPORT_SYMBOL(v4l2_m2m_get_vq);
void *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
{
struct v4l2_m2m_buffer *b;
unsigned long flags;
spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
if (list_empty(&q_ctx->rdy_queue)) {
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
return NULL;
}
b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
return &b->vb;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf);
void *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
{
struct v4l2_m2m_buffer *b;
unsigned long flags;
spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
if (list_empty(&q_ctx->rdy_queue)) {
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
return NULL;
}
b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
return &b->vb;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf);
void *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
{
struct v4l2_m2m_buffer *b;
unsigned long flags;
spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
if (list_empty(&q_ctx->rdy_queue)) {
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
return NULL;
}
b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
list_del(&b->list);
q_ctx->num_rdy--;
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
return &b->vb;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove);
void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
struct vb2_v4l2_buffer *vbuf)
{
struct v4l2_m2m_buffer *b;
unsigned long flags;
spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
b = container_of(vbuf, struct v4l2_m2m_buffer, vb);
list_del(&b->list);
q_ctx->num_rdy--;
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf);
struct vb2_v4l2_buffer *
v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx)
{
struct v4l2_m2m_buffer *b, *tmp;
struct vb2_v4l2_buffer *ret = NULL;
unsigned long flags;
spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) {
if (b->vb.vb2_buf.index == idx) {
list_del(&b->list);
q_ctx->num_rdy--;
ret = &b->vb;
break;
}
}
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx);
/*
* Scheduling handlers
*/
void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
{
unsigned long flags;
void *ret = NULL;
spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
if (m2m_dev->curr_ctx)
ret = m2m_dev->curr_ctx->priv;
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
return ret;
}
EXPORT_SYMBOL(v4l2_m2m_get_curr_priv);
/**
* v4l2_m2m_try_run() - select next job to perform and run it if possible
* @m2m_dev: per-device context
*
* Get next transaction (if present) from the waiting jobs list and run it.
*
* Note that this function can run on a given v4l2_m2m_ctx context,
* but call .device_run for another context.
*/
static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev)
{
unsigned long flags;
spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
if (NULL != m2m_dev->curr_ctx) {
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
dprintk("Another instance is running, won't run now\n");
return;
}
if (list_empty(&m2m_dev->job_queue)) {
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
dprintk("No job pending\n");
return;
}
m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue,
struct v4l2_m2m_ctx, queue);
m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING;
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx);
m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv);
}
/*
* __v4l2_m2m_try_queue() - queue a job
* @m2m_dev: m2m device
* @m2m_ctx: m2m context
*
* Check if this context is ready to queue a job.
*
* This function can run in interrupt context.
*/
static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev,
struct v4l2_m2m_ctx *m2m_ctx)
{
unsigned long flags_job, flags_out, flags_cap;
dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx);
if (!m2m_ctx->out_q_ctx.q.streaming
|| !m2m_ctx->cap_q_ctx.q.streaming) {
dprintk("Streaming needs to be on for both queues\n");
return;
}
spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
/* If the context is aborted then don't schedule it */
if (m2m_ctx->job_flags & TRANS_ABORT) {
dprintk("Aborted context\n");
goto job_unlock;
}
if (m2m_ctx->job_flags & TRANS_QUEUED) {
dprintk("On job queue already\n");
goto job_unlock;
}
spin_lock_irqsave(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
if (list_empty(&m2m_ctx->out_q_ctx.rdy_queue)
&& !m2m_ctx->out_q_ctx.buffered) {
dprintk("No input buffers available\n");
goto out_unlock;
}
spin_lock_irqsave(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
if (list_empty(&m2m_ctx->cap_q_ctx.rdy_queue)
&& !m2m_ctx->cap_q_ctx.buffered) {
dprintk("No output buffers available\n");
goto cap_unlock;
}
spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
if (m2m_dev->m2m_ops->job_ready
&& (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) {
dprintk("Driver not ready\n");
goto job_unlock;
}
list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue);
m2m_ctx->job_flags |= TRANS_QUEUED;
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
return;
cap_unlock:
spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
out_unlock:
spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
job_unlock:
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
}
/**
* v4l2_m2m_try_schedule() - schedule and possibly run a job for any context
* @m2m_ctx: m2m context
*
* Check if this context is ready to queue a job. If suitable,
* run the next queued job on the mem2mem device.
*
* This function shouldn't run in interrupt context.
*
* Note that v4l2_m2m_try_schedule() can schedule one job for this context,
* and then run another job for another context.
*/
void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
{
struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev;
__v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
v4l2_m2m_try_run(m2m_dev);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule);
/**
* v4l2_m2m_device_run_work() - run pending jobs for the context
* @work: Work structure used for scheduling the execution of this function.
*/
static void v4l2_m2m_device_run_work(struct work_struct *work)
{
struct v4l2_m2m_dev *m2m_dev =
container_of(work, struct v4l2_m2m_dev, job_work);
v4l2_m2m_try_run(m2m_dev);
}
/**
* v4l2_m2m_cancel_job() - cancel pending jobs for the context
* @m2m_ctx: m2m context with jobs to be canceled
*
* In case of streamoff or release called on any context,
* 1] If the context is currently running, then abort job will be called
* 2] If the context is queued, then the context will be removed from
* the job_queue
*/
static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx)
{
struct v4l2_m2m_dev *m2m_dev;
unsigned long flags;
m2m_dev = m2m_ctx->m2m_dev;
spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
m2m_ctx->job_flags |= TRANS_ABORT;
if (m2m_ctx->job_flags & TRANS_RUNNING) {
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
if (m2m_dev->m2m_ops->job_abort)
m2m_dev->m2m_ops->job_abort(m2m_ctx->priv);
dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx);
wait_event(m2m_ctx->finished,
!(m2m_ctx->job_flags & TRANS_RUNNING));
} else if (m2m_ctx->job_flags & TRANS_QUEUED) {
list_del(&m2m_ctx->queue);
m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
dprintk("m2m_ctx: %p had been on queue and was removed\n",
m2m_ctx);
} else {
/* Do nothing, was not on queue/running */
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
}
}
void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
struct v4l2_m2m_ctx *m2m_ctx)
{
unsigned long flags;
spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) {
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
dprintk("Called by an instance not currently running\n");
return;
}
list_del(&m2m_dev->curr_ctx->queue);
m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
wake_up(&m2m_dev->curr_ctx->finished);
m2m_dev->curr_ctx = NULL;
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
/* This instance might have more buffers ready, but since we do not
* allow more than one job on the job_queue per instance, each has
* to be scheduled separately after the previous one finishes. */
__v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
/* We might be running in atomic context,
* but the job must be run in non-atomic context.
*/
schedule_work(&m2m_dev->job_work);
}
EXPORT_SYMBOL(v4l2_m2m_job_finish);
int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_requestbuffers *reqbufs)
{
struct vb2_queue *vq;
int ret;
vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type);
ret = vb2_reqbufs(vq, reqbufs);
/* If count == 0, then the owner has released all buffers and he
is no longer owner of the queue. Otherwise we have an owner. */
if (ret == 0)
vq->owner = reqbufs->count ? file->private_data : NULL;
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs);
int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_buffer *buf)
{
struct vb2_queue *vq;
int ret = 0;
unsigned int i;
vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
ret = vb2_querybuf(vq, buf);
/* Adjust MMAP memory offsets for the CAPTURE queue */
if (buf->memory == V4L2_MEMORY_MMAP && !V4L2_TYPE_IS_OUTPUT(vq->type)) {
if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) {
for (i = 0; i < buf->length; ++i)
buf->m.planes[i].m.mem_offset
+= DST_QUEUE_OFF_BASE;
} else {
buf->m.offset += DST_QUEUE_OFF_BASE;
}
}
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf);
int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_buffer *buf)
{
struct video_device *vdev = video_devdata(file);
struct vb2_queue *vq;
int ret;
vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
if (!V4L2_TYPE_IS_OUTPUT(vq->type) &&
(buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) {
dprintk("%s: requests cannot be used with capture buffers\n",
__func__);
return -EPERM;
}
ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf);
if (!ret && !(buf->flags & V4L2_BUF_FLAG_IN_REQUEST))
v4l2_m2m_try_schedule(m2m_ctx);
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf);
int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_buffer *buf)
{
struct vb2_queue *vq;
vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf);
int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_buffer *buf)
{
struct video_device *vdev = video_devdata(file);
struct vb2_queue *vq;
vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
return vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf);
int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_create_buffers *create)
{
struct vb2_queue *vq;
vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type);
return vb2_create_bufs(vq, create);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs);
int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_exportbuffer *eb)
{
struct vb2_queue *vq;
vq = v4l2_m2m_get_vq(m2m_ctx, eb->type);
return vb2_expbuf(vq, eb);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf);
int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
enum v4l2_buf_type type)
{
struct vb2_queue *vq;
int ret;
vq = v4l2_m2m_get_vq(m2m_ctx, type);
ret = vb2_streamon(vq, type);
if (!ret)
v4l2_m2m_try_schedule(m2m_ctx);
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_streamon);
int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
enum v4l2_buf_type type)
{
struct v4l2_m2m_dev *m2m_dev;
struct v4l2_m2m_queue_ctx *q_ctx;
unsigned long flags_job, flags;
int ret;
/* wait until the current context is dequeued from job_queue */
v4l2_m2m_cancel_job(m2m_ctx);
q_ctx = get_queue_ctx(m2m_ctx, type);
ret = vb2_streamoff(&q_ctx->q, type);
if (ret)
return ret;
m2m_dev = m2m_ctx->m2m_dev;
spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
/* We should not be scheduled anymore, since we're dropping a queue. */
if (m2m_ctx->job_flags & TRANS_QUEUED)
list_del(&m2m_ctx->queue);
m2m_ctx->job_flags = 0;
spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
/* Drop queue, since streamoff returns device to the same state as after
* calling reqbufs. */
INIT_LIST_HEAD(&q_ctx->rdy_queue);
q_ctx->num_rdy = 0;
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
if (m2m_dev->curr_ctx == m2m_ctx) {
m2m_dev->curr_ctx = NULL;
wake_up(&m2m_ctx->finished);
}
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff);
__poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct poll_table_struct *wait)
{
struct video_device *vfd = video_devdata(file);
__poll_t req_events = poll_requested_events(wait);
struct vb2_queue *src_q, *dst_q;
struct vb2_buffer *src_vb = NULL, *dst_vb = NULL;
__poll_t rc = 0;
unsigned long flags;
if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
struct v4l2_fh *fh = file->private_data;
if (v4l2_event_pending(fh))
rc = EPOLLPRI;
else if (req_events & EPOLLPRI)
poll_wait(file, &fh->wait, wait);
if (!(req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM)))
return rc;
}
src_q = v4l2_m2m_get_src_vq(m2m_ctx);
dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
/*
* There has to be at least one buffer queued on each queued_list, which
* means either in driver already or waiting for driver to claim it
* and start processing.
*/
if ((!src_q->streaming || list_empty(&src_q->queued_list))
&& (!dst_q->streaming || list_empty(&dst_q->queued_list))) {
rc |= EPOLLERR;
goto end;
}
spin_lock_irqsave(&src_q->done_lock, flags);
if (list_empty(&src_q->done_list))
poll_wait(file, &src_q->done_wq, wait);
spin_unlock_irqrestore(&src_q->done_lock, flags);
spin_lock_irqsave(&dst_q->done_lock, flags);
if (list_empty(&dst_q->done_list)) {
/*
* If the last buffer was dequeued from the capture queue,
* return immediately. DQBUF will return -EPIPE.
*/
if (dst_q->last_buffer_dequeued) {
spin_unlock_irqrestore(&dst_q->done_lock, flags);
return rc | EPOLLIN | EPOLLRDNORM;
}
poll_wait(file, &dst_q->done_wq, wait);
}
spin_unlock_irqrestore(&dst_q->done_lock, flags);
spin_lock_irqsave(&src_q->done_lock, flags);
if (!list_empty(&src_q->done_list))
src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer,
done_entry);
if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE
|| src_vb->state == VB2_BUF_STATE_ERROR))
rc |= EPOLLOUT | EPOLLWRNORM;
spin_unlock_irqrestore(&src_q->done_lock, flags);
spin_lock_irqsave(&dst_q->done_lock, flags);
if (!list_empty(&dst_q->done_list))
dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer,
done_entry);
if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE
|| dst_vb->state == VB2_BUF_STATE_ERROR))
rc |= EPOLLIN | EPOLLRDNORM;
spin_unlock_irqrestore(&dst_q->done_lock, flags);
end:
return rc;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_poll);
int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct vm_area_struct *vma)
{
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
struct vb2_queue *vq;
if (offset < DST_QUEUE_OFF_BASE) {
vq = v4l2_m2m_get_src_vq(m2m_ctx);
} else {
vq = v4l2_m2m_get_dst_vq(m2m_ctx);
vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
}
return vb2_mmap(vq, vma);
}
EXPORT_SYMBOL(v4l2_m2m_mmap);
#if defined(CONFIG_MEDIA_CONTROLLER)
void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
{
media_remove_intf_links(&m2m_dev->intf_devnode->intf);
media_devnode_remove(m2m_dev->intf_devnode);
media_entity_remove_links(m2m_dev->source);
media_entity_remove_links(&m2m_dev->sink);
media_entity_remove_links(&m2m_dev->proc);
media_device_unregister_entity(m2m_dev->source);
media_device_unregister_entity(&m2m_dev->sink);
media_device_unregister_entity(&m2m_dev->proc);
kfree(m2m_dev->source->name);
kfree(m2m_dev->sink.name);
kfree(m2m_dev->proc.name);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller);
static int v4l2_m2m_register_entity(struct media_device *mdev,
struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type,
struct video_device *vdev, int function)
{
struct media_entity *entity;
struct media_pad *pads;
char *name;
unsigned int len;
int num_pads;
int ret;
switch (type) {
case MEM2MEM_ENT_TYPE_SOURCE:
entity = m2m_dev->source;
pads = &m2m_dev->source_pad;
pads[0].flags = MEDIA_PAD_FL_SOURCE;
num_pads = 1;
break;
case MEM2MEM_ENT_TYPE_SINK:
entity = &m2m_dev->sink;
pads = &m2m_dev->sink_pad;
pads[0].flags = MEDIA_PAD_FL_SINK;
num_pads = 1;
break;
case MEM2MEM_ENT_TYPE_PROC:
entity = &m2m_dev->proc;
pads = m2m_dev->proc_pads;
pads[0].flags = MEDIA_PAD_FL_SINK;
pads[1].flags = MEDIA_PAD_FL_SOURCE;
num_pads = 2;
break;
default:
return -EINVAL;
}
entity->obj_type = MEDIA_ENTITY_TYPE_BASE;
if (type != MEM2MEM_ENT_TYPE_PROC) {
entity->info.dev.major = VIDEO_MAJOR;
entity->info.dev.minor = vdev->minor;
}
len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]);
name = kmalloc(len, GFP_KERNEL);
if (!name)
return -ENOMEM;
snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]);
entity->name = name;
entity->function = function;
ret = media_entity_pads_init(entity, num_pads, pads);
if (ret)
return ret;
ret = media_device_register_entity(mdev, entity);
if (ret)
return ret;
return 0;
}
int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
struct video_device *vdev, int function)
{
struct media_device *mdev = vdev->v4l2_dev->mdev;
struct media_link *link;
int ret;
if (!mdev)
return 0;
/* A memory-to-memory device consists in two
* DMA engine and one video processing entities.
* The DMA engine entities are linked to a V4L interface
*/
/* Create the three entities with their pads */
m2m_dev->source = &vdev->entity;
ret = v4l2_m2m_register_entity(mdev, m2m_dev,
MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L);
if (ret)
return ret;
ret = v4l2_m2m_register_entity(mdev, m2m_dev,
MEM2MEM_ENT_TYPE_PROC, vdev, function);
if (ret)
goto err_rel_entity0;
ret = v4l2_m2m_register_entity(mdev, m2m_dev,
MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L);
if (ret)
goto err_rel_entity1;
/* Connect the three entities */
ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 1,
MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
if (ret)
goto err_rel_entity2;
ret = media_create_pad_link(&m2m_dev->proc, 0, &m2m_dev->sink, 0,
MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
if (ret)
goto err_rm_links0;
/* Create video interface */
m2m_dev->intf_devnode = media_devnode_create(mdev,
MEDIA_INTF_T_V4L_VIDEO, 0,
VIDEO_MAJOR, vdev->minor);
if (!m2m_dev->intf_devnode) {
ret = -ENOMEM;
goto err_rm_links1;
}
/* Connect the two DMA engines to the interface */
link = media_create_intf_link(m2m_dev->source,
&m2m_dev->intf_devnode->intf,
MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
if (!link) {
ret = -ENOMEM;
goto err_rm_devnode;
}
link = media_create_intf_link(&m2m_dev->sink,
&m2m_dev->intf_devnode->intf,
MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
if (!link) {
ret = -ENOMEM;
goto err_rm_intf_link;
}
return 0;
err_rm_intf_link:
media_remove_intf_links(&m2m_dev->intf_devnode->intf);
err_rm_devnode:
media_devnode_remove(m2m_dev->intf_devnode);
err_rm_links1:
media_entity_remove_links(&m2m_dev->sink);
err_rm_links0:
media_entity_remove_links(&m2m_dev->proc);
media_entity_remove_links(m2m_dev->source);
err_rel_entity2:
media_device_unregister_entity(&m2m_dev->proc);
kfree(m2m_dev->proc.name);
err_rel_entity1:
media_device_unregister_entity(&m2m_dev->sink);
kfree(m2m_dev->sink.name);
err_rel_entity0:
media_device_unregister_entity(m2m_dev->source);
kfree(m2m_dev->source->name);
return ret;
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller);
#endif
struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
{
struct v4l2_m2m_dev *m2m_dev;
if (!m2m_ops || WARN_ON(!m2m_ops->device_run))
return ERR_PTR(-EINVAL);
m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL);
if (!m2m_dev)
return ERR_PTR(-ENOMEM);
m2m_dev->curr_ctx = NULL;
m2m_dev->m2m_ops = m2m_ops;
INIT_LIST_HEAD(&m2m_dev->job_queue);
spin_lock_init(&m2m_dev->job_spinlock);
INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work);
return m2m_dev;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_init);
void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
{
kfree(m2m_dev);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_release);
struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
void *drv_priv,
int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq))
{
struct v4l2_m2m_ctx *m2m_ctx;
struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx;
int ret;
m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL);
if (!m2m_ctx)
return ERR_PTR(-ENOMEM);
m2m_ctx->priv = drv_priv;
m2m_ctx->m2m_dev = m2m_dev;
init_waitqueue_head(&m2m_ctx->finished);
out_q_ctx = &m2m_ctx->out_q_ctx;
cap_q_ctx = &m2m_ctx->cap_q_ctx;
INIT_LIST_HEAD(&out_q_ctx->rdy_queue);
INIT_LIST_HEAD(&cap_q_ctx->rdy_queue);
spin_lock_init(&out_q_ctx->rdy_spinlock);
spin_lock_init(&cap_q_ctx->rdy_spinlock);
INIT_LIST_HEAD(&m2m_ctx->queue);
ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q);
if (ret)
goto err;
/*
* Both queues should use same the mutex to lock the m2m context.
* This lock is used in some v4l2_m2m_* helpers.
*/
if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) {
ret = -EINVAL;
goto err;
}
m2m_ctx->q_lock = out_q_ctx->q.lock;
return m2m_ctx;
err:
kfree(m2m_ctx);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init);
void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
{
/* wait until the current context is dequeued from job_queue */
v4l2_m2m_cancel_job(m2m_ctx);
vb2_queue_release(&m2m_ctx->cap_q_ctx.q);
vb2_queue_release(&m2m_ctx->out_q_ctx.q);
kfree(m2m_ctx);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release);
void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
struct vb2_v4l2_buffer *vbuf)
{
struct v4l2_m2m_buffer *b = container_of(vbuf,
struct v4l2_m2m_buffer, vb);
struct v4l2_m2m_queue_ctx *q_ctx;
unsigned long flags;
q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type);
if (!q_ctx)
return;
spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
list_add_tail(&b->list, &q_ctx->rdy_queue);
q_ctx->num_rdy++;
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue);
void v4l2_m2m_request_queue(struct media_request *req)
{
struct media_request_object *obj, *obj_safe;
struct v4l2_m2m_ctx *m2m_ctx = NULL;
/*
* Queue all objects. Note that buffer objects are at the end of the
* objects list, after all other object types. Once buffer objects
* are queued, the driver might delete them immediately (if the driver
* processes the buffer at once), so we have to use
* list_for_each_entry_safe() to handle the case where the object we
* queue is deleted.
*/
list_for_each_entry_safe(obj, obj_safe, &req->objects, list) {
struct v4l2_m2m_ctx *m2m_ctx_obj;
struct vb2_buffer *vb;
if (!obj->ops->queue)
continue;
if (vb2_request_object_is_buffer(obj)) {
/* Sanity checks */
vb = container_of(obj, struct vb2_buffer, req_obj);
WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type));
m2m_ctx_obj = container_of(vb->vb2_queue,
struct v4l2_m2m_ctx,
out_q_ctx.q);
WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx);
m2m_ctx = m2m_ctx_obj;
}
/*
* The buffer we queue here can in theory be immediately
* unbound, hence the use of list_for_each_entry_safe()
* above and why we call the queue op last.
*/
obj->ops->queue(obj);
}
WARN_ON(!m2m_ctx);
if (m2m_ctx)
v4l2_m2m_try_schedule(m2m_ctx);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue);
/* Videobuf2 ioctl helpers */
int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
struct v4l2_requestbuffers *rb)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs);
int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv,
struct v4l2_create_buffers *create)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs);
int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv,
struct v4l2_buffer *buf)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf);
int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv,
struct v4l2_buffer *buf)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf);
int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv,
struct v4l2_buffer *buf)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf);
int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv,
struct v4l2_buffer *buf)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf);
int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv,
struct v4l2_exportbuffer *eb)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf);
int v4l2_m2m_ioctl_streamon(struct file *file, void *priv,
enum v4l2_buf_type type)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_streamon(file, fh->m2m_ctx, type);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon);
int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv,
enum v4l2_buf_type type)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_streamoff(file, fh->m2m_ctx, type);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff);
/*
* v4l2_file_operations helpers. It is assumed here same lock is used
* for the output and the capture buffer queue.
*/
int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_mmap(file, fh->m2m_ctx, vma);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap);
__poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait)
{
struct v4l2_fh *fh = file->private_data;
struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx;
__poll_t ret;
if (m2m_ctx->q_lock)
mutex_lock(m2m_ctx->q_lock);
ret = v4l2_m2m_poll(file, m2m_ctx, wait);
if (m2m_ctx->q_lock)
mutex_unlock(m2m_ctx->q_lock);
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);