linux/drivers/pwm/pwm-omap-dmtimer.c
Uwe Kleine-König faaa222221 pwm: omap-dmtimer: Don't check the return code of pwmchip_remove()
pwmchip_remove() returns always 0. Don't use the value to make it
possible to eventually change the function to return void. Also the
driver core ignores the return value of pwm_omap_dmtimer_remove()
and considers the device removed anyhow. So returning early results
in a resource leak.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2021-09-02 21:38:52 +02:00

483 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015 Neil Armstrong <narmstrong@baylibre.com>
* Copyright (c) 2014 Joachim Eastwood <manabian@gmail.com>
* Copyright (c) 2012 NeilBrown <neilb@suse.de>
* Heavily based on earlier code which is:
* Copyright (c) 2010 Grant Erickson <marathon96@gmail.com>
*
* Also based on pwm-samsung.c
*
* Description:
* This file is the core OMAP support for the generic, Linux
* PWM driver / controller, using the OMAP's dual-mode timers
* with a timer counter that goes up. When it overflows it gets
* reloaded with the load value and the pwm output goes up.
* When counter matches with match register, the output goes down.
* Reference Manual: https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf
*
* Limitations:
* - When PWM is stopped, timer counter gets stopped immediately. This
* doesn't allow the current PWM period to complete and stops abruptly.
* - When PWM is running and changing both duty cycle and period,
* we cannot prevent in software that the output might produce
* a period with mixed settings. Especially when period/duty_cyle
* is updated while the pwm pin is high, current pwm period/duty_cycle
* can get updated as below based on the current timer counter:
* - period for current cycle = current_period + new period
* - duty_cycle for current period = current period + new duty_cycle.
* - PWM OMAP DM timer cannot change the polarity when pwm is active. When
* user requests a change in polarity when in active state:
* - PWM is stopped abruptly(without completing the current cycle)
* - Polarity is changed
* - A fresh cycle is started.
*/
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <clocksource/timer-ti-dm.h>
#include <linux/platform_data/dmtimer-omap.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/pwm.h>
#include <linux/slab.h>
#include <linux/time.h>
#define DM_TIMER_LOAD_MIN 0xfffffffe
#define DM_TIMER_MAX 0xffffffff
/**
* struct pwm_omap_dmtimer_chip - Structure representing a pwm chip
* corresponding to omap dmtimer.
* @chip: PWM chip structure representing PWM controller
* @mutex: Mutex to protect pwm apply state
* @dm_timer: Pointer to omap dm timer.
* @pdata: Pointer to omap dm timer ops.
* @dm_timer_pdev: Pointer to omap dm timer platform device
*/
struct pwm_omap_dmtimer_chip {
struct pwm_chip chip;
/* Mutex to protect pwm apply state */
struct mutex mutex;
struct omap_dm_timer *dm_timer;
const struct omap_dm_timer_ops *pdata;
struct platform_device *dm_timer_pdev;
};
static inline struct pwm_omap_dmtimer_chip *
to_pwm_omap_dmtimer_chip(struct pwm_chip *chip)
{
return container_of(chip, struct pwm_omap_dmtimer_chip, chip);
}
/**
* pwm_omap_dmtimer_get_clock_cycles() - Get clock cycles in a time frame
* @clk_rate: pwm timer clock rate
* @ns: time frame in nano seconds.
*
* Return number of clock cycles in a given period(ins ns).
*/
static u32 pwm_omap_dmtimer_get_clock_cycles(unsigned long clk_rate, int ns)
{
return DIV_ROUND_CLOSEST_ULL((u64)clk_rate * ns, NSEC_PER_SEC);
}
/**
* pwm_omap_dmtimer_start() - Start the pwm omap dm timer in pwm mode
* @omap: Pointer to pwm omap dm timer chip
*/
static void pwm_omap_dmtimer_start(struct pwm_omap_dmtimer_chip *omap)
{
/*
* According to OMAP 4 TRM section 22.2.4.10 the counter should be
* started at 0xFFFFFFFE when overflow and match is used to ensure
* that the PWM line is toggled on the first event.
*
* Note that omap_dm_timer_enable/disable is for register access and
* not the timer counter itself.
*/
omap->pdata->enable(omap->dm_timer);
omap->pdata->write_counter(omap->dm_timer, DM_TIMER_LOAD_MIN);
omap->pdata->disable(omap->dm_timer);
omap->pdata->start(omap->dm_timer);
}
/**
* pwm_omap_dmtimer_is_enabled() - Detect if the pwm is enabled.
* @omap: Pointer to pwm omap dm timer chip
*
* Return true if pwm is enabled else false.
*/
static bool pwm_omap_dmtimer_is_enabled(struct pwm_omap_dmtimer_chip *omap)
{
u32 status;
status = omap->pdata->get_pwm_status(omap->dm_timer);
return !!(status & OMAP_TIMER_CTRL_ST);
}
/**
* pwm_omap_dmtimer_polarity() - Detect the polarity of pwm.
* @omap: Pointer to pwm omap dm timer chip
*
* Return the polarity of pwm.
*/
static int pwm_omap_dmtimer_polarity(struct pwm_omap_dmtimer_chip *omap)
{
u32 status;
status = omap->pdata->get_pwm_status(omap->dm_timer);
return !!(status & OMAP_TIMER_CTRL_SCPWM);
}
/**
* pwm_omap_dmtimer_config() - Update the configuration of pwm omap dm timer
* @chip: Pointer to PWM controller
* @pwm: Pointer to PWM channel
* @duty_ns: New duty cycle in nano seconds
* @period_ns: New period in nano seconds
*
* Return 0 if successfully changed the period/duty_cycle else appropriate
* error.
*/
static int pwm_omap_dmtimer_config(struct pwm_chip *chip,
struct pwm_device *pwm,
int duty_ns, int period_ns)
{
struct pwm_omap_dmtimer_chip *omap = to_pwm_omap_dmtimer_chip(chip);
u32 period_cycles, duty_cycles;
u32 load_value, match_value;
unsigned long clk_rate;
struct clk *fclk;
dev_dbg(chip->dev, "requested duty cycle: %d ns, period: %d ns\n",
duty_ns, period_ns);
if (duty_ns == pwm_get_duty_cycle(pwm) &&
period_ns == pwm_get_period(pwm))
return 0;
fclk = omap->pdata->get_fclk(omap->dm_timer);
if (!fclk) {
dev_err(chip->dev, "invalid pmtimer fclk\n");
return -EINVAL;
}
clk_rate = clk_get_rate(fclk);
if (!clk_rate) {
dev_err(chip->dev, "invalid pmtimer fclk rate\n");
return -EINVAL;
}
dev_dbg(chip->dev, "clk rate: %luHz\n", clk_rate);
/*
* Calculate the appropriate load and match values based on the
* specified period and duty cycle. The load value determines the
* period time and the match value determines the duty time.
*
* The period lasts for (DM_TIMER_MAX-load_value+1) clock cycles.
* Similarly, the active time lasts (match_value-load_value+1) cycles.
* The non-active time is the remainder: (DM_TIMER_MAX-match_value)
* clock cycles.
*
* NOTE: It is required that: load_value <= match_value < DM_TIMER_MAX
*
* References:
* OMAP4430/60/70 TRM sections 22.2.4.10 and 22.2.4.11
* AM335x Sitara TRM sections 20.1.3.5 and 20.1.3.6
*/
period_cycles = pwm_omap_dmtimer_get_clock_cycles(clk_rate, period_ns);
duty_cycles = pwm_omap_dmtimer_get_clock_cycles(clk_rate, duty_ns);
if (period_cycles < 2) {
dev_info(chip->dev,
"period %d ns too short for clock rate %lu Hz\n",
period_ns, clk_rate);
return -EINVAL;
}
if (duty_cycles < 1) {
dev_dbg(chip->dev,
"duty cycle %d ns is too short for clock rate %lu Hz\n",
duty_ns, clk_rate);
dev_dbg(chip->dev, "using minimum of 1 clock cycle\n");
duty_cycles = 1;
} else if (duty_cycles >= period_cycles) {
dev_dbg(chip->dev,
"duty cycle %d ns is too long for period %d ns at clock rate %lu Hz\n",
duty_ns, period_ns, clk_rate);
dev_dbg(chip->dev, "using maximum of 1 clock cycle less than period\n");
duty_cycles = period_cycles - 1;
}
dev_dbg(chip->dev, "effective duty cycle: %lld ns, period: %lld ns\n",
DIV_ROUND_CLOSEST_ULL((u64)NSEC_PER_SEC * duty_cycles,
clk_rate),
DIV_ROUND_CLOSEST_ULL((u64)NSEC_PER_SEC * period_cycles,
clk_rate));
load_value = (DM_TIMER_MAX - period_cycles) + 1;
match_value = load_value + duty_cycles - 1;
omap->pdata->set_load(omap->dm_timer, load_value);
omap->pdata->set_match(omap->dm_timer, true, match_value);
dev_dbg(chip->dev, "load value: %#08x (%d), match value: %#08x (%d)\n",
load_value, load_value, match_value, match_value);
return 0;
}
/**
* pwm_omap_dmtimer_set_polarity() - Changes the polarity of the pwm dm timer.
* @chip: Pointer to PWM controller
* @pwm: Pointer to PWM channel
* @polarity: New pwm polarity to be set
*/
static void pwm_omap_dmtimer_set_polarity(struct pwm_chip *chip,
struct pwm_device *pwm,
enum pwm_polarity polarity)
{
struct pwm_omap_dmtimer_chip *omap = to_pwm_omap_dmtimer_chip(chip);
bool enabled;
/* Disable the PWM before changing the polarity. */
enabled = pwm_omap_dmtimer_is_enabled(omap);
if (enabled)
omap->pdata->stop(omap->dm_timer);
omap->pdata->set_pwm(omap->dm_timer,
polarity == PWM_POLARITY_INVERSED,
true, OMAP_TIMER_TRIGGER_OVERFLOW_AND_COMPARE,
true);
if (enabled)
pwm_omap_dmtimer_start(omap);
}
/**
* pwm_omap_dmtimer_apply() - Changes the state of the pwm omap dm timer.
* @chip: Pointer to PWM controller
* @pwm: Pointer to PWM channel
* @state: New state to apply
*
* Return 0 if successfully changed the state else appropriate error.
*/
static int pwm_omap_dmtimer_apply(struct pwm_chip *chip,
struct pwm_device *pwm,
const struct pwm_state *state)
{
struct pwm_omap_dmtimer_chip *omap = to_pwm_omap_dmtimer_chip(chip);
int ret = 0;
mutex_lock(&omap->mutex);
if (pwm_omap_dmtimer_is_enabled(omap) && !state->enabled) {
omap->pdata->stop(omap->dm_timer);
goto unlock_mutex;
}
if (pwm_omap_dmtimer_polarity(omap) != state->polarity)
pwm_omap_dmtimer_set_polarity(chip, pwm, state->polarity);
ret = pwm_omap_dmtimer_config(chip, pwm, state->duty_cycle,
state->period);
if (ret)
goto unlock_mutex;
if (!pwm_omap_dmtimer_is_enabled(omap) && state->enabled) {
omap->pdata->set_pwm(omap->dm_timer,
state->polarity == PWM_POLARITY_INVERSED,
true,
OMAP_TIMER_TRIGGER_OVERFLOW_AND_COMPARE,
true);
pwm_omap_dmtimer_start(omap);
}
unlock_mutex:
mutex_unlock(&omap->mutex);
return ret;
}
static const struct pwm_ops pwm_omap_dmtimer_ops = {
.apply = pwm_omap_dmtimer_apply,
.owner = THIS_MODULE,
};
static int pwm_omap_dmtimer_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct dmtimer_platform_data *timer_pdata;
const struct omap_dm_timer_ops *pdata;
struct platform_device *timer_pdev;
struct pwm_omap_dmtimer_chip *omap;
struct omap_dm_timer *dm_timer;
struct device_node *timer;
int ret = 0;
u32 v;
timer = of_parse_phandle(np, "ti,timers", 0);
if (!timer)
return -ENODEV;
timer_pdev = of_find_device_by_node(timer);
if (!timer_pdev) {
dev_err(&pdev->dev, "Unable to find Timer pdev\n");
ret = -ENODEV;
goto err_find_timer_pdev;
}
timer_pdata = dev_get_platdata(&timer_pdev->dev);
if (!timer_pdata) {
dev_dbg(&pdev->dev,
"dmtimer pdata structure NULL, deferring probe\n");
ret = -EPROBE_DEFER;
goto err_platdata;
}
pdata = timer_pdata->timer_ops;
if (!pdata || !pdata->request_by_node ||
!pdata->free ||
!pdata->enable ||
!pdata->disable ||
!pdata->get_fclk ||
!pdata->start ||
!pdata->stop ||
!pdata->set_load ||
!pdata->set_match ||
!pdata->set_pwm ||
!pdata->get_pwm_status ||
!pdata->set_prescaler ||
!pdata->write_counter) {
dev_err(&pdev->dev, "Incomplete dmtimer pdata structure\n");
ret = -EINVAL;
goto err_platdata;
}
if (!of_get_property(timer, "ti,timer-pwm", NULL)) {
dev_err(&pdev->dev, "Missing ti,timer-pwm capability\n");
ret = -ENODEV;
goto err_timer_property;
}
dm_timer = pdata->request_by_node(timer);
if (!dm_timer) {
ret = -EPROBE_DEFER;
goto err_request_timer;
}
omap = devm_kzalloc(&pdev->dev, sizeof(*omap), GFP_KERNEL);
if (!omap) {
ret = -ENOMEM;
goto err_alloc_omap;
}
omap->pdata = pdata;
omap->dm_timer = dm_timer;
omap->dm_timer_pdev = timer_pdev;
/*
* Ensure that the timer is stopped before we allow PWM core to call
* pwm_enable.
*/
if (pm_runtime_active(&omap->dm_timer_pdev->dev))
omap->pdata->stop(omap->dm_timer);
if (!of_property_read_u32(pdev->dev.of_node, "ti,prescaler", &v))
omap->pdata->set_prescaler(omap->dm_timer, v);
/* setup dmtimer clock source */
if (!of_property_read_u32(pdev->dev.of_node, "ti,clock-source", &v))
omap->pdata->set_source(omap->dm_timer, v);
omap->chip.dev = &pdev->dev;
omap->chip.ops = &pwm_omap_dmtimer_ops;
omap->chip.npwm = 1;
mutex_init(&omap->mutex);
ret = pwmchip_add(&omap->chip);
if (ret < 0) {
dev_err(&pdev->dev, "failed to register PWM\n");
goto err_pwmchip_add;
}
of_node_put(timer);
platform_set_drvdata(pdev, omap);
return 0;
err_pwmchip_add:
/*
* *omap is allocated using devm_kzalloc,
* so no free necessary here
*/
err_alloc_omap:
pdata->free(dm_timer);
err_request_timer:
err_timer_property:
err_platdata:
put_device(&timer_pdev->dev);
err_find_timer_pdev:
of_node_put(timer);
return ret;
}
static int pwm_omap_dmtimer_remove(struct platform_device *pdev)
{
struct pwm_omap_dmtimer_chip *omap = platform_get_drvdata(pdev);
pwmchip_remove(&omap->chip);
if (pm_runtime_active(&omap->dm_timer_pdev->dev))
omap->pdata->stop(omap->dm_timer);
omap->pdata->free(omap->dm_timer);
put_device(&omap->dm_timer_pdev->dev);
mutex_destroy(&omap->mutex);
return 0;
}
static const struct of_device_id pwm_omap_dmtimer_of_match[] = {
{.compatible = "ti,omap-dmtimer-pwm"},
{}
};
MODULE_DEVICE_TABLE(of, pwm_omap_dmtimer_of_match);
static struct platform_driver pwm_omap_dmtimer_driver = {
.driver = {
.name = "omap-dmtimer-pwm",
.of_match_table = of_match_ptr(pwm_omap_dmtimer_of_match),
},
.probe = pwm_omap_dmtimer_probe,
.remove = pwm_omap_dmtimer_remove,
};
module_platform_driver(pwm_omap_dmtimer_driver);
MODULE_AUTHOR("Grant Erickson <marathon96@gmail.com>");
MODULE_AUTHOR("NeilBrown <neilb@suse.de>");
MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("OMAP PWM Driver using Dual-mode Timers");