mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-13 22:14:20 +08:00
d659b715e9
xarray can't support arbitrary page cache size. the largest and supported page cache size is defined as MAX_PAGECACHE_ORDER by commit099d90642a
("mm/filemap: make MAX_PAGECACHE_ORDER acceptable to xarray"). However, it's possible to have 512MB page cache in the huge memory's collapsing path on ARM64 system whose base page size is 64KB. 512MB page cache is breaking the limitation and a warning is raised when the xarray entry is split as shown in the following example. [root@dhcp-10-26-1-207 ~]# cat /proc/1/smaps | grep KernelPageSize KernelPageSize: 64 kB [root@dhcp-10-26-1-207 ~]# cat /tmp/test.c : int main(int argc, char **argv) { const char *filename = TEST_XFS_FILENAME; int fd = 0; void *buf = (void *)-1, *p; int pgsize = getpagesize(); int ret = 0; if (pgsize != 0x10000) { fprintf(stdout, "System with 64KB base page size is required!\n"); return -EPERM; } system("echo 0 > /sys/devices/virtual/bdi/253:0/read_ahead_kb"); system("echo 1 > /proc/sys/vm/drop_caches"); /* Open the xfs file */ fd = open(filename, O_RDONLY); assert(fd > 0); /* Create VMA */ buf = mmap(NULL, TEST_MEM_SIZE, PROT_READ, MAP_SHARED, fd, 0); assert(buf != (void *)-1); fprintf(stdout, "mapped buffer at 0x%p\n", buf); /* Populate VMA */ ret = madvise(buf, TEST_MEM_SIZE, MADV_NOHUGEPAGE); assert(ret == 0); ret = madvise(buf, TEST_MEM_SIZE, MADV_POPULATE_READ); assert(ret == 0); /* Collapse VMA */ ret = madvise(buf, TEST_MEM_SIZE, MADV_HUGEPAGE); assert(ret == 0); ret = madvise(buf, TEST_MEM_SIZE, MADV_COLLAPSE); if (ret) { fprintf(stdout, "Error %d to madvise(MADV_COLLAPSE)\n", errno); goto out; } /* Split xarray entry. Write permission is needed */ munmap(buf, TEST_MEM_SIZE); buf = (void *)-1; close(fd); fd = open(filename, O_RDWR); assert(fd > 0); fallocate(fd, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE, TEST_MEM_SIZE - pgsize, pgsize); out: if (buf != (void *)-1) munmap(buf, TEST_MEM_SIZE); if (fd > 0) close(fd); return ret; } [root@dhcp-10-26-1-207 ~]# gcc /tmp/test.c -o /tmp/test [root@dhcp-10-26-1-207 ~]# /tmp/test ------------[ cut here ]------------ WARNING: CPU: 25 PID: 7560 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128 Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \ nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \ nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \ ip_set rfkill nf_tables nfnetlink vfat fat virtio_balloon drm fuse \ xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 virtio_net \ sha1_ce net_failover virtio_blk virtio_console failover dimlib virtio_mmio CPU: 25 PID: 7560 Comm: test Kdump: loaded Not tainted 6.10.0-rc7-gavin+ #9 Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024 pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--) pc : xas_split_alloc+0xf8/0x128 lr : split_huge_page_to_list_to_order+0x1c4/0x780 sp : ffff8000ac32f660 x29: ffff8000ac32f660 x28: ffff0000e0969eb0 x27: ffff8000ac32f6c0 x26: 0000000000000c40 x25: ffff0000e0969eb0 x24: 000000000000000d x23: ffff8000ac32f6c0 x22: ffffffdfc0700000 x21: 0000000000000000 x20: 0000000000000000 x19: ffffffdfc0700000 x18: 0000000000000000 x17: 0000000000000000 x16: ffffd5f3708ffc70 x15: 0000000000000000 x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 x11: ffffffffffffffc0 x10: 0000000000000040 x9 : ffffd5f3708e692c x8 : 0000000000000003 x7 : 0000000000000000 x6 : ffff0000e0969eb8 x5 : ffffd5f37289e378 x4 : 0000000000000000 x3 : 0000000000000c40 x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000 Call trace: xas_split_alloc+0xf8/0x128 split_huge_page_to_list_to_order+0x1c4/0x780 truncate_inode_partial_folio+0xdc/0x160 truncate_inode_pages_range+0x1b4/0x4a8 truncate_pagecache_range+0x84/0xa0 xfs_flush_unmap_range+0x70/0x90 [xfs] xfs_file_fallocate+0xfc/0x4d8 [xfs] vfs_fallocate+0x124/0x2f0 ksys_fallocate+0x4c/0xa0 __arm64_sys_fallocate+0x24/0x38 invoke_syscall.constprop.0+0x7c/0xd8 do_el0_svc+0xb4/0xd0 el0_svc+0x44/0x1d8 el0t_64_sync_handler+0x134/0x150 el0t_64_sync+0x17c/0x180 Fix it by correcting the supported page cache orders, different sets for DAX and other files. With it corrected, 512MB page cache becomes disallowed on all non-DAX files on ARM64 system where the base page size is 64KB. After this patch is applied, the test program fails with error -EINVAL returned from __thp_vma_allowable_orders() and the madvise() system call to collapse the page caches. Link: https://lkml.kernel.org/r/20240715000423.316491-1-gshan@redhat.com Fixes:6b24ca4a1a
("mm: Use multi-index entries in the page cache") Signed-off-by: Gavin Shan <gshan@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: Zi Yan <ziy@nvidia.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Barry Song <baohua@kernel.org> Cc: Don Dutile <ddutile@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: <stable@vger.kernel.org> [5.17+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
3818 lines
103 KiB
C
3818 lines
103 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2009 Red Hat, Inc.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/coredump.h>
|
|
#include <linux/sched/numa_balancing.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/shrinker.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/khugepaged.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/pfn_t.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/userfaultfd_k.h>
|
|
#include <linux/page_idle.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/oom.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/page_owner.h>
|
|
#include <linux/sched/sysctl.h>
|
|
#include <linux/memory-tiers.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/pgalloc_tag.h>
|
|
|
|
#include <asm/tlb.h>
|
|
#include <asm/pgalloc.h>
|
|
#include "internal.h"
|
|
#include "swap.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/thp.h>
|
|
|
|
/*
|
|
* By default, transparent hugepage support is disabled in order to avoid
|
|
* risking an increased memory footprint for applications that are not
|
|
* guaranteed to benefit from it. When transparent hugepage support is
|
|
* enabled, it is for all mappings, and khugepaged scans all mappings.
|
|
* Defrag is invoked by khugepaged hugepage allocations and by page faults
|
|
* for all hugepage allocations.
|
|
*/
|
|
unsigned long transparent_hugepage_flags __read_mostly =
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
|
|
(1<<TRANSPARENT_HUGEPAGE_FLAG)|
|
|
#endif
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
|
|
(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
|
|
#endif
|
|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
|
|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
|
|
(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
|
|
|
|
static struct shrinker *deferred_split_shrinker;
|
|
static unsigned long deferred_split_count(struct shrinker *shrink,
|
|
struct shrink_control *sc);
|
|
static unsigned long deferred_split_scan(struct shrinker *shrink,
|
|
struct shrink_control *sc);
|
|
|
|
static atomic_t huge_zero_refcount;
|
|
struct folio *huge_zero_folio __read_mostly;
|
|
unsigned long huge_zero_pfn __read_mostly = ~0UL;
|
|
unsigned long huge_anon_orders_always __read_mostly;
|
|
unsigned long huge_anon_orders_madvise __read_mostly;
|
|
unsigned long huge_anon_orders_inherit __read_mostly;
|
|
|
|
unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
|
|
unsigned long vm_flags,
|
|
unsigned long tva_flags,
|
|
unsigned long orders)
|
|
{
|
|
bool smaps = tva_flags & TVA_SMAPS;
|
|
bool in_pf = tva_flags & TVA_IN_PF;
|
|
bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
|
|
unsigned long supported_orders;
|
|
|
|
/* Check the intersection of requested and supported orders. */
|
|
if (vma_is_anonymous(vma))
|
|
supported_orders = THP_ORDERS_ALL_ANON;
|
|
else if (vma_is_dax(vma))
|
|
supported_orders = THP_ORDERS_ALL_FILE_DAX;
|
|
else
|
|
supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
|
|
|
|
orders &= supported_orders;
|
|
if (!orders)
|
|
return 0;
|
|
|
|
if (!vma->vm_mm) /* vdso */
|
|
return 0;
|
|
|
|
/*
|
|
* Explicitly disabled through madvise or prctl, or some
|
|
* architectures may disable THP for some mappings, for
|
|
* example, s390 kvm.
|
|
* */
|
|
if ((vm_flags & VM_NOHUGEPAGE) ||
|
|
test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
|
|
return 0;
|
|
/*
|
|
* If the hardware/firmware marked hugepage support disabled.
|
|
*/
|
|
if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
|
|
return 0;
|
|
|
|
/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
|
|
if (vma_is_dax(vma))
|
|
return in_pf ? orders : 0;
|
|
|
|
/*
|
|
* khugepaged special VMA and hugetlb VMA.
|
|
* Must be checked after dax since some dax mappings may have
|
|
* VM_MIXEDMAP set.
|
|
*/
|
|
if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
|
|
return 0;
|
|
|
|
/*
|
|
* Check alignment for file vma and size for both file and anon vma by
|
|
* filtering out the unsuitable orders.
|
|
*
|
|
* Skip the check for page fault. Huge fault does the check in fault
|
|
* handlers.
|
|
*/
|
|
if (!in_pf) {
|
|
int order = highest_order(orders);
|
|
unsigned long addr;
|
|
|
|
while (orders) {
|
|
addr = vma->vm_end - (PAGE_SIZE << order);
|
|
if (thp_vma_suitable_order(vma, addr, order))
|
|
break;
|
|
order = next_order(&orders, order);
|
|
}
|
|
|
|
if (!orders)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Enabled via shmem mount options or sysfs settings.
|
|
* Must be done before hugepage flags check since shmem has its
|
|
* own flags.
|
|
*/
|
|
if (!in_pf && shmem_file(vma->vm_file)) {
|
|
bool global_huge = shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
|
|
!enforce_sysfs, vma->vm_mm, vm_flags);
|
|
|
|
if (!vma_is_anon_shmem(vma))
|
|
return global_huge ? orders : 0;
|
|
return shmem_allowable_huge_orders(file_inode(vma->vm_file),
|
|
vma, vma->vm_pgoff, global_huge);
|
|
}
|
|
|
|
if (!vma_is_anonymous(vma)) {
|
|
/*
|
|
* Enforce sysfs THP requirements as necessary. Anonymous vmas
|
|
* were already handled in thp_vma_allowable_orders().
|
|
*/
|
|
if (enforce_sysfs &&
|
|
(!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
|
|
!hugepage_global_always())))
|
|
return 0;
|
|
|
|
/*
|
|
* Trust that ->huge_fault() handlers know what they are doing
|
|
* in fault path.
|
|
*/
|
|
if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
|
|
return orders;
|
|
/* Only regular file is valid in collapse path */
|
|
if (((!in_pf || smaps)) && file_thp_enabled(vma))
|
|
return orders;
|
|
return 0;
|
|
}
|
|
|
|
if (vma_is_temporary_stack(vma))
|
|
return 0;
|
|
|
|
/*
|
|
* THPeligible bit of smaps should show 1 for proper VMAs even
|
|
* though anon_vma is not initialized yet.
|
|
*
|
|
* Allow page fault since anon_vma may be not initialized until
|
|
* the first page fault.
|
|
*/
|
|
if (!vma->anon_vma)
|
|
return (smaps || in_pf) ? orders : 0;
|
|
|
|
return orders;
|
|
}
|
|
|
|
static bool get_huge_zero_page(void)
|
|
{
|
|
struct folio *zero_folio;
|
|
retry:
|
|
if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
|
|
return true;
|
|
|
|
zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
|
|
HPAGE_PMD_ORDER);
|
|
if (!zero_folio) {
|
|
count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
|
|
return false;
|
|
}
|
|
preempt_disable();
|
|
if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
|
|
preempt_enable();
|
|
folio_put(zero_folio);
|
|
goto retry;
|
|
}
|
|
WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
|
|
|
|
/* We take additional reference here. It will be put back by shrinker */
|
|
atomic_set(&huge_zero_refcount, 2);
|
|
preempt_enable();
|
|
count_vm_event(THP_ZERO_PAGE_ALLOC);
|
|
return true;
|
|
}
|
|
|
|
static void put_huge_zero_page(void)
|
|
{
|
|
/*
|
|
* Counter should never go to zero here. Only shrinker can put
|
|
* last reference.
|
|
*/
|
|
BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
|
|
}
|
|
|
|
struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
|
|
{
|
|
if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
|
|
return READ_ONCE(huge_zero_folio);
|
|
|
|
if (!get_huge_zero_page())
|
|
return NULL;
|
|
|
|
if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
|
|
put_huge_zero_page();
|
|
|
|
return READ_ONCE(huge_zero_folio);
|
|
}
|
|
|
|
void mm_put_huge_zero_folio(struct mm_struct *mm)
|
|
{
|
|
if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
|
|
put_huge_zero_page();
|
|
}
|
|
|
|
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
/* we can free zero page only if last reference remains */
|
|
return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
|
|
}
|
|
|
|
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
|
|
struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
|
|
BUG_ON(zero_folio == NULL);
|
|
WRITE_ONCE(huge_zero_pfn, ~0UL);
|
|
folio_put(zero_folio);
|
|
return HPAGE_PMD_NR;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct shrinker *huge_zero_page_shrinker;
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
const char *output;
|
|
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
|
|
output = "[always] madvise never";
|
|
else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags))
|
|
output = "always [madvise] never";
|
|
else
|
|
output = "always madvise [never]";
|
|
|
|
return sysfs_emit(buf, "%s\n", output);
|
|
}
|
|
|
|
static ssize_t enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
ssize_t ret = count;
|
|
|
|
if (sysfs_streq(buf, "always")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
|
|
} else if (sysfs_streq(buf, "madvise")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else if (sysfs_streq(buf, "never")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else
|
|
ret = -EINVAL;
|
|
|
|
if (ret > 0) {
|
|
int err = start_stop_khugepaged();
|
|
if (err)
|
|
ret = err;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
|
|
|
|
ssize_t single_hugepage_flag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf,
|
|
enum transparent_hugepage_flag flag)
|
|
{
|
|
return sysfs_emit(buf, "%d\n",
|
|
!!test_bit(flag, &transparent_hugepage_flags));
|
|
}
|
|
|
|
ssize_t single_hugepage_flag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count,
|
|
enum transparent_hugepage_flag flag)
|
|
{
|
|
unsigned long value;
|
|
int ret;
|
|
|
|
ret = kstrtoul(buf, 10, &value);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (value > 1)
|
|
return -EINVAL;
|
|
|
|
if (value)
|
|
set_bit(flag, &transparent_hugepage_flags);
|
|
else
|
|
clear_bit(flag, &transparent_hugepage_flags);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t defrag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
const char *output;
|
|
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
|
|
&transparent_hugepage_flags))
|
|
output = "[always] defer defer+madvise madvise never";
|
|
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
|
|
&transparent_hugepage_flags))
|
|
output = "always [defer] defer+madvise madvise never";
|
|
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
|
|
&transparent_hugepage_flags))
|
|
output = "always defer [defer+madvise] madvise never";
|
|
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags))
|
|
output = "always defer defer+madvise [madvise] never";
|
|
else
|
|
output = "always defer defer+madvise madvise [never]";
|
|
|
|
return sysfs_emit(buf, "%s\n", output);
|
|
}
|
|
|
|
static ssize_t defrag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
if (sysfs_streq(buf, "always")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
} else if (sysfs_streq(buf, "defer+madvise")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else if (sysfs_streq(buf, "defer")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
} else if (sysfs_streq(buf, "madvise")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else if (sysfs_streq(buf, "never")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else
|
|
return -EINVAL;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
|
|
|
|
static ssize_t use_zero_page_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return single_hugepage_flag_show(kobj, attr, buf,
|
|
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
|
|
}
|
|
static ssize_t use_zero_page_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
return single_hugepage_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
|
|
}
|
|
static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
|
|
|
|
static ssize_t hpage_pmd_size_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
|
|
}
|
|
static struct kobj_attribute hpage_pmd_size_attr =
|
|
__ATTR_RO(hpage_pmd_size);
|
|
|
|
static struct attribute *hugepage_attr[] = {
|
|
&enabled_attr.attr,
|
|
&defrag_attr.attr,
|
|
&use_zero_page_attr.attr,
|
|
&hpage_pmd_size_attr.attr,
|
|
#ifdef CONFIG_SHMEM
|
|
&shmem_enabled_attr.attr,
|
|
#endif
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group hugepage_attr_group = {
|
|
.attrs = hugepage_attr,
|
|
};
|
|
|
|
static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
|
|
static void thpsize_release(struct kobject *kobj);
|
|
static DEFINE_SPINLOCK(huge_anon_orders_lock);
|
|
static LIST_HEAD(thpsize_list);
|
|
|
|
static ssize_t thpsize_enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
int order = to_thpsize(kobj)->order;
|
|
const char *output;
|
|
|
|
if (test_bit(order, &huge_anon_orders_always))
|
|
output = "[always] inherit madvise never";
|
|
else if (test_bit(order, &huge_anon_orders_inherit))
|
|
output = "always [inherit] madvise never";
|
|
else if (test_bit(order, &huge_anon_orders_madvise))
|
|
output = "always inherit [madvise] never";
|
|
else
|
|
output = "always inherit madvise [never]";
|
|
|
|
return sysfs_emit(buf, "%s\n", output);
|
|
}
|
|
|
|
static ssize_t thpsize_enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int order = to_thpsize(kobj)->order;
|
|
ssize_t ret = count;
|
|
|
|
if (sysfs_streq(buf, "always")) {
|
|
spin_lock(&huge_anon_orders_lock);
|
|
clear_bit(order, &huge_anon_orders_inherit);
|
|
clear_bit(order, &huge_anon_orders_madvise);
|
|
set_bit(order, &huge_anon_orders_always);
|
|
spin_unlock(&huge_anon_orders_lock);
|
|
} else if (sysfs_streq(buf, "inherit")) {
|
|
spin_lock(&huge_anon_orders_lock);
|
|
clear_bit(order, &huge_anon_orders_always);
|
|
clear_bit(order, &huge_anon_orders_madvise);
|
|
set_bit(order, &huge_anon_orders_inherit);
|
|
spin_unlock(&huge_anon_orders_lock);
|
|
} else if (sysfs_streq(buf, "madvise")) {
|
|
spin_lock(&huge_anon_orders_lock);
|
|
clear_bit(order, &huge_anon_orders_always);
|
|
clear_bit(order, &huge_anon_orders_inherit);
|
|
set_bit(order, &huge_anon_orders_madvise);
|
|
spin_unlock(&huge_anon_orders_lock);
|
|
} else if (sysfs_streq(buf, "never")) {
|
|
spin_lock(&huge_anon_orders_lock);
|
|
clear_bit(order, &huge_anon_orders_always);
|
|
clear_bit(order, &huge_anon_orders_inherit);
|
|
clear_bit(order, &huge_anon_orders_madvise);
|
|
spin_unlock(&huge_anon_orders_lock);
|
|
} else
|
|
ret = -EINVAL;
|
|
|
|
if (ret > 0) {
|
|
int err;
|
|
|
|
err = start_stop_khugepaged();
|
|
if (err)
|
|
ret = err;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static struct kobj_attribute thpsize_enabled_attr =
|
|
__ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store);
|
|
|
|
static struct attribute *thpsize_attrs[] = {
|
|
&thpsize_enabled_attr.attr,
|
|
#ifdef CONFIG_SHMEM
|
|
&thpsize_shmem_enabled_attr.attr,
|
|
#endif
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group thpsize_attr_group = {
|
|
.attrs = thpsize_attrs,
|
|
};
|
|
|
|
static const struct kobj_type thpsize_ktype = {
|
|
.release = &thpsize_release,
|
|
.sysfs_ops = &kobj_sysfs_ops,
|
|
};
|
|
|
|
DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
|
|
|
|
static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
|
|
{
|
|
unsigned long sum = 0;
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
|
|
|
|
sum += this->stats[order][item];
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
#define DEFINE_MTHP_STAT_ATTR(_name, _index) \
|
|
static ssize_t _name##_show(struct kobject *kobj, \
|
|
struct kobj_attribute *attr, char *buf) \
|
|
{ \
|
|
int order = to_thpsize(kobj)->order; \
|
|
\
|
|
return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \
|
|
} \
|
|
static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
|
|
|
|
DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
|
|
DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
|
|
DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
|
|
DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
|
|
DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
|
|
DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
|
|
DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
|
|
DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
|
|
DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
|
|
DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
|
|
DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
|
|
|
|
static struct attribute *stats_attrs[] = {
|
|
&anon_fault_alloc_attr.attr,
|
|
&anon_fault_fallback_attr.attr,
|
|
&anon_fault_fallback_charge_attr.attr,
|
|
&swpout_attr.attr,
|
|
&swpout_fallback_attr.attr,
|
|
&shmem_alloc_attr.attr,
|
|
&shmem_fallback_attr.attr,
|
|
&shmem_fallback_charge_attr.attr,
|
|
&split_attr.attr,
|
|
&split_failed_attr.attr,
|
|
&split_deferred_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group stats_attr_group = {
|
|
.name = "stats",
|
|
.attrs = stats_attrs,
|
|
};
|
|
|
|
static struct thpsize *thpsize_create(int order, struct kobject *parent)
|
|
{
|
|
unsigned long size = (PAGE_SIZE << order) / SZ_1K;
|
|
struct thpsize *thpsize;
|
|
int ret;
|
|
|
|
thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
|
|
if (!thpsize)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
|
|
"hugepages-%lukB", size);
|
|
if (ret) {
|
|
kfree(thpsize);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group);
|
|
if (ret) {
|
|
kobject_put(&thpsize->kobj);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
ret = sysfs_create_group(&thpsize->kobj, &stats_attr_group);
|
|
if (ret) {
|
|
kobject_put(&thpsize->kobj);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
thpsize->order = order;
|
|
return thpsize;
|
|
}
|
|
|
|
static void thpsize_release(struct kobject *kobj)
|
|
{
|
|
kfree(to_thpsize(kobj));
|
|
}
|
|
|
|
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
|
|
{
|
|
int err;
|
|
struct thpsize *thpsize;
|
|
unsigned long orders;
|
|
int order;
|
|
|
|
/*
|
|
* Default to setting PMD-sized THP to inherit the global setting and
|
|
* disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
|
|
* constant so we have to do this here.
|
|
*/
|
|
huge_anon_orders_inherit = BIT(PMD_ORDER);
|
|
|
|
*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
|
|
if (unlikely(!*hugepage_kobj)) {
|
|
pr_err("failed to create transparent hugepage kobject\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register transparent hugepage group\n");
|
|
goto delete_obj;
|
|
}
|
|
|
|
err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register transparent hugepage group\n");
|
|
goto remove_hp_group;
|
|
}
|
|
|
|
orders = THP_ORDERS_ALL_ANON;
|
|
order = highest_order(orders);
|
|
while (orders) {
|
|
thpsize = thpsize_create(order, *hugepage_kobj);
|
|
if (IS_ERR(thpsize)) {
|
|
pr_err("failed to create thpsize for order %d\n", order);
|
|
err = PTR_ERR(thpsize);
|
|
goto remove_all;
|
|
}
|
|
list_add(&thpsize->node, &thpsize_list);
|
|
order = next_order(&orders, order);
|
|
}
|
|
|
|
return 0;
|
|
|
|
remove_all:
|
|
hugepage_exit_sysfs(*hugepage_kobj);
|
|
return err;
|
|
remove_hp_group:
|
|
sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
|
|
delete_obj:
|
|
kobject_put(*hugepage_kobj);
|
|
return err;
|
|
}
|
|
|
|
static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
|
|
{
|
|
struct thpsize *thpsize, *tmp;
|
|
|
|
list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
|
|
list_del(&thpsize->node);
|
|
kobject_put(&thpsize->kobj);
|
|
}
|
|
|
|
sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
|
|
sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
|
|
kobject_put(hugepage_kobj);
|
|
}
|
|
#else
|
|
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SYSFS */
|
|
|
|
static int __init thp_shrinker_init(void)
|
|
{
|
|
huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
|
|
if (!huge_zero_page_shrinker)
|
|
return -ENOMEM;
|
|
|
|
deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
|
|
SHRINKER_MEMCG_AWARE |
|
|
SHRINKER_NONSLAB,
|
|
"thp-deferred_split");
|
|
if (!deferred_split_shrinker) {
|
|
shrinker_free(huge_zero_page_shrinker);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
|
|
huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
|
|
shrinker_register(huge_zero_page_shrinker);
|
|
|
|
deferred_split_shrinker->count_objects = deferred_split_count;
|
|
deferred_split_shrinker->scan_objects = deferred_split_scan;
|
|
shrinker_register(deferred_split_shrinker);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init thp_shrinker_exit(void)
|
|
{
|
|
shrinker_free(huge_zero_page_shrinker);
|
|
shrinker_free(deferred_split_shrinker);
|
|
}
|
|
|
|
static int __init hugepage_init(void)
|
|
{
|
|
int err;
|
|
struct kobject *hugepage_kobj;
|
|
|
|
if (!has_transparent_hugepage()) {
|
|
transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* hugepages can't be allocated by the buddy allocator
|
|
*/
|
|
MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
|
|
|
|
err = hugepage_init_sysfs(&hugepage_kobj);
|
|
if (err)
|
|
goto err_sysfs;
|
|
|
|
err = khugepaged_init();
|
|
if (err)
|
|
goto err_slab;
|
|
|
|
err = thp_shrinker_init();
|
|
if (err)
|
|
goto err_shrinker;
|
|
|
|
/*
|
|
* By default disable transparent hugepages on smaller systems,
|
|
* where the extra memory used could hurt more than TLB overhead
|
|
* is likely to save. The admin can still enable it through /sys.
|
|
*/
|
|
if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
|
|
transparent_hugepage_flags = 0;
|
|
return 0;
|
|
}
|
|
|
|
err = start_stop_khugepaged();
|
|
if (err)
|
|
goto err_khugepaged;
|
|
|
|
return 0;
|
|
err_khugepaged:
|
|
thp_shrinker_exit();
|
|
err_shrinker:
|
|
khugepaged_destroy();
|
|
err_slab:
|
|
hugepage_exit_sysfs(hugepage_kobj);
|
|
err_sysfs:
|
|
return err;
|
|
}
|
|
subsys_initcall(hugepage_init);
|
|
|
|
static int __init setup_transparent_hugepage(char *str)
|
|
{
|
|
int ret = 0;
|
|
if (!str)
|
|
goto out;
|
|
if (!strcmp(str, "always")) {
|
|
set_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
} else if (!strcmp(str, "madvise")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
} else if (!strcmp(str, "never")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
}
|
|
out:
|
|
if (!ret)
|
|
pr_warn("transparent_hugepage= cannot parse, ignored\n");
|
|
return ret;
|
|
}
|
|
__setup("transparent_hugepage=", setup_transparent_hugepage);
|
|
|
|
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
|
|
{
|
|
if (likely(vma->vm_flags & VM_WRITE))
|
|
pmd = pmd_mkwrite(pmd, vma);
|
|
return pmd;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
static inline
|
|
struct deferred_split *get_deferred_split_queue(struct folio *folio)
|
|
{
|
|
struct mem_cgroup *memcg = folio_memcg(folio);
|
|
struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
|
|
|
|
if (memcg)
|
|
return &memcg->deferred_split_queue;
|
|
else
|
|
return &pgdat->deferred_split_queue;
|
|
}
|
|
#else
|
|
static inline
|
|
struct deferred_split *get_deferred_split_queue(struct folio *folio)
|
|
{
|
|
struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
|
|
|
|
return &pgdat->deferred_split_queue;
|
|
}
|
|
#endif
|
|
|
|
static inline bool is_transparent_hugepage(const struct folio *folio)
|
|
{
|
|
if (!folio_test_large(folio))
|
|
return false;
|
|
|
|
return is_huge_zero_folio(folio) ||
|
|
folio_test_large_rmappable(folio);
|
|
}
|
|
|
|
static unsigned long __thp_get_unmapped_area(struct file *filp,
|
|
unsigned long addr, unsigned long len,
|
|
loff_t off, unsigned long flags, unsigned long size,
|
|
vm_flags_t vm_flags)
|
|
{
|
|
loff_t off_end = off + len;
|
|
loff_t off_align = round_up(off, size);
|
|
unsigned long len_pad, ret, off_sub;
|
|
|
|
if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
|
|
return 0;
|
|
|
|
if (off_end <= off_align || (off_end - off_align) < size)
|
|
return 0;
|
|
|
|
len_pad = len + size;
|
|
if (len_pad < len || (off + len_pad) < off)
|
|
return 0;
|
|
|
|
ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
|
|
off >> PAGE_SHIFT, flags, vm_flags);
|
|
|
|
/*
|
|
* The failure might be due to length padding. The caller will retry
|
|
* without the padding.
|
|
*/
|
|
if (IS_ERR_VALUE(ret))
|
|
return 0;
|
|
|
|
/*
|
|
* Do not try to align to THP boundary if allocation at the address
|
|
* hint succeeds.
|
|
*/
|
|
if (ret == addr)
|
|
return addr;
|
|
|
|
off_sub = (off - ret) & (size - 1);
|
|
|
|
if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub)
|
|
return ret + size;
|
|
|
|
ret += off_sub;
|
|
return ret;
|
|
}
|
|
|
|
unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff, unsigned long flags,
|
|
vm_flags_t vm_flags)
|
|
{
|
|
unsigned long ret;
|
|
loff_t off = (loff_t)pgoff << PAGE_SHIFT;
|
|
|
|
ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
|
|
vm_flags);
|
|
}
|
|
|
|
unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff, unsigned long flags)
|
|
{
|
|
return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
|
|
|
|
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
|
|
struct page *page, gfp_t gfp)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct folio *folio = page_folio(page);
|
|
pgtable_t pgtable;
|
|
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
|
|
vm_fault_t ret = 0;
|
|
|
|
VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
|
|
|
|
if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
|
|
folio_put(folio);
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
count_vm_event(THP_FAULT_FALLBACK_CHARGE);
|
|
count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
|
|
count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
folio_throttle_swaprate(folio, gfp);
|
|
|
|
pgtable = pte_alloc_one(vma->vm_mm);
|
|
if (unlikely(!pgtable)) {
|
|
ret = VM_FAULT_OOM;
|
|
goto release;
|
|
}
|
|
|
|
folio_zero_user(folio, vmf->address);
|
|
/*
|
|
* The memory barrier inside __folio_mark_uptodate makes sure that
|
|
* folio_zero_user writes become visible before the set_pmd_at()
|
|
* write.
|
|
*/
|
|
__folio_mark_uptodate(folio);
|
|
|
|
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
|
|
if (unlikely(!pmd_none(*vmf->pmd))) {
|
|
goto unlock_release;
|
|
} else {
|
|
pmd_t entry;
|
|
|
|
ret = check_stable_address_space(vma->vm_mm);
|
|
if (ret)
|
|
goto unlock_release;
|
|
|
|
/* Deliver the page fault to userland */
|
|
if (userfaultfd_missing(vma)) {
|
|
spin_unlock(vmf->ptl);
|
|
folio_put(folio);
|
|
pte_free(vma->vm_mm, pgtable);
|
|
ret = handle_userfault(vmf, VM_UFFD_MISSING);
|
|
VM_BUG_ON(ret & VM_FAULT_FALLBACK);
|
|
return ret;
|
|
}
|
|
|
|
entry = mk_huge_pmd(page, vma->vm_page_prot);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
|
|
folio_add_lru_vma(folio, vma);
|
|
pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
|
|
set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
|
|
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
|
|
add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
mm_inc_nr_ptes(vma->vm_mm);
|
|
spin_unlock(vmf->ptl);
|
|
count_vm_event(THP_FAULT_ALLOC);
|
|
count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
|
|
count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
|
|
}
|
|
|
|
return 0;
|
|
unlock_release:
|
|
spin_unlock(vmf->ptl);
|
|
release:
|
|
if (pgtable)
|
|
pte_free(vma->vm_mm, pgtable);
|
|
folio_put(folio);
|
|
return ret;
|
|
|
|
}
|
|
|
|
/*
|
|
* always: directly stall for all thp allocations
|
|
* defer: wake kswapd and fail if not immediately available
|
|
* defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
|
|
* fail if not immediately available
|
|
* madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
|
|
* available
|
|
* never: never stall for any thp allocation
|
|
*/
|
|
gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
|
|
{
|
|
const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
|
|
|
|
/* Always do synchronous compaction */
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
|
|
return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
|
|
|
|
/* Kick kcompactd and fail quickly */
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
|
|
return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
|
|
|
|
/* Synchronous compaction if madvised, otherwise kick kcompactd */
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
|
|
return GFP_TRANSHUGE_LIGHT |
|
|
(vma_madvised ? __GFP_DIRECT_RECLAIM :
|
|
__GFP_KSWAPD_RECLAIM);
|
|
|
|
/* Only do synchronous compaction if madvised */
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
|
|
return GFP_TRANSHUGE_LIGHT |
|
|
(vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
|
|
|
|
return GFP_TRANSHUGE_LIGHT;
|
|
}
|
|
|
|
/* Caller must hold page table lock. */
|
|
static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
|
|
struct folio *zero_folio)
|
|
{
|
|
pmd_t entry;
|
|
if (!pmd_none(*pmd))
|
|
return;
|
|
entry = mk_pmd(&zero_folio->page, vma->vm_page_prot);
|
|
entry = pmd_mkhuge(entry);
|
|
pgtable_trans_huge_deposit(mm, pmd, pgtable);
|
|
set_pmd_at(mm, haddr, pmd, entry);
|
|
mm_inc_nr_ptes(mm);
|
|
}
|
|
|
|
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
gfp_t gfp;
|
|
struct folio *folio;
|
|
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
|
|
vm_fault_t ret;
|
|
|
|
if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
|
|
return VM_FAULT_FALLBACK;
|
|
ret = vmf_anon_prepare(vmf);
|
|
if (ret)
|
|
return ret;
|
|
khugepaged_enter_vma(vma, vma->vm_flags);
|
|
|
|
if (!(vmf->flags & FAULT_FLAG_WRITE) &&
|
|
!mm_forbids_zeropage(vma->vm_mm) &&
|
|
transparent_hugepage_use_zero_page()) {
|
|
pgtable_t pgtable;
|
|
struct folio *zero_folio;
|
|
vm_fault_t ret;
|
|
|
|
pgtable = pte_alloc_one(vma->vm_mm);
|
|
if (unlikely(!pgtable))
|
|
return VM_FAULT_OOM;
|
|
zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
|
|
if (unlikely(!zero_folio)) {
|
|
pte_free(vma->vm_mm, pgtable);
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
|
|
ret = 0;
|
|
if (pmd_none(*vmf->pmd)) {
|
|
ret = check_stable_address_space(vma->vm_mm);
|
|
if (ret) {
|
|
spin_unlock(vmf->ptl);
|
|
pte_free(vma->vm_mm, pgtable);
|
|
} else if (userfaultfd_missing(vma)) {
|
|
spin_unlock(vmf->ptl);
|
|
pte_free(vma->vm_mm, pgtable);
|
|
ret = handle_userfault(vmf, VM_UFFD_MISSING);
|
|
VM_BUG_ON(ret & VM_FAULT_FALLBACK);
|
|
} else {
|
|
set_huge_zero_folio(pgtable, vma->vm_mm, vma,
|
|
haddr, vmf->pmd, zero_folio);
|
|
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
|
|
spin_unlock(vmf->ptl);
|
|
}
|
|
} else {
|
|
spin_unlock(vmf->ptl);
|
|
pte_free(vma->vm_mm, pgtable);
|
|
}
|
|
return ret;
|
|
}
|
|
gfp = vma_thp_gfp_mask(vma);
|
|
folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
|
|
if (unlikely(!folio)) {
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
|
|
}
|
|
|
|
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
|
|
pgtable_t pgtable)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pmd_t entry;
|
|
spinlock_t *ptl;
|
|
|
|
ptl = pmd_lock(mm, pmd);
|
|
if (!pmd_none(*pmd)) {
|
|
if (write) {
|
|
if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
|
|
WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
|
|
goto out_unlock;
|
|
}
|
|
entry = pmd_mkyoung(*pmd);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
|
|
update_mmu_cache_pmd(vma, addr, pmd);
|
|
}
|
|
|
|
goto out_unlock;
|
|
}
|
|
|
|
entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
|
|
if (pfn_t_devmap(pfn))
|
|
entry = pmd_mkdevmap(entry);
|
|
if (write) {
|
|
entry = pmd_mkyoung(pmd_mkdirty(entry));
|
|
entry = maybe_pmd_mkwrite(entry, vma);
|
|
}
|
|
|
|
if (pgtable) {
|
|
pgtable_trans_huge_deposit(mm, pmd, pgtable);
|
|
mm_inc_nr_ptes(mm);
|
|
pgtable = NULL;
|
|
}
|
|
|
|
set_pmd_at(mm, addr, pmd, entry);
|
|
update_mmu_cache_pmd(vma, addr, pmd);
|
|
|
|
out_unlock:
|
|
spin_unlock(ptl);
|
|
if (pgtable)
|
|
pte_free(mm, pgtable);
|
|
}
|
|
|
|
/**
|
|
* vmf_insert_pfn_pmd - insert a pmd size pfn
|
|
* @vmf: Structure describing the fault
|
|
* @pfn: pfn to insert
|
|
* @write: whether it's a write fault
|
|
*
|
|
* Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
|
|
*
|
|
* Return: vm_fault_t value.
|
|
*/
|
|
vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
|
|
{
|
|
unsigned long addr = vmf->address & PMD_MASK;
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
pgprot_t pgprot = vma->vm_page_prot;
|
|
pgtable_t pgtable = NULL;
|
|
|
|
/*
|
|
* If we had pmd_special, we could avoid all these restrictions,
|
|
* but we need to be consistent with PTEs and architectures that
|
|
* can't support a 'special' bit.
|
|
*/
|
|
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
|
|
!pfn_t_devmap(pfn));
|
|
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
|
|
(VM_PFNMAP|VM_MIXEDMAP));
|
|
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
|
|
|
|
if (addr < vma->vm_start || addr >= vma->vm_end)
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
if (arch_needs_pgtable_deposit()) {
|
|
pgtable = pte_alloc_one(vma->vm_mm);
|
|
if (!pgtable)
|
|
return VM_FAULT_OOM;
|
|
}
|
|
|
|
track_pfn_insert(vma, &pgprot, pfn);
|
|
|
|
insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
|
|
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
|
|
{
|
|
if (likely(vma->vm_flags & VM_WRITE))
|
|
pud = pud_mkwrite(pud);
|
|
return pud;
|
|
}
|
|
|
|
static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
|
|
pud_t *pud, pfn_t pfn, bool write)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pgprot_t prot = vma->vm_page_prot;
|
|
pud_t entry;
|
|
spinlock_t *ptl;
|
|
|
|
ptl = pud_lock(mm, pud);
|
|
if (!pud_none(*pud)) {
|
|
if (write) {
|
|
if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
|
|
WARN_ON_ONCE(!is_huge_zero_pud(*pud));
|
|
goto out_unlock;
|
|
}
|
|
entry = pud_mkyoung(*pud);
|
|
entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
|
|
if (pudp_set_access_flags(vma, addr, pud, entry, 1))
|
|
update_mmu_cache_pud(vma, addr, pud);
|
|
}
|
|
goto out_unlock;
|
|
}
|
|
|
|
entry = pud_mkhuge(pfn_t_pud(pfn, prot));
|
|
if (pfn_t_devmap(pfn))
|
|
entry = pud_mkdevmap(entry);
|
|
if (write) {
|
|
entry = pud_mkyoung(pud_mkdirty(entry));
|
|
entry = maybe_pud_mkwrite(entry, vma);
|
|
}
|
|
set_pud_at(mm, addr, pud, entry);
|
|
update_mmu_cache_pud(vma, addr, pud);
|
|
|
|
out_unlock:
|
|
spin_unlock(ptl);
|
|
}
|
|
|
|
/**
|
|
* vmf_insert_pfn_pud - insert a pud size pfn
|
|
* @vmf: Structure describing the fault
|
|
* @pfn: pfn to insert
|
|
* @write: whether it's a write fault
|
|
*
|
|
* Insert a pud size pfn. See vmf_insert_pfn() for additional info.
|
|
*
|
|
* Return: vm_fault_t value.
|
|
*/
|
|
vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
|
|
{
|
|
unsigned long addr = vmf->address & PUD_MASK;
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
pgprot_t pgprot = vma->vm_page_prot;
|
|
|
|
/*
|
|
* If we had pud_special, we could avoid all these restrictions,
|
|
* but we need to be consistent with PTEs and architectures that
|
|
* can't support a 'special' bit.
|
|
*/
|
|
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
|
|
!pfn_t_devmap(pfn));
|
|
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
|
|
(VM_PFNMAP|VM_MIXEDMAP));
|
|
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
|
|
|
|
if (addr < vma->vm_start || addr >= vma->vm_end)
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
track_pfn_insert(vma, &pgprot, pfn);
|
|
|
|
insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
|
|
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
|
|
|
|
void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd, bool write)
|
|
{
|
|
pmd_t _pmd;
|
|
|
|
_pmd = pmd_mkyoung(*pmd);
|
|
if (write)
|
|
_pmd = pmd_mkdirty(_pmd);
|
|
if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
|
|
pmd, _pmd, write))
|
|
update_mmu_cache_pmd(vma, addr, pmd);
|
|
}
|
|
|
|
struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
|
|
{
|
|
unsigned long pfn = pmd_pfn(*pmd);
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
assert_spin_locked(pmd_lockptr(mm, pmd));
|
|
|
|
if (flags & FOLL_WRITE && !pmd_write(*pmd))
|
|
return NULL;
|
|
|
|
if (pmd_present(*pmd) && pmd_devmap(*pmd))
|
|
/* pass */;
|
|
else
|
|
return NULL;
|
|
|
|
if (flags & FOLL_TOUCH)
|
|
touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
|
|
|
|
/*
|
|
* device mapped pages can only be returned if the
|
|
* caller will manage the page reference count.
|
|
*/
|
|
if (!(flags & (FOLL_GET | FOLL_PIN)))
|
|
return ERR_PTR(-EEXIST);
|
|
|
|
pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
|
|
*pgmap = get_dev_pagemap(pfn, *pgmap);
|
|
if (!*pgmap)
|
|
return ERR_PTR(-EFAULT);
|
|
page = pfn_to_page(pfn);
|
|
ret = try_grab_folio(page_folio(page), 1, flags);
|
|
if (ret)
|
|
page = ERR_PTR(ret);
|
|
|
|
return page;
|
|
}
|
|
|
|
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
|
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
|
|
struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
|
|
{
|
|
spinlock_t *dst_ptl, *src_ptl;
|
|
struct page *src_page;
|
|
struct folio *src_folio;
|
|
pmd_t pmd;
|
|
pgtable_t pgtable = NULL;
|
|
int ret = -ENOMEM;
|
|
|
|
/* Skip if can be re-fill on fault */
|
|
if (!vma_is_anonymous(dst_vma))
|
|
return 0;
|
|
|
|
pgtable = pte_alloc_one(dst_mm);
|
|
if (unlikely(!pgtable))
|
|
goto out;
|
|
|
|
dst_ptl = pmd_lock(dst_mm, dst_pmd);
|
|
src_ptl = pmd_lockptr(src_mm, src_pmd);
|
|
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
|
|
|
|
ret = -EAGAIN;
|
|
pmd = *src_pmd;
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
if (unlikely(is_swap_pmd(pmd))) {
|
|
swp_entry_t entry = pmd_to_swp_entry(pmd);
|
|
|
|
VM_BUG_ON(!is_pmd_migration_entry(pmd));
|
|
if (!is_readable_migration_entry(entry)) {
|
|
entry = make_readable_migration_entry(
|
|
swp_offset(entry));
|
|
pmd = swp_entry_to_pmd(entry);
|
|
if (pmd_swp_soft_dirty(*src_pmd))
|
|
pmd = pmd_swp_mksoft_dirty(pmd);
|
|
if (pmd_swp_uffd_wp(*src_pmd))
|
|
pmd = pmd_swp_mkuffd_wp(pmd);
|
|
set_pmd_at(src_mm, addr, src_pmd, pmd);
|
|
}
|
|
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
mm_inc_nr_ptes(dst_mm);
|
|
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
|
|
if (!userfaultfd_wp(dst_vma))
|
|
pmd = pmd_swp_clear_uffd_wp(pmd);
|
|
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(!pmd_trans_huge(pmd))) {
|
|
pte_free(dst_mm, pgtable);
|
|
goto out_unlock;
|
|
}
|
|
/*
|
|
* When page table lock is held, the huge zero pmd should not be
|
|
* under splitting since we don't split the page itself, only pmd to
|
|
* a page table.
|
|
*/
|
|
if (is_huge_zero_pmd(pmd)) {
|
|
/*
|
|
* mm_get_huge_zero_folio() will never allocate a new
|
|
* folio here, since we already have a zero page to
|
|
* copy. It just takes a reference.
|
|
*/
|
|
mm_get_huge_zero_folio(dst_mm);
|
|
goto out_zero_page;
|
|
}
|
|
|
|
src_page = pmd_page(pmd);
|
|
VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
|
|
src_folio = page_folio(src_page);
|
|
|
|
folio_get(src_folio);
|
|
if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
|
|
/* Page maybe pinned: split and retry the fault on PTEs. */
|
|
folio_put(src_folio);
|
|
pte_free(dst_mm, pgtable);
|
|
spin_unlock(src_ptl);
|
|
spin_unlock(dst_ptl);
|
|
__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
|
|
return -EAGAIN;
|
|
}
|
|
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
out_zero_page:
|
|
mm_inc_nr_ptes(dst_mm);
|
|
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
|
|
pmdp_set_wrprotect(src_mm, addr, src_pmd);
|
|
if (!userfaultfd_wp(dst_vma))
|
|
pmd = pmd_clear_uffd_wp(pmd);
|
|
pmd = pmd_mkold(pmd_wrprotect(pmd));
|
|
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
|
|
|
|
ret = 0;
|
|
out_unlock:
|
|
spin_unlock(src_ptl);
|
|
spin_unlock(dst_ptl);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
|
|
void touch_pud(struct vm_area_struct *vma, unsigned long addr,
|
|
pud_t *pud, bool write)
|
|
{
|
|
pud_t _pud;
|
|
|
|
_pud = pud_mkyoung(*pud);
|
|
if (write)
|
|
_pud = pud_mkdirty(_pud);
|
|
if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
|
|
pud, _pud, write))
|
|
update_mmu_cache_pud(vma, addr, pud);
|
|
}
|
|
|
|
int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
|
pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
spinlock_t *dst_ptl, *src_ptl;
|
|
pud_t pud;
|
|
int ret;
|
|
|
|
dst_ptl = pud_lock(dst_mm, dst_pud);
|
|
src_ptl = pud_lockptr(src_mm, src_pud);
|
|
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
|
|
|
|
ret = -EAGAIN;
|
|
pud = *src_pud;
|
|
if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* When page table lock is held, the huge zero pud should not be
|
|
* under splitting since we don't split the page itself, only pud to
|
|
* a page table.
|
|
*/
|
|
if (is_huge_zero_pud(pud)) {
|
|
/* No huge zero pud yet */
|
|
}
|
|
|
|
/*
|
|
* TODO: once we support anonymous pages, use
|
|
* folio_try_dup_anon_rmap_*() and split if duplicating fails.
|
|
*/
|
|
pudp_set_wrprotect(src_mm, addr, src_pud);
|
|
pud = pud_mkold(pud_wrprotect(pud));
|
|
set_pud_at(dst_mm, addr, dst_pud, pud);
|
|
|
|
ret = 0;
|
|
out_unlock:
|
|
spin_unlock(src_ptl);
|
|
spin_unlock(dst_ptl);
|
|
return ret;
|
|
}
|
|
|
|
void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
|
|
{
|
|
bool write = vmf->flags & FAULT_FLAG_WRITE;
|
|
|
|
vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
|
|
if (unlikely(!pud_same(*vmf->pud, orig_pud)))
|
|
goto unlock;
|
|
|
|
touch_pud(vmf->vma, vmf->address, vmf->pud, write);
|
|
unlock:
|
|
spin_unlock(vmf->ptl);
|
|
}
|
|
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
|
|
|
|
void huge_pmd_set_accessed(struct vm_fault *vmf)
|
|
{
|
|
bool write = vmf->flags & FAULT_FLAG_WRITE;
|
|
|
|
vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
|
|
if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
|
|
goto unlock;
|
|
|
|
touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
|
|
|
|
unlock:
|
|
spin_unlock(vmf->ptl);
|
|
}
|
|
|
|
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
|
|
{
|
|
const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct folio *folio;
|
|
struct page *page;
|
|
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
|
|
pmd_t orig_pmd = vmf->orig_pmd;
|
|
|
|
vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
|
|
VM_BUG_ON_VMA(!vma->anon_vma, vma);
|
|
|
|
if (is_huge_zero_pmd(orig_pmd))
|
|
goto fallback;
|
|
|
|
spin_lock(vmf->ptl);
|
|
|
|
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
|
|
spin_unlock(vmf->ptl);
|
|
return 0;
|
|
}
|
|
|
|
page = pmd_page(orig_pmd);
|
|
folio = page_folio(page);
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
|
|
/* Early check when only holding the PT lock. */
|
|
if (PageAnonExclusive(page))
|
|
goto reuse;
|
|
|
|
if (!folio_trylock(folio)) {
|
|
folio_get(folio);
|
|
spin_unlock(vmf->ptl);
|
|
folio_lock(folio);
|
|
spin_lock(vmf->ptl);
|
|
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
|
|
spin_unlock(vmf->ptl);
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
return 0;
|
|
}
|
|
folio_put(folio);
|
|
}
|
|
|
|
/* Recheck after temporarily dropping the PT lock. */
|
|
if (PageAnonExclusive(page)) {
|
|
folio_unlock(folio);
|
|
goto reuse;
|
|
}
|
|
|
|
/*
|
|
* See do_wp_page(): we can only reuse the folio exclusively if
|
|
* there are no additional references. Note that we always drain
|
|
* the LRU cache immediately after adding a THP.
|
|
*/
|
|
if (folio_ref_count(folio) >
|
|
1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
|
|
goto unlock_fallback;
|
|
if (folio_test_swapcache(folio))
|
|
folio_free_swap(folio);
|
|
if (folio_ref_count(folio) == 1) {
|
|
pmd_t entry;
|
|
|
|
folio_move_anon_rmap(folio, vma);
|
|
SetPageAnonExclusive(page);
|
|
folio_unlock(folio);
|
|
reuse:
|
|
if (unlikely(unshare)) {
|
|
spin_unlock(vmf->ptl);
|
|
return 0;
|
|
}
|
|
entry = pmd_mkyoung(orig_pmd);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
|
|
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
|
|
spin_unlock(vmf->ptl);
|
|
return 0;
|
|
}
|
|
|
|
unlock_fallback:
|
|
folio_unlock(folio);
|
|
spin_unlock(vmf->ptl);
|
|
fallback:
|
|
__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
|
|
static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t pmd)
|
|
{
|
|
struct page *page;
|
|
|
|
if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
|
|
return false;
|
|
|
|
/* Don't touch entries that are not even readable (NUMA hinting). */
|
|
if (pmd_protnone(pmd))
|
|
return false;
|
|
|
|
/* Do we need write faults for softdirty tracking? */
|
|
if (pmd_needs_soft_dirty_wp(vma, pmd))
|
|
return false;
|
|
|
|
/* Do we need write faults for uffd-wp tracking? */
|
|
if (userfaultfd_huge_pmd_wp(vma, pmd))
|
|
return false;
|
|
|
|
if (!(vma->vm_flags & VM_SHARED)) {
|
|
/* See can_change_pte_writable(). */
|
|
page = vm_normal_page_pmd(vma, addr, pmd);
|
|
return page && PageAnon(page) && PageAnonExclusive(page);
|
|
}
|
|
|
|
/* See can_change_pte_writable(). */
|
|
return pmd_dirty(pmd);
|
|
}
|
|
|
|
/* NUMA hinting page fault entry point for trans huge pmds */
|
|
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
pmd_t oldpmd = vmf->orig_pmd;
|
|
pmd_t pmd;
|
|
struct folio *folio;
|
|
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
|
|
int nid = NUMA_NO_NODE;
|
|
int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
|
|
bool writable = false;
|
|
int flags = 0;
|
|
|
|
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
|
|
if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
|
|
spin_unlock(vmf->ptl);
|
|
goto out;
|
|
}
|
|
|
|
pmd = pmd_modify(oldpmd, vma->vm_page_prot);
|
|
|
|
/*
|
|
* Detect now whether the PMD could be writable; this information
|
|
* is only valid while holding the PT lock.
|
|
*/
|
|
writable = pmd_write(pmd);
|
|
if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
|
|
can_change_pmd_writable(vma, vmf->address, pmd))
|
|
writable = true;
|
|
|
|
folio = vm_normal_folio_pmd(vma, haddr, pmd);
|
|
if (!folio)
|
|
goto out_map;
|
|
|
|
/* See similar comment in do_numa_page for explanation */
|
|
if (!writable)
|
|
flags |= TNF_NO_GROUP;
|
|
|
|
nid = folio_nid(folio);
|
|
/*
|
|
* For memory tiering mode, cpupid of slow memory page is used
|
|
* to record page access time. So use default value.
|
|
*/
|
|
if (node_is_toptier(nid))
|
|
last_cpupid = folio_last_cpupid(folio);
|
|
target_nid = numa_migrate_prep(folio, vmf, haddr, nid, &flags);
|
|
if (target_nid == NUMA_NO_NODE)
|
|
goto out_map;
|
|
if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
|
|
flags |= TNF_MIGRATE_FAIL;
|
|
goto out_map;
|
|
}
|
|
/* The folio is isolated and isolation code holds a folio reference. */
|
|
spin_unlock(vmf->ptl);
|
|
writable = false;
|
|
|
|
if (!migrate_misplaced_folio(folio, vma, target_nid)) {
|
|
flags |= TNF_MIGRATED;
|
|
nid = target_nid;
|
|
} else {
|
|
flags |= TNF_MIGRATE_FAIL;
|
|
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
|
|
if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
|
|
spin_unlock(vmf->ptl);
|
|
goto out;
|
|
}
|
|
goto out_map;
|
|
}
|
|
|
|
out:
|
|
if (nid != NUMA_NO_NODE)
|
|
task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
|
|
|
|
return 0;
|
|
|
|
out_map:
|
|
/* Restore the PMD */
|
|
pmd = pmd_modify(oldpmd, vma->vm_page_prot);
|
|
pmd = pmd_mkyoung(pmd);
|
|
if (writable)
|
|
pmd = pmd_mkwrite(pmd, vma);
|
|
set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
|
|
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
|
|
spin_unlock(vmf->ptl);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Return true if we do MADV_FREE successfully on entire pmd page.
|
|
* Otherwise, return false.
|
|
*/
|
|
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
pmd_t *pmd, unsigned long addr, unsigned long next)
|
|
{
|
|
spinlock_t *ptl;
|
|
pmd_t orig_pmd;
|
|
struct folio *folio;
|
|
struct mm_struct *mm = tlb->mm;
|
|
bool ret = false;
|
|
|
|
tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
|
|
|
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
|
if (!ptl)
|
|
goto out_unlocked;
|
|
|
|
orig_pmd = *pmd;
|
|
if (is_huge_zero_pmd(orig_pmd))
|
|
goto out;
|
|
|
|
if (unlikely(!pmd_present(orig_pmd))) {
|
|
VM_BUG_ON(thp_migration_supported() &&
|
|
!is_pmd_migration_entry(orig_pmd));
|
|
goto out;
|
|
}
|
|
|
|
folio = pmd_folio(orig_pmd);
|
|
/*
|
|
* If other processes are mapping this folio, we couldn't discard
|
|
* the folio unless they all do MADV_FREE so let's skip the folio.
|
|
*/
|
|
if (folio_likely_mapped_shared(folio))
|
|
goto out;
|
|
|
|
if (!folio_trylock(folio))
|
|
goto out;
|
|
|
|
/*
|
|
* If user want to discard part-pages of THP, split it so MADV_FREE
|
|
* will deactivate only them.
|
|
*/
|
|
if (next - addr != HPAGE_PMD_SIZE) {
|
|
folio_get(folio);
|
|
spin_unlock(ptl);
|
|
split_folio(folio);
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
goto out_unlocked;
|
|
}
|
|
|
|
if (folio_test_dirty(folio))
|
|
folio_clear_dirty(folio);
|
|
folio_unlock(folio);
|
|
|
|
if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
|
|
pmdp_invalidate(vma, addr, pmd);
|
|
orig_pmd = pmd_mkold(orig_pmd);
|
|
orig_pmd = pmd_mkclean(orig_pmd);
|
|
|
|
set_pmd_at(mm, addr, pmd, orig_pmd);
|
|
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
|
|
}
|
|
|
|
folio_mark_lazyfree(folio);
|
|
ret = true;
|
|
out:
|
|
spin_unlock(ptl);
|
|
out_unlocked:
|
|
return ret;
|
|
}
|
|
|
|
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
pgtable_t pgtable;
|
|
|
|
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
|
|
pte_free(mm, pgtable);
|
|
mm_dec_nr_ptes(mm);
|
|
}
|
|
|
|
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
pmd_t *pmd, unsigned long addr)
|
|
{
|
|
pmd_t orig_pmd;
|
|
spinlock_t *ptl;
|
|
|
|
tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
|
|
|
|
ptl = __pmd_trans_huge_lock(pmd, vma);
|
|
if (!ptl)
|
|
return 0;
|
|
/*
|
|
* For architectures like ppc64 we look at deposited pgtable
|
|
* when calling pmdp_huge_get_and_clear. So do the
|
|
* pgtable_trans_huge_withdraw after finishing pmdp related
|
|
* operations.
|
|
*/
|
|
orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
|
|
tlb->fullmm);
|
|
arch_check_zapped_pmd(vma, orig_pmd);
|
|
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
|
|
if (vma_is_special_huge(vma)) {
|
|
if (arch_needs_pgtable_deposit())
|
|
zap_deposited_table(tlb->mm, pmd);
|
|
spin_unlock(ptl);
|
|
} else if (is_huge_zero_pmd(orig_pmd)) {
|
|
zap_deposited_table(tlb->mm, pmd);
|
|
spin_unlock(ptl);
|
|
} else {
|
|
struct folio *folio = NULL;
|
|
int flush_needed = 1;
|
|
|
|
if (pmd_present(orig_pmd)) {
|
|
struct page *page = pmd_page(orig_pmd);
|
|
|
|
folio = page_folio(page);
|
|
folio_remove_rmap_pmd(folio, page, vma);
|
|
WARN_ON_ONCE(folio_mapcount(folio) < 0);
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
} else if (thp_migration_supported()) {
|
|
swp_entry_t entry;
|
|
|
|
VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
|
|
entry = pmd_to_swp_entry(orig_pmd);
|
|
folio = pfn_swap_entry_folio(entry);
|
|
flush_needed = 0;
|
|
} else
|
|
WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
|
|
|
|
if (folio_test_anon(folio)) {
|
|
zap_deposited_table(tlb->mm, pmd);
|
|
add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
|
|
} else {
|
|
if (arch_needs_pgtable_deposit())
|
|
zap_deposited_table(tlb->mm, pmd);
|
|
add_mm_counter(tlb->mm, mm_counter_file(folio),
|
|
-HPAGE_PMD_NR);
|
|
}
|
|
|
|
spin_unlock(ptl);
|
|
if (flush_needed)
|
|
tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#ifndef pmd_move_must_withdraw
|
|
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
|
|
spinlock_t *old_pmd_ptl,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* With split pmd lock we also need to move preallocated
|
|
* PTE page table if new_pmd is on different PMD page table.
|
|
*
|
|
* We also don't deposit and withdraw tables for file pages.
|
|
*/
|
|
return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
|
|
}
|
|
#endif
|
|
|
|
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
|
|
{
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
if (unlikely(is_pmd_migration_entry(pmd)))
|
|
pmd = pmd_swp_mksoft_dirty(pmd);
|
|
else if (pmd_present(pmd))
|
|
pmd = pmd_mksoft_dirty(pmd);
|
|
#endif
|
|
return pmd;
|
|
}
|
|
|
|
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
|
|
unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
|
|
{
|
|
spinlock_t *old_ptl, *new_ptl;
|
|
pmd_t pmd;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
bool force_flush = false;
|
|
|
|
/*
|
|
* The destination pmd shouldn't be established, free_pgtables()
|
|
* should have released it; but move_page_tables() might have already
|
|
* inserted a page table, if racing against shmem/file collapse.
|
|
*/
|
|
if (!pmd_none(*new_pmd)) {
|
|
VM_BUG_ON(pmd_trans_huge(*new_pmd));
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* We don't have to worry about the ordering of src and dst
|
|
* ptlocks because exclusive mmap_lock prevents deadlock.
|
|
*/
|
|
old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
|
|
if (old_ptl) {
|
|
new_ptl = pmd_lockptr(mm, new_pmd);
|
|
if (new_ptl != old_ptl)
|
|
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
|
|
pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
|
|
if (pmd_present(pmd))
|
|
force_flush = true;
|
|
VM_BUG_ON(!pmd_none(*new_pmd));
|
|
|
|
if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
|
|
pgtable_t pgtable;
|
|
pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
|
|
pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
|
|
}
|
|
pmd = move_soft_dirty_pmd(pmd);
|
|
set_pmd_at(mm, new_addr, new_pmd, pmd);
|
|
if (force_flush)
|
|
flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
|
|
if (new_ptl != old_ptl)
|
|
spin_unlock(new_ptl);
|
|
spin_unlock(old_ptl);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Returns
|
|
* - 0 if PMD could not be locked
|
|
* - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
|
|
* or if prot_numa but THP migration is not supported
|
|
* - HPAGE_PMD_NR if protections changed and TLB flush necessary
|
|
*/
|
|
int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
pmd_t *pmd, unsigned long addr, pgprot_t newprot,
|
|
unsigned long cp_flags)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
spinlock_t *ptl;
|
|
pmd_t oldpmd, entry;
|
|
bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
|
|
bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
|
|
bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
|
|
int ret = 1;
|
|
|
|
tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
|
|
|
|
if (prot_numa && !thp_migration_supported())
|
|
return 1;
|
|
|
|
ptl = __pmd_trans_huge_lock(pmd, vma);
|
|
if (!ptl)
|
|
return 0;
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
if (is_swap_pmd(*pmd)) {
|
|
swp_entry_t entry = pmd_to_swp_entry(*pmd);
|
|
struct folio *folio = pfn_swap_entry_folio(entry);
|
|
pmd_t newpmd;
|
|
|
|
VM_BUG_ON(!is_pmd_migration_entry(*pmd));
|
|
if (is_writable_migration_entry(entry)) {
|
|
/*
|
|
* A protection check is difficult so
|
|
* just be safe and disable write
|
|
*/
|
|
if (folio_test_anon(folio))
|
|
entry = make_readable_exclusive_migration_entry(swp_offset(entry));
|
|
else
|
|
entry = make_readable_migration_entry(swp_offset(entry));
|
|
newpmd = swp_entry_to_pmd(entry);
|
|
if (pmd_swp_soft_dirty(*pmd))
|
|
newpmd = pmd_swp_mksoft_dirty(newpmd);
|
|
} else {
|
|
newpmd = *pmd;
|
|
}
|
|
|
|
if (uffd_wp)
|
|
newpmd = pmd_swp_mkuffd_wp(newpmd);
|
|
else if (uffd_wp_resolve)
|
|
newpmd = pmd_swp_clear_uffd_wp(newpmd);
|
|
if (!pmd_same(*pmd, newpmd))
|
|
set_pmd_at(mm, addr, pmd, newpmd);
|
|
goto unlock;
|
|
}
|
|
#endif
|
|
|
|
if (prot_numa) {
|
|
struct folio *folio;
|
|
bool toptier;
|
|
/*
|
|
* Avoid trapping faults against the zero page. The read-only
|
|
* data is likely to be read-cached on the local CPU and
|
|
* local/remote hits to the zero page are not interesting.
|
|
*/
|
|
if (is_huge_zero_pmd(*pmd))
|
|
goto unlock;
|
|
|
|
if (pmd_protnone(*pmd))
|
|
goto unlock;
|
|
|
|
folio = pmd_folio(*pmd);
|
|
toptier = node_is_toptier(folio_nid(folio));
|
|
/*
|
|
* Skip scanning top tier node if normal numa
|
|
* balancing is disabled
|
|
*/
|
|
if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
|
|
toptier)
|
|
goto unlock;
|
|
|
|
if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
|
|
!toptier)
|
|
folio_xchg_access_time(folio,
|
|
jiffies_to_msecs(jiffies));
|
|
}
|
|
/*
|
|
* In case prot_numa, we are under mmap_read_lock(mm). It's critical
|
|
* to not clear pmd intermittently to avoid race with MADV_DONTNEED
|
|
* which is also under mmap_read_lock(mm):
|
|
*
|
|
* CPU0: CPU1:
|
|
* change_huge_pmd(prot_numa=1)
|
|
* pmdp_huge_get_and_clear_notify()
|
|
* madvise_dontneed()
|
|
* zap_pmd_range()
|
|
* pmd_trans_huge(*pmd) == 0 (without ptl)
|
|
* // skip the pmd
|
|
* set_pmd_at();
|
|
* // pmd is re-established
|
|
*
|
|
* The race makes MADV_DONTNEED miss the huge pmd and don't clear it
|
|
* which may break userspace.
|
|
*
|
|
* pmdp_invalidate_ad() is required to make sure we don't miss
|
|
* dirty/young flags set by hardware.
|
|
*/
|
|
oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
|
|
|
|
entry = pmd_modify(oldpmd, newprot);
|
|
if (uffd_wp)
|
|
entry = pmd_mkuffd_wp(entry);
|
|
else if (uffd_wp_resolve)
|
|
/*
|
|
* Leave the write bit to be handled by PF interrupt
|
|
* handler, then things like COW could be properly
|
|
* handled.
|
|
*/
|
|
entry = pmd_clear_uffd_wp(entry);
|
|
|
|
/* See change_pte_range(). */
|
|
if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
|
|
can_change_pmd_writable(vma, addr, entry))
|
|
entry = pmd_mkwrite(entry, vma);
|
|
|
|
ret = HPAGE_PMD_NR;
|
|
set_pmd_at(mm, addr, pmd, entry);
|
|
|
|
if (huge_pmd_needs_flush(oldpmd, entry))
|
|
tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
|
|
unlock:
|
|
spin_unlock(ptl);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_USERFAULTFD
|
|
/*
|
|
* The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
|
|
* the caller, but it must return after releasing the page_table_lock.
|
|
* Just move the page from src_pmd to dst_pmd if possible.
|
|
* Return zero if succeeded in moving the page, -EAGAIN if it needs to be
|
|
* repeated by the caller, or other errors in case of failure.
|
|
*/
|
|
int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
|
|
struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
|
|
unsigned long dst_addr, unsigned long src_addr)
|
|
{
|
|
pmd_t _dst_pmd, src_pmdval;
|
|
struct page *src_page;
|
|
struct folio *src_folio;
|
|
struct anon_vma *src_anon_vma;
|
|
spinlock_t *src_ptl, *dst_ptl;
|
|
pgtable_t src_pgtable;
|
|
struct mmu_notifier_range range;
|
|
int err = 0;
|
|
|
|
src_pmdval = *src_pmd;
|
|
src_ptl = pmd_lockptr(mm, src_pmd);
|
|
|
|
lockdep_assert_held(src_ptl);
|
|
vma_assert_locked(src_vma);
|
|
vma_assert_locked(dst_vma);
|
|
|
|
/* Sanity checks before the operation */
|
|
if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
|
|
WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
|
|
spin_unlock(src_ptl);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!pmd_trans_huge(src_pmdval)) {
|
|
spin_unlock(src_ptl);
|
|
if (is_pmd_migration_entry(src_pmdval)) {
|
|
pmd_migration_entry_wait(mm, &src_pmdval);
|
|
return -EAGAIN;
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
src_page = pmd_page(src_pmdval);
|
|
|
|
if (!is_huge_zero_pmd(src_pmdval)) {
|
|
if (unlikely(!PageAnonExclusive(src_page))) {
|
|
spin_unlock(src_ptl);
|
|
return -EBUSY;
|
|
}
|
|
|
|
src_folio = page_folio(src_page);
|
|
folio_get(src_folio);
|
|
} else
|
|
src_folio = NULL;
|
|
|
|
spin_unlock(src_ptl);
|
|
|
|
flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
|
|
src_addr + HPAGE_PMD_SIZE);
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
|
|
if (src_folio) {
|
|
folio_lock(src_folio);
|
|
|
|
/*
|
|
* split_huge_page walks the anon_vma chain without the page
|
|
* lock. Serialize against it with the anon_vma lock, the page
|
|
* lock is not enough.
|
|
*/
|
|
src_anon_vma = folio_get_anon_vma(src_folio);
|
|
if (!src_anon_vma) {
|
|
err = -EAGAIN;
|
|
goto unlock_folio;
|
|
}
|
|
anon_vma_lock_write(src_anon_vma);
|
|
} else
|
|
src_anon_vma = NULL;
|
|
|
|
dst_ptl = pmd_lockptr(mm, dst_pmd);
|
|
double_pt_lock(src_ptl, dst_ptl);
|
|
if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
|
|
!pmd_same(*dst_pmd, dst_pmdval))) {
|
|
err = -EAGAIN;
|
|
goto unlock_ptls;
|
|
}
|
|
if (src_folio) {
|
|
if (folio_maybe_dma_pinned(src_folio) ||
|
|
!PageAnonExclusive(&src_folio->page)) {
|
|
err = -EBUSY;
|
|
goto unlock_ptls;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
|
|
WARN_ON_ONCE(!folio_test_anon(src_folio))) {
|
|
err = -EBUSY;
|
|
goto unlock_ptls;
|
|
}
|
|
|
|
src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
|
|
/* Folio got pinned from under us. Put it back and fail the move. */
|
|
if (folio_maybe_dma_pinned(src_folio)) {
|
|
set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
|
|
err = -EBUSY;
|
|
goto unlock_ptls;
|
|
}
|
|
|
|
folio_move_anon_rmap(src_folio, dst_vma);
|
|
src_folio->index = linear_page_index(dst_vma, dst_addr);
|
|
|
|
_dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
|
|
/* Follow mremap() behavior and treat the entry dirty after the move */
|
|
_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
|
|
} else {
|
|
src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
|
|
_dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
|
|
}
|
|
set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
|
|
|
|
src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
|
|
pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
|
|
unlock_ptls:
|
|
double_pt_unlock(src_ptl, dst_ptl);
|
|
if (src_anon_vma) {
|
|
anon_vma_unlock_write(src_anon_vma);
|
|
put_anon_vma(src_anon_vma);
|
|
}
|
|
unlock_folio:
|
|
/* unblock rmap walks */
|
|
if (src_folio)
|
|
folio_unlock(src_folio);
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
if (src_folio)
|
|
folio_put(src_folio);
|
|
return err;
|
|
}
|
|
#endif /* CONFIG_USERFAULTFD */
|
|
|
|
/*
|
|
* Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
|
|
*
|
|
* Note that if it returns page table lock pointer, this routine returns without
|
|
* unlocking page table lock. So callers must unlock it.
|
|
*/
|
|
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
|
|
{
|
|
spinlock_t *ptl;
|
|
ptl = pmd_lock(vma->vm_mm, pmd);
|
|
if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
|
|
pmd_devmap(*pmd)))
|
|
return ptl;
|
|
spin_unlock(ptl);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
|
|
*
|
|
* Note that if it returns page table lock pointer, this routine returns without
|
|
* unlocking page table lock. So callers must unlock it.
|
|
*/
|
|
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
|
|
{
|
|
spinlock_t *ptl;
|
|
|
|
ptl = pud_lock(vma->vm_mm, pud);
|
|
if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
|
|
return ptl;
|
|
spin_unlock(ptl);
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
|
|
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
pud_t *pud, unsigned long addr)
|
|
{
|
|
spinlock_t *ptl;
|
|
|
|
ptl = __pud_trans_huge_lock(pud, vma);
|
|
if (!ptl)
|
|
return 0;
|
|
|
|
pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
|
|
tlb_remove_pud_tlb_entry(tlb, pud, addr);
|
|
if (vma_is_special_huge(vma)) {
|
|
spin_unlock(ptl);
|
|
/* No zero page support yet */
|
|
} else {
|
|
/* No support for anonymous PUD pages yet */
|
|
BUG();
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
|
|
unsigned long haddr)
|
|
{
|
|
VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
|
|
VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
|
|
VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
|
|
VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
|
|
|
|
count_vm_event(THP_SPLIT_PUD);
|
|
|
|
pudp_huge_clear_flush(vma, haddr, pud);
|
|
}
|
|
|
|
void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
|
|
unsigned long address)
|
|
{
|
|
spinlock_t *ptl;
|
|
struct mmu_notifier_range range;
|
|
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
|
|
address & HPAGE_PUD_MASK,
|
|
(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
ptl = pud_lock(vma->vm_mm, pud);
|
|
if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
|
|
goto out;
|
|
__split_huge_pud_locked(vma, pud, range.start);
|
|
|
|
out:
|
|
spin_unlock(ptl);
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
}
|
|
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
|
|
|
|
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
|
|
unsigned long haddr, pmd_t *pmd)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pgtable_t pgtable;
|
|
pmd_t _pmd, old_pmd;
|
|
unsigned long addr;
|
|
pte_t *pte;
|
|
int i;
|
|
|
|
/*
|
|
* Leave pmd empty until pte is filled note that it is fine to delay
|
|
* notification until mmu_notifier_invalidate_range_end() as we are
|
|
* replacing a zero pmd write protected page with a zero pte write
|
|
* protected page.
|
|
*
|
|
* See Documentation/mm/mmu_notifier.rst
|
|
*/
|
|
old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
|
|
|
|
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
|
|
pmd_populate(mm, &_pmd, pgtable);
|
|
|
|
pte = pte_offset_map(&_pmd, haddr);
|
|
VM_BUG_ON(!pte);
|
|
for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
|
|
pte_t entry;
|
|
|
|
entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
|
|
entry = pte_mkspecial(entry);
|
|
if (pmd_uffd_wp(old_pmd))
|
|
entry = pte_mkuffd_wp(entry);
|
|
VM_BUG_ON(!pte_none(ptep_get(pte)));
|
|
set_pte_at(mm, addr, pte, entry);
|
|
pte++;
|
|
}
|
|
pte_unmap(pte - 1);
|
|
smp_wmb(); /* make pte visible before pmd */
|
|
pmd_populate(mm, pmd, pgtable);
|
|
}
|
|
|
|
static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long haddr, bool freeze)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct folio *folio;
|
|
struct page *page;
|
|
pgtable_t pgtable;
|
|
pmd_t old_pmd, _pmd;
|
|
bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
|
|
bool anon_exclusive = false, dirty = false;
|
|
unsigned long addr;
|
|
pte_t *pte;
|
|
int i;
|
|
|
|
VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
|
|
VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
|
|
VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
|
|
VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
|
|
&& !pmd_devmap(*pmd));
|
|
|
|
count_vm_event(THP_SPLIT_PMD);
|
|
|
|
if (!vma_is_anonymous(vma)) {
|
|
old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
|
|
/*
|
|
* We are going to unmap this huge page. So
|
|
* just go ahead and zap it
|
|
*/
|
|
if (arch_needs_pgtable_deposit())
|
|
zap_deposited_table(mm, pmd);
|
|
if (vma_is_special_huge(vma))
|
|
return;
|
|
if (unlikely(is_pmd_migration_entry(old_pmd))) {
|
|
swp_entry_t entry;
|
|
|
|
entry = pmd_to_swp_entry(old_pmd);
|
|
folio = pfn_swap_entry_folio(entry);
|
|
} else {
|
|
page = pmd_page(old_pmd);
|
|
folio = page_folio(page);
|
|
if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
|
|
folio_mark_dirty(folio);
|
|
if (!folio_test_referenced(folio) && pmd_young(old_pmd))
|
|
folio_set_referenced(folio);
|
|
folio_remove_rmap_pmd(folio, page, vma);
|
|
folio_put(folio);
|
|
}
|
|
add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
|
|
return;
|
|
}
|
|
|
|
if (is_huge_zero_pmd(*pmd)) {
|
|
/*
|
|
* FIXME: Do we want to invalidate secondary mmu by calling
|
|
* mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
|
|
* inside __split_huge_pmd() ?
|
|
*
|
|
* We are going from a zero huge page write protected to zero
|
|
* small page also write protected so it does not seems useful
|
|
* to invalidate secondary mmu at this time.
|
|
*/
|
|
return __split_huge_zero_page_pmd(vma, haddr, pmd);
|
|
}
|
|
|
|
pmd_migration = is_pmd_migration_entry(*pmd);
|
|
if (unlikely(pmd_migration)) {
|
|
swp_entry_t entry;
|
|
|
|
old_pmd = *pmd;
|
|
entry = pmd_to_swp_entry(old_pmd);
|
|
page = pfn_swap_entry_to_page(entry);
|
|
write = is_writable_migration_entry(entry);
|
|
if (PageAnon(page))
|
|
anon_exclusive = is_readable_exclusive_migration_entry(entry);
|
|
young = is_migration_entry_young(entry);
|
|
dirty = is_migration_entry_dirty(entry);
|
|
soft_dirty = pmd_swp_soft_dirty(old_pmd);
|
|
uffd_wp = pmd_swp_uffd_wp(old_pmd);
|
|
} else {
|
|
/*
|
|
* Up to this point the pmd is present and huge and userland has
|
|
* the whole access to the hugepage during the split (which
|
|
* happens in place). If we overwrite the pmd with the not-huge
|
|
* version pointing to the pte here (which of course we could if
|
|
* all CPUs were bug free), userland could trigger a small page
|
|
* size TLB miss on the small sized TLB while the hugepage TLB
|
|
* entry is still established in the huge TLB. Some CPU doesn't
|
|
* like that. See
|
|
* http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
|
|
* 383 on page 105. Intel should be safe but is also warns that
|
|
* it's only safe if the permission and cache attributes of the
|
|
* two entries loaded in the two TLB is identical (which should
|
|
* be the case here). But it is generally safer to never allow
|
|
* small and huge TLB entries for the same virtual address to be
|
|
* loaded simultaneously. So instead of doing "pmd_populate();
|
|
* flush_pmd_tlb_range();" we first mark the current pmd
|
|
* notpresent (atomically because here the pmd_trans_huge must
|
|
* remain set at all times on the pmd until the split is
|
|
* complete for this pmd), then we flush the SMP TLB and finally
|
|
* we write the non-huge version of the pmd entry with
|
|
* pmd_populate.
|
|
*/
|
|
old_pmd = pmdp_invalidate(vma, haddr, pmd);
|
|
page = pmd_page(old_pmd);
|
|
folio = page_folio(page);
|
|
if (pmd_dirty(old_pmd)) {
|
|
dirty = true;
|
|
folio_set_dirty(folio);
|
|
}
|
|
write = pmd_write(old_pmd);
|
|
young = pmd_young(old_pmd);
|
|
soft_dirty = pmd_soft_dirty(old_pmd);
|
|
uffd_wp = pmd_uffd_wp(old_pmd);
|
|
|
|
VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
|
|
VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
|
|
|
|
/*
|
|
* Without "freeze", we'll simply split the PMD, propagating the
|
|
* PageAnonExclusive() flag for each PTE by setting it for
|
|
* each subpage -- no need to (temporarily) clear.
|
|
*
|
|
* With "freeze" we want to replace mapped pages by
|
|
* migration entries right away. This is only possible if we
|
|
* managed to clear PageAnonExclusive() -- see
|
|
* set_pmd_migration_entry().
|
|
*
|
|
* In case we cannot clear PageAnonExclusive(), split the PMD
|
|
* only and let try_to_migrate_one() fail later.
|
|
*
|
|
* See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
|
|
*/
|
|
anon_exclusive = PageAnonExclusive(page);
|
|
if (freeze && anon_exclusive &&
|
|
folio_try_share_anon_rmap_pmd(folio, page))
|
|
freeze = false;
|
|
if (!freeze) {
|
|
rmap_t rmap_flags = RMAP_NONE;
|
|
|
|
folio_ref_add(folio, HPAGE_PMD_NR - 1);
|
|
if (anon_exclusive)
|
|
rmap_flags |= RMAP_EXCLUSIVE;
|
|
folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
|
|
vma, haddr, rmap_flags);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Withdraw the table only after we mark the pmd entry invalid.
|
|
* This's critical for some architectures (Power).
|
|
*/
|
|
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
|
|
pmd_populate(mm, &_pmd, pgtable);
|
|
|
|
pte = pte_offset_map(&_pmd, haddr);
|
|
VM_BUG_ON(!pte);
|
|
|
|
/*
|
|
* Note that NUMA hinting access restrictions are not transferred to
|
|
* avoid any possibility of altering permissions across VMAs.
|
|
*/
|
|
if (freeze || pmd_migration) {
|
|
for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
|
|
pte_t entry;
|
|
swp_entry_t swp_entry;
|
|
|
|
if (write)
|
|
swp_entry = make_writable_migration_entry(
|
|
page_to_pfn(page + i));
|
|
else if (anon_exclusive)
|
|
swp_entry = make_readable_exclusive_migration_entry(
|
|
page_to_pfn(page + i));
|
|
else
|
|
swp_entry = make_readable_migration_entry(
|
|
page_to_pfn(page + i));
|
|
if (young)
|
|
swp_entry = make_migration_entry_young(swp_entry);
|
|
if (dirty)
|
|
swp_entry = make_migration_entry_dirty(swp_entry);
|
|
entry = swp_entry_to_pte(swp_entry);
|
|
if (soft_dirty)
|
|
entry = pte_swp_mksoft_dirty(entry);
|
|
if (uffd_wp)
|
|
entry = pte_swp_mkuffd_wp(entry);
|
|
|
|
VM_WARN_ON(!pte_none(ptep_get(pte + i)));
|
|
set_pte_at(mm, addr, pte + i, entry);
|
|
}
|
|
} else {
|
|
pte_t entry;
|
|
|
|
entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
|
|
if (write)
|
|
entry = pte_mkwrite(entry, vma);
|
|
if (!young)
|
|
entry = pte_mkold(entry);
|
|
/* NOTE: this may set soft-dirty too on some archs */
|
|
if (dirty)
|
|
entry = pte_mkdirty(entry);
|
|
if (soft_dirty)
|
|
entry = pte_mksoft_dirty(entry);
|
|
if (uffd_wp)
|
|
entry = pte_mkuffd_wp(entry);
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++)
|
|
VM_WARN_ON(!pte_none(ptep_get(pte + i)));
|
|
|
|
set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
|
|
}
|
|
pte_unmap(pte);
|
|
|
|
if (!pmd_migration)
|
|
folio_remove_rmap_pmd(folio, page, vma);
|
|
if (freeze)
|
|
put_page(page);
|
|
|
|
smp_wmb(); /* make pte visible before pmd */
|
|
pmd_populate(mm, pmd, pgtable);
|
|
}
|
|
|
|
void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmd, bool freeze, struct folio *folio)
|
|
{
|
|
VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio));
|
|
VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
|
|
VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
|
|
VM_BUG_ON(freeze && !folio);
|
|
|
|
/*
|
|
* When the caller requests to set up a migration entry, we
|
|
* require a folio to check the PMD against. Otherwise, there
|
|
* is a risk of replacing the wrong folio.
|
|
*/
|
|
if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
|
|
is_pmd_migration_entry(*pmd)) {
|
|
if (folio && folio != pmd_folio(*pmd))
|
|
return;
|
|
__split_huge_pmd_locked(vma, pmd, address, freeze);
|
|
}
|
|
}
|
|
|
|
void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long address, bool freeze, struct folio *folio)
|
|
{
|
|
spinlock_t *ptl;
|
|
struct mmu_notifier_range range;
|
|
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
|
|
address & HPAGE_PMD_MASK,
|
|
(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
ptl = pmd_lock(vma->vm_mm, pmd);
|
|
split_huge_pmd_locked(vma, range.start, pmd, freeze, folio);
|
|
spin_unlock(ptl);
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
}
|
|
|
|
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
|
|
bool freeze, struct folio *folio)
|
|
{
|
|
pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
|
|
|
|
if (!pmd)
|
|
return;
|
|
|
|
__split_huge_pmd(vma, pmd, address, freeze, folio);
|
|
}
|
|
|
|
static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
|
|
{
|
|
/*
|
|
* If the new address isn't hpage aligned and it could previously
|
|
* contain an hugepage: check if we need to split an huge pmd.
|
|
*/
|
|
if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
|
|
range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
|
|
ALIGN(address, HPAGE_PMD_SIZE)))
|
|
split_huge_pmd_address(vma, address, false, NULL);
|
|
}
|
|
|
|
void vma_adjust_trans_huge(struct vm_area_struct *vma,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
long adjust_next)
|
|
{
|
|
/* Check if we need to split start first. */
|
|
split_huge_pmd_if_needed(vma, start);
|
|
|
|
/* Check if we need to split end next. */
|
|
split_huge_pmd_if_needed(vma, end);
|
|
|
|
/*
|
|
* If we're also updating the next vma vm_start,
|
|
* check if we need to split it.
|
|
*/
|
|
if (adjust_next > 0) {
|
|
struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
|
|
unsigned long nstart = next->vm_start;
|
|
nstart += adjust_next;
|
|
split_huge_pmd_if_needed(next, nstart);
|
|
}
|
|
}
|
|
|
|
static void unmap_folio(struct folio *folio)
|
|
{
|
|
enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
|
|
TTU_BATCH_FLUSH;
|
|
|
|
VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
|
|
|
|
if (folio_test_pmd_mappable(folio))
|
|
ttu_flags |= TTU_SPLIT_HUGE_PMD;
|
|
|
|
/*
|
|
* Anon pages need migration entries to preserve them, but file
|
|
* pages can simply be left unmapped, then faulted back on demand.
|
|
* If that is ever changed (perhaps for mlock), update remap_page().
|
|
*/
|
|
if (folio_test_anon(folio))
|
|
try_to_migrate(folio, ttu_flags);
|
|
else
|
|
try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
|
|
|
|
try_to_unmap_flush();
|
|
}
|
|
|
|
static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t *pmdp,
|
|
struct folio *folio)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
int ref_count, map_count;
|
|
pmd_t orig_pmd = *pmdp;
|
|
|
|
if (folio_test_dirty(folio) || pmd_dirty(orig_pmd))
|
|
return false;
|
|
|
|
orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
|
|
|
|
/*
|
|
* Syncing against concurrent GUP-fast:
|
|
* - clear PMD; barrier; read refcount
|
|
* - inc refcount; barrier; read PMD
|
|
*/
|
|
smp_mb();
|
|
|
|
ref_count = folio_ref_count(folio);
|
|
map_count = folio_mapcount(folio);
|
|
|
|
/*
|
|
* Order reads for folio refcount and dirty flag
|
|
* (see comments in __remove_mapping()).
|
|
*/
|
|
smp_rmb();
|
|
|
|
/*
|
|
* If the folio or its PMD is redirtied at this point, or if there
|
|
* are unexpected references, we will give up to discard this folio
|
|
* and remap it.
|
|
*
|
|
* The only folio refs must be one from isolation plus the rmap(s).
|
|
*/
|
|
if (folio_test_dirty(folio) || pmd_dirty(orig_pmd) ||
|
|
ref_count != map_count + 1) {
|
|
set_pmd_at(mm, addr, pmdp, orig_pmd);
|
|
return false;
|
|
}
|
|
|
|
folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
|
|
zap_deposited_table(mm, pmdp);
|
|
add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
|
|
if (vma->vm_flags & VM_LOCKED)
|
|
mlock_drain_local();
|
|
folio_put(folio);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmdp, struct folio *folio)
|
|
{
|
|
VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
|
|
VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
|
|
VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
|
|
|
|
if (folio_test_anon(folio) && !folio_test_swapbacked(folio))
|
|
return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
|
|
|
|
return false;
|
|
}
|
|
|
|
static void remap_page(struct folio *folio, unsigned long nr)
|
|
{
|
|
int i = 0;
|
|
|
|
/* If unmap_folio() uses try_to_migrate() on file, remove this check */
|
|
if (!folio_test_anon(folio))
|
|
return;
|
|
for (;;) {
|
|
remove_migration_ptes(folio, folio, true);
|
|
i += folio_nr_pages(folio);
|
|
if (i >= nr)
|
|
break;
|
|
folio = folio_next(folio);
|
|
}
|
|
}
|
|
|
|
static void lru_add_page_tail(struct page *head, struct page *tail,
|
|
struct lruvec *lruvec, struct list_head *list)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageHead(head), head);
|
|
VM_BUG_ON_PAGE(PageLRU(tail), head);
|
|
lockdep_assert_held(&lruvec->lru_lock);
|
|
|
|
if (list) {
|
|
/* page reclaim is reclaiming a huge page */
|
|
VM_WARN_ON(PageLRU(head));
|
|
get_page(tail);
|
|
list_add_tail(&tail->lru, list);
|
|
} else {
|
|
/* head is still on lru (and we have it frozen) */
|
|
VM_WARN_ON(!PageLRU(head));
|
|
if (PageUnevictable(tail))
|
|
tail->mlock_count = 0;
|
|
else
|
|
list_add_tail(&tail->lru, &head->lru);
|
|
SetPageLRU(tail);
|
|
}
|
|
}
|
|
|
|
static void __split_huge_page_tail(struct folio *folio, int tail,
|
|
struct lruvec *lruvec, struct list_head *list,
|
|
unsigned int new_order)
|
|
{
|
|
struct page *head = &folio->page;
|
|
struct page *page_tail = head + tail;
|
|
/*
|
|
* Careful: new_folio is not a "real" folio before we cleared PageTail.
|
|
* Don't pass it around before clear_compound_head().
|
|
*/
|
|
struct folio *new_folio = (struct folio *)page_tail;
|
|
|
|
VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
|
|
|
|
/*
|
|
* Clone page flags before unfreezing refcount.
|
|
*
|
|
* After successful get_page_unless_zero() might follow flags change,
|
|
* for example lock_page() which set PG_waiters.
|
|
*
|
|
* Note that for mapped sub-pages of an anonymous THP,
|
|
* PG_anon_exclusive has been cleared in unmap_folio() and is stored in
|
|
* the migration entry instead from where remap_page() will restore it.
|
|
* We can still have PG_anon_exclusive set on effectively unmapped and
|
|
* unreferenced sub-pages of an anonymous THP: we can simply drop
|
|
* PG_anon_exclusive (-> PG_mappedtodisk) for these here.
|
|
*/
|
|
page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
|
|
page_tail->flags |= (head->flags &
|
|
((1L << PG_referenced) |
|
|
(1L << PG_swapbacked) |
|
|
(1L << PG_swapcache) |
|
|
(1L << PG_mlocked) |
|
|
(1L << PG_uptodate) |
|
|
(1L << PG_active) |
|
|
(1L << PG_workingset) |
|
|
(1L << PG_locked) |
|
|
(1L << PG_unevictable) |
|
|
#ifdef CONFIG_ARCH_USES_PG_ARCH_X
|
|
(1L << PG_arch_2) |
|
|
(1L << PG_arch_3) |
|
|
#endif
|
|
(1L << PG_dirty) |
|
|
LRU_GEN_MASK | LRU_REFS_MASK));
|
|
|
|
/* ->mapping in first and second tail page is replaced by other uses */
|
|
VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
|
|
page_tail);
|
|
page_tail->mapping = head->mapping;
|
|
page_tail->index = head->index + tail;
|
|
|
|
/*
|
|
* page->private should not be set in tail pages. Fix up and warn once
|
|
* if private is unexpectedly set.
|
|
*/
|
|
if (unlikely(page_tail->private)) {
|
|
VM_WARN_ON_ONCE_PAGE(true, page_tail);
|
|
page_tail->private = 0;
|
|
}
|
|
if (folio_test_swapcache(folio))
|
|
new_folio->swap.val = folio->swap.val + tail;
|
|
|
|
/* Page flags must be visible before we make the page non-compound. */
|
|
smp_wmb();
|
|
|
|
/*
|
|
* Clear PageTail before unfreezing page refcount.
|
|
*
|
|
* After successful get_page_unless_zero() might follow put_page()
|
|
* which needs correct compound_head().
|
|
*/
|
|
clear_compound_head(page_tail);
|
|
if (new_order) {
|
|
prep_compound_page(page_tail, new_order);
|
|
folio_set_large_rmappable(new_folio);
|
|
}
|
|
|
|
/* Finally unfreeze refcount. Additional reference from page cache. */
|
|
page_ref_unfreeze(page_tail,
|
|
1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ?
|
|
folio_nr_pages(new_folio) : 0));
|
|
|
|
if (folio_test_young(folio))
|
|
folio_set_young(new_folio);
|
|
if (folio_test_idle(folio))
|
|
folio_set_idle(new_folio);
|
|
|
|
folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
|
|
|
|
/*
|
|
* always add to the tail because some iterators expect new
|
|
* pages to show after the currently processed elements - e.g.
|
|
* migrate_pages
|
|
*/
|
|
lru_add_page_tail(head, page_tail, lruvec, list);
|
|
}
|
|
|
|
static void __split_huge_page(struct page *page, struct list_head *list,
|
|
pgoff_t end, unsigned int new_order)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
struct page *head = &folio->page;
|
|
struct lruvec *lruvec;
|
|
struct address_space *swap_cache = NULL;
|
|
unsigned long offset = 0;
|
|
int i, nr_dropped = 0;
|
|
unsigned int new_nr = 1 << new_order;
|
|
int order = folio_order(folio);
|
|
unsigned int nr = 1 << order;
|
|
|
|
/* complete memcg works before add pages to LRU */
|
|
split_page_memcg(head, order, new_order);
|
|
|
|
if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
|
|
offset = swap_cache_index(folio->swap);
|
|
swap_cache = swap_address_space(folio->swap);
|
|
xa_lock(&swap_cache->i_pages);
|
|
}
|
|
|
|
/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
|
|
lruvec = folio_lruvec_lock(folio);
|
|
|
|
ClearPageHasHWPoisoned(head);
|
|
|
|
for (i = nr - new_nr; i >= new_nr; i -= new_nr) {
|
|
__split_huge_page_tail(folio, i, lruvec, list, new_order);
|
|
/* Some pages can be beyond EOF: drop them from page cache */
|
|
if (head[i].index >= end) {
|
|
struct folio *tail = page_folio(head + i);
|
|
|
|
if (shmem_mapping(folio->mapping))
|
|
nr_dropped++;
|
|
else if (folio_test_clear_dirty(tail))
|
|
folio_account_cleaned(tail,
|
|
inode_to_wb(folio->mapping->host));
|
|
__filemap_remove_folio(tail, NULL);
|
|
folio_put(tail);
|
|
} else if (!PageAnon(page)) {
|
|
__xa_store(&folio->mapping->i_pages, head[i].index,
|
|
head + i, 0);
|
|
} else if (swap_cache) {
|
|
__xa_store(&swap_cache->i_pages, offset + i,
|
|
head + i, 0);
|
|
}
|
|
}
|
|
|
|
if (!new_order)
|
|
ClearPageCompound(head);
|
|
else {
|
|
struct folio *new_folio = (struct folio *)head;
|
|
|
|
folio_set_order(new_folio, new_order);
|
|
}
|
|
unlock_page_lruvec(lruvec);
|
|
/* Caller disabled irqs, so they are still disabled here */
|
|
|
|
split_page_owner(head, order, new_order);
|
|
pgalloc_tag_split(head, 1 << order);
|
|
|
|
/* See comment in __split_huge_page_tail() */
|
|
if (folio_test_anon(folio)) {
|
|
/* Additional pin to swap cache */
|
|
if (folio_test_swapcache(folio)) {
|
|
folio_ref_add(folio, 1 + new_nr);
|
|
xa_unlock(&swap_cache->i_pages);
|
|
} else {
|
|
folio_ref_inc(folio);
|
|
}
|
|
} else {
|
|
/* Additional pin to page cache */
|
|
folio_ref_add(folio, 1 + new_nr);
|
|
xa_unlock(&folio->mapping->i_pages);
|
|
}
|
|
local_irq_enable();
|
|
|
|
if (nr_dropped)
|
|
shmem_uncharge(folio->mapping->host, nr_dropped);
|
|
remap_page(folio, nr);
|
|
|
|
/*
|
|
* set page to its compound_head when split to non order-0 pages, so
|
|
* we can skip unlocking it below, since PG_locked is transferred to
|
|
* the compound_head of the page and the caller will unlock it.
|
|
*/
|
|
if (new_order)
|
|
page = compound_head(page);
|
|
|
|
for (i = 0; i < nr; i += new_nr) {
|
|
struct page *subpage = head + i;
|
|
struct folio *new_folio = page_folio(subpage);
|
|
if (subpage == page)
|
|
continue;
|
|
folio_unlock(new_folio);
|
|
|
|
/*
|
|
* Subpages may be freed if there wasn't any mapping
|
|
* like if add_to_swap() is running on a lru page that
|
|
* had its mapping zapped. And freeing these pages
|
|
* requires taking the lru_lock so we do the put_page
|
|
* of the tail pages after the split is complete.
|
|
*/
|
|
free_page_and_swap_cache(subpage);
|
|
}
|
|
}
|
|
|
|
/* Racy check whether the huge page can be split */
|
|
bool can_split_folio(struct folio *folio, int *pextra_pins)
|
|
{
|
|
int extra_pins;
|
|
|
|
/* Additional pins from page cache */
|
|
if (folio_test_anon(folio))
|
|
extra_pins = folio_test_swapcache(folio) ?
|
|
folio_nr_pages(folio) : 0;
|
|
else
|
|
extra_pins = folio_nr_pages(folio);
|
|
if (pextra_pins)
|
|
*pextra_pins = extra_pins;
|
|
return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
|
|
}
|
|
|
|
/*
|
|
* This function splits a large folio into smaller folios of order @new_order.
|
|
* @page can point to any page of the large folio to split. The split operation
|
|
* does not change the position of @page.
|
|
*
|
|
* Prerequisites:
|
|
*
|
|
* 1) The caller must hold a reference on the @page's owning folio, also known
|
|
* as the large folio.
|
|
*
|
|
* 2) The large folio must be locked.
|
|
*
|
|
* 3) The folio must not be pinned. Any unexpected folio references, including
|
|
* GUP pins, will result in the folio not getting split; instead, the caller
|
|
* will receive an -EAGAIN.
|
|
*
|
|
* 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
|
|
* supported for non-file-backed folios, because folio->_deferred_list, which
|
|
* is used by partially mapped folios, is stored in subpage 2, but an order-1
|
|
* folio only has subpages 0 and 1. File-backed order-1 folios are supported,
|
|
* since they do not use _deferred_list.
|
|
*
|
|
* After splitting, the caller's folio reference will be transferred to @page,
|
|
* resulting in a raised refcount of @page after this call. The other pages may
|
|
* be freed if they are not mapped.
|
|
*
|
|
* If @list is null, tail pages will be added to LRU list, otherwise, to @list.
|
|
*
|
|
* Pages in @new_order will inherit the mapping, flags, and so on from the
|
|
* huge page.
|
|
*
|
|
* Returns 0 if the huge page was split successfully.
|
|
*
|
|
* Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
|
|
* the folio was concurrently removed from the page cache.
|
|
*
|
|
* Returns -EBUSY when trying to split the huge zeropage, if the folio is
|
|
* under writeback, if fs-specific folio metadata cannot currently be
|
|
* released, or if some unexpected race happened (e.g., anon VMA disappeared,
|
|
* truncation).
|
|
*
|
|
* Returns -EINVAL when trying to split to an order that is incompatible
|
|
* with the folio. Splitting to order 0 is compatible with all folios.
|
|
*/
|
|
int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
|
|
unsigned int new_order)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
struct deferred_split *ds_queue = get_deferred_split_queue(folio);
|
|
/* reset xarray order to new order after split */
|
|
XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order);
|
|
struct anon_vma *anon_vma = NULL;
|
|
struct address_space *mapping = NULL;
|
|
int order = folio_order(folio);
|
|
int extra_pins, ret;
|
|
pgoff_t end;
|
|
bool is_hzp;
|
|
|
|
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
|
|
VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
|
|
|
|
if (new_order >= folio_order(folio))
|
|
return -EINVAL;
|
|
|
|
if (folio_test_anon(folio)) {
|
|
/* order-1 is not supported for anonymous THP. */
|
|
if (new_order == 1) {
|
|
VM_WARN_ONCE(1, "Cannot split to order-1 folio");
|
|
return -EINVAL;
|
|
}
|
|
} else if (new_order) {
|
|
/* Split shmem folio to non-zero order not supported */
|
|
if (shmem_mapping(folio->mapping)) {
|
|
VM_WARN_ONCE(1,
|
|
"Cannot split shmem folio to non-0 order");
|
|
return -EINVAL;
|
|
}
|
|
/*
|
|
* No split if the file system does not support large folio.
|
|
* Note that we might still have THPs in such mappings due to
|
|
* CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
|
|
* does not actually support large folios properly.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
|
|
!mapping_large_folio_support(folio->mapping)) {
|
|
VM_WARN_ONCE(1,
|
|
"Cannot split file folio to non-0 order");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Only swapping a whole PMD-mapped folio is supported */
|
|
if (folio_test_swapcache(folio) && new_order)
|
|
return -EINVAL;
|
|
|
|
is_hzp = is_huge_zero_folio(folio);
|
|
if (is_hzp) {
|
|
pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (folio_test_writeback(folio))
|
|
return -EBUSY;
|
|
|
|
if (folio_test_anon(folio)) {
|
|
/*
|
|
* The caller does not necessarily hold an mmap_lock that would
|
|
* prevent the anon_vma disappearing so we first we take a
|
|
* reference to it and then lock the anon_vma for write. This
|
|
* is similar to folio_lock_anon_vma_read except the write lock
|
|
* is taken to serialise against parallel split or collapse
|
|
* operations.
|
|
*/
|
|
anon_vma = folio_get_anon_vma(folio);
|
|
if (!anon_vma) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
end = -1;
|
|
mapping = NULL;
|
|
anon_vma_lock_write(anon_vma);
|
|
} else {
|
|
gfp_t gfp;
|
|
|
|
mapping = folio->mapping;
|
|
|
|
/* Truncated ? */
|
|
if (!mapping) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
gfp = current_gfp_context(mapping_gfp_mask(mapping) &
|
|
GFP_RECLAIM_MASK);
|
|
|
|
if (!filemap_release_folio(folio, gfp)) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
xas_split_alloc(&xas, folio, folio_order(folio), gfp);
|
|
if (xas_error(&xas)) {
|
|
ret = xas_error(&xas);
|
|
goto out;
|
|
}
|
|
|
|
anon_vma = NULL;
|
|
i_mmap_lock_read(mapping);
|
|
|
|
/*
|
|
*__split_huge_page() may need to trim off pages beyond EOF:
|
|
* but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
|
|
* which cannot be nested inside the page tree lock. So note
|
|
* end now: i_size itself may be changed at any moment, but
|
|
* folio lock is good enough to serialize the trimming.
|
|
*/
|
|
end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
|
|
if (shmem_mapping(mapping))
|
|
end = shmem_fallocend(mapping->host, end);
|
|
}
|
|
|
|
/*
|
|
* Racy check if we can split the page, before unmap_folio() will
|
|
* split PMDs
|
|
*/
|
|
if (!can_split_folio(folio, &extra_pins)) {
|
|
ret = -EAGAIN;
|
|
goto out_unlock;
|
|
}
|
|
|
|
unmap_folio(folio);
|
|
|
|
/* block interrupt reentry in xa_lock and spinlock */
|
|
local_irq_disable();
|
|
if (mapping) {
|
|
/*
|
|
* Check if the folio is present in page cache.
|
|
* We assume all tail are present too, if folio is there.
|
|
*/
|
|
xas_lock(&xas);
|
|
xas_reset(&xas);
|
|
if (xas_load(&xas) != folio)
|
|
goto fail;
|
|
}
|
|
|
|
/* Prevent deferred_split_scan() touching ->_refcount */
|
|
spin_lock(&ds_queue->split_queue_lock);
|
|
if (folio_ref_freeze(folio, 1 + extra_pins)) {
|
|
if (folio_order(folio) > 1 &&
|
|
!list_empty(&folio->_deferred_list)) {
|
|
ds_queue->split_queue_len--;
|
|
/*
|
|
* Reinitialize page_deferred_list after removing the
|
|
* page from the split_queue, otherwise a subsequent
|
|
* split will see list corruption when checking the
|
|
* page_deferred_list.
|
|
*/
|
|
list_del_init(&folio->_deferred_list);
|
|
}
|
|
spin_unlock(&ds_queue->split_queue_lock);
|
|
if (mapping) {
|
|
int nr = folio_nr_pages(folio);
|
|
|
|
xas_split(&xas, folio, folio_order(folio));
|
|
if (folio_test_pmd_mappable(folio) &&
|
|
new_order < HPAGE_PMD_ORDER) {
|
|
if (folio_test_swapbacked(folio)) {
|
|
__lruvec_stat_mod_folio(folio,
|
|
NR_SHMEM_THPS, -nr);
|
|
} else {
|
|
__lruvec_stat_mod_folio(folio,
|
|
NR_FILE_THPS, -nr);
|
|
filemap_nr_thps_dec(mapping);
|
|
}
|
|
}
|
|
}
|
|
|
|
__split_huge_page(page, list, end, new_order);
|
|
ret = 0;
|
|
} else {
|
|
spin_unlock(&ds_queue->split_queue_lock);
|
|
fail:
|
|
if (mapping)
|
|
xas_unlock(&xas);
|
|
local_irq_enable();
|
|
remap_page(folio, folio_nr_pages(folio));
|
|
ret = -EAGAIN;
|
|
}
|
|
|
|
out_unlock:
|
|
if (anon_vma) {
|
|
anon_vma_unlock_write(anon_vma);
|
|
put_anon_vma(anon_vma);
|
|
}
|
|
if (mapping)
|
|
i_mmap_unlock_read(mapping);
|
|
out:
|
|
xas_destroy(&xas);
|
|
if (order == HPAGE_PMD_ORDER)
|
|
count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
|
|
count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
|
|
return ret;
|
|
}
|
|
|
|
void __folio_undo_large_rmappable(struct folio *folio)
|
|
{
|
|
struct deferred_split *ds_queue;
|
|
unsigned long flags;
|
|
|
|
ds_queue = get_deferred_split_queue(folio);
|
|
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
|
|
if (!list_empty(&folio->_deferred_list)) {
|
|
ds_queue->split_queue_len--;
|
|
list_del_init(&folio->_deferred_list);
|
|
}
|
|
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
|
|
}
|
|
|
|
void deferred_split_folio(struct folio *folio)
|
|
{
|
|
struct deferred_split *ds_queue = get_deferred_split_queue(folio);
|
|
#ifdef CONFIG_MEMCG
|
|
struct mem_cgroup *memcg = folio_memcg(folio);
|
|
#endif
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Order 1 folios have no space for a deferred list, but we also
|
|
* won't waste much memory by not adding them to the deferred list.
|
|
*/
|
|
if (folio_order(folio) <= 1)
|
|
return;
|
|
|
|
/*
|
|
* The try_to_unmap() in page reclaim path might reach here too,
|
|
* this may cause a race condition to corrupt deferred split queue.
|
|
* And, if page reclaim is already handling the same folio, it is
|
|
* unnecessary to handle it again in shrinker.
|
|
*
|
|
* Check the swapcache flag to determine if the folio is being
|
|
* handled by page reclaim since THP swap would add the folio into
|
|
* swap cache before calling try_to_unmap().
|
|
*/
|
|
if (folio_test_swapcache(folio))
|
|
return;
|
|
|
|
if (!list_empty(&folio->_deferred_list))
|
|
return;
|
|
|
|
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
|
|
if (list_empty(&folio->_deferred_list)) {
|
|
if (folio_test_pmd_mappable(folio))
|
|
count_vm_event(THP_DEFERRED_SPLIT_PAGE);
|
|
count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
|
|
list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
|
|
ds_queue->split_queue_len++;
|
|
#ifdef CONFIG_MEMCG
|
|
if (memcg)
|
|
set_shrinker_bit(memcg, folio_nid(folio),
|
|
deferred_split_shrinker->id);
|
|
#endif
|
|
}
|
|
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
|
|
}
|
|
|
|
static unsigned long deferred_split_count(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct pglist_data *pgdata = NODE_DATA(sc->nid);
|
|
struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
if (sc->memcg)
|
|
ds_queue = &sc->memcg->deferred_split_queue;
|
|
#endif
|
|
return READ_ONCE(ds_queue->split_queue_len);
|
|
}
|
|
|
|
static unsigned long deferred_split_scan(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct pglist_data *pgdata = NODE_DATA(sc->nid);
|
|
struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
|
|
unsigned long flags;
|
|
LIST_HEAD(list);
|
|
struct folio *folio, *next;
|
|
int split = 0;
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
if (sc->memcg)
|
|
ds_queue = &sc->memcg->deferred_split_queue;
|
|
#endif
|
|
|
|
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
|
|
/* Take pin on all head pages to avoid freeing them under us */
|
|
list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
|
|
_deferred_list) {
|
|
if (folio_try_get(folio)) {
|
|
list_move(&folio->_deferred_list, &list);
|
|
} else {
|
|
/* We lost race with folio_put() */
|
|
list_del_init(&folio->_deferred_list);
|
|
ds_queue->split_queue_len--;
|
|
}
|
|
if (!--sc->nr_to_scan)
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
|
|
|
|
list_for_each_entry_safe(folio, next, &list, _deferred_list) {
|
|
if (!folio_trylock(folio))
|
|
goto next;
|
|
/* split_huge_page() removes page from list on success */
|
|
if (!split_folio(folio))
|
|
split++;
|
|
folio_unlock(folio);
|
|
next:
|
|
folio_put(folio);
|
|
}
|
|
|
|
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
|
|
list_splice_tail(&list, &ds_queue->split_queue);
|
|
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
|
|
|
|
/*
|
|
* Stop shrinker if we didn't split any page, but the queue is empty.
|
|
* This can happen if pages were freed under us.
|
|
*/
|
|
if (!split && list_empty(&ds_queue->split_queue))
|
|
return SHRINK_STOP;
|
|
return split;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static void split_huge_pages_all(void)
|
|
{
|
|
struct zone *zone;
|
|
struct page *page;
|
|
struct folio *folio;
|
|
unsigned long pfn, max_zone_pfn;
|
|
unsigned long total = 0, split = 0;
|
|
|
|
pr_debug("Split all THPs\n");
|
|
for_each_zone(zone) {
|
|
if (!managed_zone(zone))
|
|
continue;
|
|
max_zone_pfn = zone_end_pfn(zone);
|
|
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
|
|
int nr_pages;
|
|
|
|
page = pfn_to_online_page(pfn);
|
|
if (!page || PageTail(page))
|
|
continue;
|
|
folio = page_folio(page);
|
|
if (!folio_try_get(folio))
|
|
continue;
|
|
|
|
if (unlikely(page_folio(page) != folio))
|
|
goto next;
|
|
|
|
if (zone != folio_zone(folio))
|
|
goto next;
|
|
|
|
if (!folio_test_large(folio)
|
|
|| folio_test_hugetlb(folio)
|
|
|| !folio_test_lru(folio))
|
|
goto next;
|
|
|
|
total++;
|
|
folio_lock(folio);
|
|
nr_pages = folio_nr_pages(folio);
|
|
if (!split_folio(folio))
|
|
split++;
|
|
pfn += nr_pages - 1;
|
|
folio_unlock(folio);
|
|
next:
|
|
folio_put(folio);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
pr_debug("%lu of %lu THP split\n", split, total);
|
|
}
|
|
|
|
static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
|
|
{
|
|
return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
|
|
is_vm_hugetlb_page(vma);
|
|
}
|
|
|
|
static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
|
|
unsigned long vaddr_end, unsigned int new_order)
|
|
{
|
|
int ret = 0;
|
|
struct task_struct *task;
|
|
struct mm_struct *mm;
|
|
unsigned long total = 0, split = 0;
|
|
unsigned long addr;
|
|
|
|
vaddr_start &= PAGE_MASK;
|
|
vaddr_end &= PAGE_MASK;
|
|
|
|
/* Find the task_struct from pid */
|
|
rcu_read_lock();
|
|
task = find_task_by_vpid(pid);
|
|
if (!task) {
|
|
rcu_read_unlock();
|
|
ret = -ESRCH;
|
|
goto out;
|
|
}
|
|
get_task_struct(task);
|
|
rcu_read_unlock();
|
|
|
|
/* Find the mm_struct */
|
|
mm = get_task_mm(task);
|
|
put_task_struct(task);
|
|
|
|
if (!mm) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
|
|
pid, vaddr_start, vaddr_end);
|
|
|
|
mmap_read_lock(mm);
|
|
/*
|
|
* always increase addr by PAGE_SIZE, since we could have a PTE page
|
|
* table filled with PTE-mapped THPs, each of which is distinct.
|
|
*/
|
|
for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
|
|
struct vm_area_struct *vma = vma_lookup(mm, addr);
|
|
struct page *page;
|
|
struct folio *folio;
|
|
|
|
if (!vma)
|
|
break;
|
|
|
|
/* skip special VMA and hugetlb VMA */
|
|
if (vma_not_suitable_for_thp_split(vma)) {
|
|
addr = vma->vm_end;
|
|
continue;
|
|
}
|
|
|
|
/* FOLL_DUMP to ignore special (like zero) pages */
|
|
page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
|
|
|
|
if (IS_ERR_OR_NULL(page))
|
|
continue;
|
|
|
|
folio = page_folio(page);
|
|
if (!is_transparent_hugepage(folio))
|
|
goto next;
|
|
|
|
if (new_order >= folio_order(folio))
|
|
goto next;
|
|
|
|
total++;
|
|
/*
|
|
* For folios with private, split_huge_page_to_list_to_order()
|
|
* will try to drop it before split and then check if the folio
|
|
* can be split or not. So skip the check here.
|
|
*/
|
|
if (!folio_test_private(folio) &&
|
|
!can_split_folio(folio, NULL))
|
|
goto next;
|
|
|
|
if (!folio_trylock(folio))
|
|
goto next;
|
|
|
|
if (!split_folio_to_order(folio, new_order))
|
|
split++;
|
|
|
|
folio_unlock(folio);
|
|
next:
|
|
folio_put(folio);
|
|
cond_resched();
|
|
}
|
|
mmap_read_unlock(mm);
|
|
mmput(mm);
|
|
|
|
pr_debug("%lu of %lu THP split\n", split, total);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
|
|
pgoff_t off_end, unsigned int new_order)
|
|
{
|
|
struct filename *file;
|
|
struct file *candidate;
|
|
struct address_space *mapping;
|
|
int ret = -EINVAL;
|
|
pgoff_t index;
|
|
int nr_pages = 1;
|
|
unsigned long total = 0, split = 0;
|
|
|
|
file = getname_kernel(file_path);
|
|
if (IS_ERR(file))
|
|
return ret;
|
|
|
|
candidate = file_open_name(file, O_RDONLY, 0);
|
|
if (IS_ERR(candidate))
|
|
goto out;
|
|
|
|
pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
|
|
file_path, off_start, off_end);
|
|
|
|
mapping = candidate->f_mapping;
|
|
|
|
for (index = off_start; index < off_end; index += nr_pages) {
|
|
struct folio *folio = filemap_get_folio(mapping, index);
|
|
|
|
nr_pages = 1;
|
|
if (IS_ERR(folio))
|
|
continue;
|
|
|
|
if (!folio_test_large(folio))
|
|
goto next;
|
|
|
|
total++;
|
|
nr_pages = folio_nr_pages(folio);
|
|
|
|
if (new_order >= folio_order(folio))
|
|
goto next;
|
|
|
|
if (!folio_trylock(folio))
|
|
goto next;
|
|
|
|
if (!split_folio_to_order(folio, new_order))
|
|
split++;
|
|
|
|
folio_unlock(folio);
|
|
next:
|
|
folio_put(folio);
|
|
cond_resched();
|
|
}
|
|
|
|
filp_close(candidate, NULL);
|
|
ret = 0;
|
|
|
|
pr_debug("%lu of %lu file-backed THP split\n", split, total);
|
|
out:
|
|
putname(file);
|
|
return ret;
|
|
}
|
|
|
|
#define MAX_INPUT_BUF_SZ 255
|
|
|
|
static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppops)
|
|
{
|
|
static DEFINE_MUTEX(split_debug_mutex);
|
|
ssize_t ret;
|
|
/*
|
|
* hold pid, start_vaddr, end_vaddr, new_order or
|
|
* file_path, off_start, off_end, new_order
|
|
*/
|
|
char input_buf[MAX_INPUT_BUF_SZ];
|
|
int pid;
|
|
unsigned long vaddr_start, vaddr_end;
|
|
unsigned int new_order = 0;
|
|
|
|
ret = mutex_lock_interruptible(&split_debug_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = -EFAULT;
|
|
|
|
memset(input_buf, 0, MAX_INPUT_BUF_SZ);
|
|
if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
|
|
goto out;
|
|
|
|
input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
|
|
|
|
if (input_buf[0] == '/') {
|
|
char *tok;
|
|
char *buf = input_buf;
|
|
char file_path[MAX_INPUT_BUF_SZ];
|
|
pgoff_t off_start = 0, off_end = 0;
|
|
size_t input_len = strlen(input_buf);
|
|
|
|
tok = strsep(&buf, ",");
|
|
if (tok) {
|
|
strcpy(file_path, tok);
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order);
|
|
if (ret != 2 && ret != 3) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order);
|
|
if (!ret)
|
|
ret = input_len;
|
|
|
|
goto out;
|
|
}
|
|
|
|
ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order);
|
|
if (ret == 1 && pid == 1) {
|
|
split_huge_pages_all();
|
|
ret = strlen(input_buf);
|
|
goto out;
|
|
} else if (ret != 3 && ret != 4) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order);
|
|
if (!ret)
|
|
ret = strlen(input_buf);
|
|
out:
|
|
mutex_unlock(&split_debug_mutex);
|
|
return ret;
|
|
|
|
}
|
|
|
|
static const struct file_operations split_huge_pages_fops = {
|
|
.owner = THIS_MODULE,
|
|
.write = split_huge_pages_write,
|
|
.llseek = no_llseek,
|
|
};
|
|
|
|
static int __init split_huge_pages_debugfs(void)
|
|
{
|
|
debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
|
|
&split_huge_pages_fops);
|
|
return 0;
|
|
}
|
|
late_initcall(split_huge_pages_debugfs);
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
|
|
struct page *page)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
struct vm_area_struct *vma = pvmw->vma;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long address = pvmw->address;
|
|
bool anon_exclusive;
|
|
pmd_t pmdval;
|
|
swp_entry_t entry;
|
|
pmd_t pmdswp;
|
|
|
|
if (!(pvmw->pmd && !pvmw->pte))
|
|
return 0;
|
|
|
|
flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
|
|
pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
|
|
|
|
/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
|
|
anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
|
|
if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
|
|
set_pmd_at(mm, address, pvmw->pmd, pmdval);
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (pmd_dirty(pmdval))
|
|
folio_mark_dirty(folio);
|
|
if (pmd_write(pmdval))
|
|
entry = make_writable_migration_entry(page_to_pfn(page));
|
|
else if (anon_exclusive)
|
|
entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
|
|
else
|
|
entry = make_readable_migration_entry(page_to_pfn(page));
|
|
if (pmd_young(pmdval))
|
|
entry = make_migration_entry_young(entry);
|
|
if (pmd_dirty(pmdval))
|
|
entry = make_migration_entry_dirty(entry);
|
|
pmdswp = swp_entry_to_pmd(entry);
|
|
if (pmd_soft_dirty(pmdval))
|
|
pmdswp = pmd_swp_mksoft_dirty(pmdswp);
|
|
if (pmd_uffd_wp(pmdval))
|
|
pmdswp = pmd_swp_mkuffd_wp(pmdswp);
|
|
set_pmd_at(mm, address, pvmw->pmd, pmdswp);
|
|
folio_remove_rmap_pmd(folio, page, vma);
|
|
folio_put(folio);
|
|
trace_set_migration_pmd(address, pmd_val(pmdswp));
|
|
|
|
return 0;
|
|
}
|
|
|
|
void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
|
|
{
|
|
struct folio *folio = page_folio(new);
|
|
struct vm_area_struct *vma = pvmw->vma;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long address = pvmw->address;
|
|
unsigned long haddr = address & HPAGE_PMD_MASK;
|
|
pmd_t pmde;
|
|
swp_entry_t entry;
|
|
|
|
if (!(pvmw->pmd && !pvmw->pte))
|
|
return;
|
|
|
|
entry = pmd_to_swp_entry(*pvmw->pmd);
|
|
folio_get(folio);
|
|
pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
|
|
if (pmd_swp_soft_dirty(*pvmw->pmd))
|
|
pmde = pmd_mksoft_dirty(pmde);
|
|
if (is_writable_migration_entry(entry))
|
|
pmde = pmd_mkwrite(pmde, vma);
|
|
if (pmd_swp_uffd_wp(*pvmw->pmd))
|
|
pmde = pmd_mkuffd_wp(pmde);
|
|
if (!is_migration_entry_young(entry))
|
|
pmde = pmd_mkold(pmde);
|
|
/* NOTE: this may contain setting soft-dirty on some archs */
|
|
if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
|
|
pmde = pmd_mkdirty(pmde);
|
|
|
|
if (folio_test_anon(folio)) {
|
|
rmap_t rmap_flags = RMAP_NONE;
|
|
|
|
if (!is_readable_migration_entry(entry))
|
|
rmap_flags |= RMAP_EXCLUSIVE;
|
|
|
|
folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
|
|
} else {
|
|
folio_add_file_rmap_pmd(folio, new, vma);
|
|
}
|
|
VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
|
|
set_pmd_at(mm, haddr, pvmw->pmd, pmde);
|
|
|
|
/* No need to invalidate - it was non-present before */
|
|
update_mmu_cache_pmd(vma, address, pvmw->pmd);
|
|
trace_remove_migration_pmd(address, pmd_val(pmde));
|
|
}
|
|
#endif
|