mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 16:24:13 +08:00
412c6ef986
There is a lot of code needs to set the range of vma in mmap.c, introduce vma_set_range() to simplify the code. Link: https://lkml.kernel.org/r/20240124035719.3685193-1-yajun.deng@linux.dev Signed-off-by: Yajun Deng <yajun.deng@linux.dev> Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1279 lines
39 KiB
C
1279 lines
39 KiB
C
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
/* internal.h: mm/ internal definitions
|
|
*
|
|
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
#ifndef __MM_INTERNAL_H
|
|
#define __MM_INTERNAL_H
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/tracepoint-defs.h>
|
|
|
|
struct folio_batch;
|
|
|
|
/*
|
|
* The set of flags that only affect watermark checking and reclaim
|
|
* behaviour. This is used by the MM to obey the caller constraints
|
|
* about IO, FS and watermark checking while ignoring placement
|
|
* hints such as HIGHMEM usage.
|
|
*/
|
|
#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
|
|
__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
|
|
__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
|
|
__GFP_NOLOCKDEP)
|
|
|
|
/* The GFP flags allowed during early boot */
|
|
#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
|
|
|
|
/* Control allocation cpuset and node placement constraints */
|
|
#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
|
|
|
|
/* Do not use these with a slab allocator */
|
|
#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
|
|
|
|
/*
|
|
* Different from WARN_ON_ONCE(), no warning will be issued
|
|
* when we specify __GFP_NOWARN.
|
|
*/
|
|
#define WARN_ON_ONCE_GFP(cond, gfp) ({ \
|
|
static bool __section(".data.once") __warned; \
|
|
int __ret_warn_once = !!(cond); \
|
|
\
|
|
if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
|
|
__warned = true; \
|
|
WARN_ON(1); \
|
|
} \
|
|
unlikely(__ret_warn_once); \
|
|
})
|
|
|
|
void page_writeback_init(void);
|
|
|
|
/*
|
|
* If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
|
|
* its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
|
|
* above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
|
|
* leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
|
|
*/
|
|
#define ENTIRELY_MAPPED 0x800000
|
|
#define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1)
|
|
|
|
/*
|
|
* Flags passed to __show_mem() and show_free_areas() to suppress output in
|
|
* various contexts.
|
|
*/
|
|
#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
|
|
|
|
/*
|
|
* How many individual pages have an elevated _mapcount. Excludes
|
|
* the folio's entire_mapcount.
|
|
*/
|
|
static inline int folio_nr_pages_mapped(struct folio *folio)
|
|
{
|
|
return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
|
|
}
|
|
|
|
static inline void *folio_raw_mapping(struct folio *folio)
|
|
{
|
|
unsigned long mapping = (unsigned long)folio->mapping;
|
|
|
|
return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
|
|
}
|
|
|
|
void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
|
|
int nr_throttled);
|
|
static inline void acct_reclaim_writeback(struct folio *folio)
|
|
{
|
|
pg_data_t *pgdat = folio_pgdat(folio);
|
|
int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
|
|
|
|
if (nr_throttled)
|
|
__acct_reclaim_writeback(pgdat, folio, nr_throttled);
|
|
}
|
|
|
|
static inline void wake_throttle_isolated(pg_data_t *pgdat)
|
|
{
|
|
wait_queue_head_t *wqh;
|
|
|
|
wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
|
|
if (waitqueue_active(wqh))
|
|
wake_up(wqh);
|
|
}
|
|
|
|
vm_fault_t do_swap_page(struct vm_fault *vmf);
|
|
void folio_rotate_reclaimable(struct folio *folio);
|
|
bool __folio_end_writeback(struct folio *folio);
|
|
void deactivate_file_folio(struct folio *folio);
|
|
void folio_activate(struct folio *folio);
|
|
|
|
void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
|
|
struct vm_area_struct *start_vma, unsigned long floor,
|
|
unsigned long ceiling, bool mm_wr_locked);
|
|
void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
|
|
|
|
struct zap_details;
|
|
void unmap_page_range(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma,
|
|
unsigned long addr, unsigned long end,
|
|
struct zap_details *details);
|
|
|
|
void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
|
|
unsigned int order);
|
|
void force_page_cache_ra(struct readahead_control *, unsigned long nr);
|
|
static inline void force_page_cache_readahead(struct address_space *mapping,
|
|
struct file *file, pgoff_t index, unsigned long nr_to_read)
|
|
{
|
|
DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
|
|
force_page_cache_ra(&ractl, nr_to_read);
|
|
}
|
|
|
|
unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
|
|
pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
|
|
unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
|
|
pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
|
|
void filemap_free_folio(struct address_space *mapping, struct folio *folio);
|
|
int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
|
|
bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
|
|
loff_t end);
|
|
long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
|
|
unsigned long mapping_try_invalidate(struct address_space *mapping,
|
|
pgoff_t start, pgoff_t end, unsigned long *nr_failed);
|
|
|
|
/**
|
|
* folio_evictable - Test whether a folio is evictable.
|
|
* @folio: The folio to test.
|
|
*
|
|
* Test whether @folio is evictable -- i.e., should be placed on
|
|
* active/inactive lists vs unevictable list.
|
|
*
|
|
* Reasons folio might not be evictable:
|
|
* 1. folio's mapping marked unevictable
|
|
* 2. One of the pages in the folio is part of an mlocked VMA
|
|
*/
|
|
static inline bool folio_evictable(struct folio *folio)
|
|
{
|
|
bool ret;
|
|
|
|
/* Prevent address_space of inode and swap cache from being freed */
|
|
rcu_read_lock();
|
|
ret = !mapping_unevictable(folio_mapping(folio)) &&
|
|
!folio_test_mlocked(folio);
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Turn a non-refcounted page (->_refcount == 0) into refcounted with
|
|
* a count of one.
|
|
*/
|
|
static inline void set_page_refcounted(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(PageTail(page), page);
|
|
VM_BUG_ON_PAGE(page_ref_count(page), page);
|
|
set_page_count(page, 1);
|
|
}
|
|
|
|
/*
|
|
* Return true if a folio needs ->release_folio() calling upon it.
|
|
*/
|
|
static inline bool folio_needs_release(struct folio *folio)
|
|
{
|
|
struct address_space *mapping = folio_mapping(folio);
|
|
|
|
return folio_has_private(folio) ||
|
|
(mapping && mapping_release_always(mapping));
|
|
}
|
|
|
|
extern unsigned long highest_memmap_pfn;
|
|
|
|
/*
|
|
* Maximum number of reclaim retries without progress before the OOM
|
|
* killer is consider the only way forward.
|
|
*/
|
|
#define MAX_RECLAIM_RETRIES 16
|
|
|
|
/*
|
|
* in mm/vmscan.c:
|
|
*/
|
|
bool isolate_lru_page(struct page *page);
|
|
bool folio_isolate_lru(struct folio *folio);
|
|
void putback_lru_page(struct page *page);
|
|
void folio_putback_lru(struct folio *folio);
|
|
extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
|
|
|
|
/*
|
|
* in mm/rmap.c:
|
|
*/
|
|
pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
|
|
|
|
/*
|
|
* in mm/page_alloc.c
|
|
*/
|
|
#define K(x) ((x) << (PAGE_SHIFT-10))
|
|
|
|
extern char * const zone_names[MAX_NR_ZONES];
|
|
|
|
/* perform sanity checks on struct pages being allocated or freed */
|
|
DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
|
|
|
|
extern int min_free_kbytes;
|
|
|
|
void setup_per_zone_wmarks(void);
|
|
void calculate_min_free_kbytes(void);
|
|
int __meminit init_per_zone_wmark_min(void);
|
|
void page_alloc_sysctl_init(void);
|
|
|
|
/*
|
|
* Structure for holding the mostly immutable allocation parameters passed
|
|
* between functions involved in allocations, including the alloc_pages*
|
|
* family of functions.
|
|
*
|
|
* nodemask, migratetype and highest_zoneidx are initialized only once in
|
|
* __alloc_pages() and then never change.
|
|
*
|
|
* zonelist, preferred_zone and highest_zoneidx are set first in
|
|
* __alloc_pages() for the fast path, and might be later changed
|
|
* in __alloc_pages_slowpath(). All other functions pass the whole structure
|
|
* by a const pointer.
|
|
*/
|
|
struct alloc_context {
|
|
struct zonelist *zonelist;
|
|
nodemask_t *nodemask;
|
|
struct zoneref *preferred_zoneref;
|
|
int migratetype;
|
|
|
|
/*
|
|
* highest_zoneidx represents highest usable zone index of
|
|
* the allocation request. Due to the nature of the zone,
|
|
* memory on lower zone than the highest_zoneidx will be
|
|
* protected by lowmem_reserve[highest_zoneidx].
|
|
*
|
|
* highest_zoneidx is also used by reclaim/compaction to limit
|
|
* the target zone since higher zone than this index cannot be
|
|
* usable for this allocation request.
|
|
*/
|
|
enum zone_type highest_zoneidx;
|
|
bool spread_dirty_pages;
|
|
};
|
|
|
|
/*
|
|
* This function returns the order of a free page in the buddy system. In
|
|
* general, page_zone(page)->lock must be held by the caller to prevent the
|
|
* page from being allocated in parallel and returning garbage as the order.
|
|
* If a caller does not hold page_zone(page)->lock, it must guarantee that the
|
|
* page cannot be allocated or merged in parallel. Alternatively, it must
|
|
* handle invalid values gracefully, and use buddy_order_unsafe() below.
|
|
*/
|
|
static inline unsigned int buddy_order(struct page *page)
|
|
{
|
|
/* PageBuddy() must be checked by the caller */
|
|
return page_private(page);
|
|
}
|
|
|
|
/*
|
|
* Like buddy_order(), but for callers who cannot afford to hold the zone lock.
|
|
* PageBuddy() should be checked first by the caller to minimize race window,
|
|
* and invalid values must be handled gracefully.
|
|
*
|
|
* READ_ONCE is used so that if the caller assigns the result into a local
|
|
* variable and e.g. tests it for valid range before using, the compiler cannot
|
|
* decide to remove the variable and inline the page_private(page) multiple
|
|
* times, potentially observing different values in the tests and the actual
|
|
* use of the result.
|
|
*/
|
|
#define buddy_order_unsafe(page) READ_ONCE(page_private(page))
|
|
|
|
/*
|
|
* This function checks whether a page is free && is the buddy
|
|
* we can coalesce a page and its buddy if
|
|
* (a) the buddy is not in a hole (check before calling!) &&
|
|
* (b) the buddy is in the buddy system &&
|
|
* (c) a page and its buddy have the same order &&
|
|
* (d) a page and its buddy are in the same zone.
|
|
*
|
|
* For recording whether a page is in the buddy system, we set PageBuddy.
|
|
* Setting, clearing, and testing PageBuddy is serialized by zone->lock.
|
|
*
|
|
* For recording page's order, we use page_private(page).
|
|
*/
|
|
static inline bool page_is_buddy(struct page *page, struct page *buddy,
|
|
unsigned int order)
|
|
{
|
|
if (!page_is_guard(buddy) && !PageBuddy(buddy))
|
|
return false;
|
|
|
|
if (buddy_order(buddy) != order)
|
|
return false;
|
|
|
|
/*
|
|
* zone check is done late to avoid uselessly calculating
|
|
* zone/node ids for pages that could never merge.
|
|
*/
|
|
if (page_zone_id(page) != page_zone_id(buddy))
|
|
return false;
|
|
|
|
VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Locate the struct page for both the matching buddy in our
|
|
* pair (buddy1) and the combined O(n+1) page they form (page).
|
|
*
|
|
* 1) Any buddy B1 will have an order O twin B2 which satisfies
|
|
* the following equation:
|
|
* B2 = B1 ^ (1 << O)
|
|
* For example, if the starting buddy (buddy2) is #8 its order
|
|
* 1 buddy is #10:
|
|
* B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
|
|
*
|
|
* 2) Any buddy B will have an order O+1 parent P which
|
|
* satisfies the following equation:
|
|
* P = B & ~(1 << O)
|
|
*
|
|
* Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
|
|
*/
|
|
static inline unsigned long
|
|
__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
|
|
{
|
|
return page_pfn ^ (1 << order);
|
|
}
|
|
|
|
/*
|
|
* Find the buddy of @page and validate it.
|
|
* @page: The input page
|
|
* @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
|
|
* function is used in the performance-critical __free_one_page().
|
|
* @order: The order of the page
|
|
* @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
|
|
* page_to_pfn().
|
|
*
|
|
* The found buddy can be a non PageBuddy, out of @page's zone, or its order is
|
|
* not the same as @page. The validation is necessary before use it.
|
|
*
|
|
* Return: the found buddy page or NULL if not found.
|
|
*/
|
|
static inline struct page *find_buddy_page_pfn(struct page *page,
|
|
unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
|
|
{
|
|
unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
|
|
struct page *buddy;
|
|
|
|
buddy = page + (__buddy_pfn - pfn);
|
|
if (buddy_pfn)
|
|
*buddy_pfn = __buddy_pfn;
|
|
|
|
if (page_is_buddy(page, buddy, order))
|
|
return buddy;
|
|
return NULL;
|
|
}
|
|
|
|
extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
|
|
unsigned long end_pfn, struct zone *zone);
|
|
|
|
static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
|
|
unsigned long end_pfn, struct zone *zone)
|
|
{
|
|
if (zone->contiguous)
|
|
return pfn_to_page(start_pfn);
|
|
|
|
return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
|
|
}
|
|
|
|
void set_zone_contiguous(struct zone *zone);
|
|
|
|
static inline void clear_zone_contiguous(struct zone *zone)
|
|
{
|
|
zone->contiguous = false;
|
|
}
|
|
|
|
extern int __isolate_free_page(struct page *page, unsigned int order);
|
|
extern void __putback_isolated_page(struct page *page, unsigned int order,
|
|
int mt);
|
|
extern void memblock_free_pages(struct page *page, unsigned long pfn,
|
|
unsigned int order);
|
|
extern void __free_pages_core(struct page *page, unsigned int order);
|
|
|
|
/*
|
|
* This will have no effect, other than possibly generating a warning, if the
|
|
* caller passes in a non-large folio.
|
|
*/
|
|
static inline void folio_set_order(struct folio *folio, unsigned int order)
|
|
{
|
|
if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
|
|
return;
|
|
|
|
folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
|
|
#ifdef CONFIG_64BIT
|
|
folio->_folio_nr_pages = 1U << order;
|
|
#endif
|
|
}
|
|
|
|
void folio_undo_large_rmappable(struct folio *folio);
|
|
|
|
static inline struct folio *page_rmappable_folio(struct page *page)
|
|
{
|
|
struct folio *folio = (struct folio *)page;
|
|
|
|
if (folio && folio_order(folio) > 1)
|
|
folio_prep_large_rmappable(folio);
|
|
return folio;
|
|
}
|
|
|
|
static inline void prep_compound_head(struct page *page, unsigned int order)
|
|
{
|
|
struct folio *folio = (struct folio *)page;
|
|
|
|
folio_set_order(folio, order);
|
|
atomic_set(&folio->_entire_mapcount, -1);
|
|
atomic_set(&folio->_nr_pages_mapped, 0);
|
|
atomic_set(&folio->_pincount, 0);
|
|
}
|
|
|
|
static inline void prep_compound_tail(struct page *head, int tail_idx)
|
|
{
|
|
struct page *p = head + tail_idx;
|
|
|
|
p->mapping = TAIL_MAPPING;
|
|
set_compound_head(p, head);
|
|
set_page_private(p, 0);
|
|
}
|
|
|
|
extern void prep_compound_page(struct page *page, unsigned int order);
|
|
|
|
extern void post_alloc_hook(struct page *page, unsigned int order,
|
|
gfp_t gfp_flags);
|
|
extern int user_min_free_kbytes;
|
|
|
|
extern void free_unref_page(struct page *page, unsigned int order);
|
|
extern void free_unref_page_list(struct list_head *list);
|
|
|
|
extern void zone_pcp_reset(struct zone *zone);
|
|
extern void zone_pcp_disable(struct zone *zone);
|
|
extern void zone_pcp_enable(struct zone *zone);
|
|
extern void zone_pcp_init(struct zone *zone);
|
|
|
|
extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t min_addr,
|
|
int nid, bool exact_nid);
|
|
|
|
void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
|
|
unsigned long, enum meminit_context, struct vmem_altmap *, int);
|
|
|
|
|
|
int split_free_page(struct page *free_page,
|
|
unsigned int order, unsigned long split_pfn_offset);
|
|
|
|
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
|
|
|
|
/*
|
|
* in mm/compaction.c
|
|
*/
|
|
/*
|
|
* compact_control is used to track pages being migrated and the free pages
|
|
* they are being migrated to during memory compaction. The free_pfn starts
|
|
* at the end of a zone and migrate_pfn begins at the start. Movable pages
|
|
* are moved to the end of a zone during a compaction run and the run
|
|
* completes when free_pfn <= migrate_pfn
|
|
*/
|
|
struct compact_control {
|
|
struct list_head freepages; /* List of free pages to migrate to */
|
|
struct list_head migratepages; /* List of pages being migrated */
|
|
unsigned int nr_freepages; /* Number of isolated free pages */
|
|
unsigned int nr_migratepages; /* Number of pages to migrate */
|
|
unsigned long free_pfn; /* isolate_freepages search base */
|
|
/*
|
|
* Acts as an in/out parameter to page isolation for migration.
|
|
* isolate_migratepages uses it as a search base.
|
|
* isolate_migratepages_block will update the value to the next pfn
|
|
* after the last isolated one.
|
|
*/
|
|
unsigned long migrate_pfn;
|
|
unsigned long fast_start_pfn; /* a pfn to start linear scan from */
|
|
struct zone *zone;
|
|
unsigned long total_migrate_scanned;
|
|
unsigned long total_free_scanned;
|
|
unsigned short fast_search_fail;/* failures to use free list searches */
|
|
short search_order; /* order to start a fast search at */
|
|
const gfp_t gfp_mask; /* gfp mask of a direct compactor */
|
|
int order; /* order a direct compactor needs */
|
|
int migratetype; /* migratetype of direct compactor */
|
|
const unsigned int alloc_flags; /* alloc flags of a direct compactor */
|
|
const int highest_zoneidx; /* zone index of a direct compactor */
|
|
enum migrate_mode mode; /* Async or sync migration mode */
|
|
bool ignore_skip_hint; /* Scan blocks even if marked skip */
|
|
bool no_set_skip_hint; /* Don't mark blocks for skipping */
|
|
bool ignore_block_suitable; /* Scan blocks considered unsuitable */
|
|
bool direct_compaction; /* False from kcompactd or /proc/... */
|
|
bool proactive_compaction; /* kcompactd proactive compaction */
|
|
bool whole_zone; /* Whole zone should/has been scanned */
|
|
bool contended; /* Signal lock contention */
|
|
bool finish_pageblock; /* Scan the remainder of a pageblock. Used
|
|
* when there are potentially transient
|
|
* isolation or migration failures to
|
|
* ensure forward progress.
|
|
*/
|
|
bool alloc_contig; /* alloc_contig_range allocation */
|
|
};
|
|
|
|
/*
|
|
* Used in direct compaction when a page should be taken from the freelists
|
|
* immediately when one is created during the free path.
|
|
*/
|
|
struct capture_control {
|
|
struct compact_control *cc;
|
|
struct page *page;
|
|
};
|
|
|
|
unsigned long
|
|
isolate_freepages_range(struct compact_control *cc,
|
|
unsigned long start_pfn, unsigned long end_pfn);
|
|
int
|
|
isolate_migratepages_range(struct compact_control *cc,
|
|
unsigned long low_pfn, unsigned long end_pfn);
|
|
|
|
int __alloc_contig_migrate_range(struct compact_control *cc,
|
|
unsigned long start, unsigned long end);
|
|
|
|
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
|
|
void init_cma_reserved_pageblock(struct page *page);
|
|
|
|
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
|
|
|
|
int find_suitable_fallback(struct free_area *area, unsigned int order,
|
|
int migratetype, bool only_stealable, bool *can_steal);
|
|
|
|
static inline bool free_area_empty(struct free_area *area, int migratetype)
|
|
{
|
|
return list_empty(&area->free_list[migratetype]);
|
|
}
|
|
|
|
/*
|
|
* These three helpers classifies VMAs for virtual memory accounting.
|
|
*/
|
|
|
|
/*
|
|
* Executable code area - executable, not writable, not stack
|
|
*/
|
|
static inline bool is_exec_mapping(vm_flags_t flags)
|
|
{
|
|
return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
|
|
}
|
|
|
|
/*
|
|
* Stack area (including shadow stacks)
|
|
*
|
|
* VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
|
|
* do_mmap() forbids all other combinations.
|
|
*/
|
|
static inline bool is_stack_mapping(vm_flags_t flags)
|
|
{
|
|
return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
|
|
}
|
|
|
|
/*
|
|
* Data area - private, writable, not stack
|
|
*/
|
|
static inline bool is_data_mapping(vm_flags_t flags)
|
|
{
|
|
return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
|
|
}
|
|
|
|
/* mm/util.c */
|
|
struct anon_vma *folio_anon_vma(struct folio *folio);
|
|
|
|
#ifdef CONFIG_MMU
|
|
void unmap_mapping_folio(struct folio *folio);
|
|
extern long populate_vma_page_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end, int *locked);
|
|
extern long faultin_vma_page_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
bool write, int *locked);
|
|
extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
|
|
unsigned long bytes);
|
|
|
|
/*
|
|
* NOTE: This function can't tell whether the folio is "fully mapped" in the
|
|
* range.
|
|
* "fully mapped" means all the pages of folio is associated with the page
|
|
* table of range while this function just check whether the folio range is
|
|
* within the range [start, end). Function caller needs to do page table
|
|
* check if it cares about the page table association.
|
|
*
|
|
* Typical usage (like mlock or madvise) is:
|
|
* Caller knows at least 1 page of folio is associated with page table of VMA
|
|
* and the range [start, end) is intersect with the VMA range. Caller wants
|
|
* to know whether the folio is fully associated with the range. It calls
|
|
* this function to check whether the folio is in the range first. Then checks
|
|
* the page table to know whether the folio is fully mapped to the range.
|
|
*/
|
|
static inline bool
|
|
folio_within_range(struct folio *folio, struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
pgoff_t pgoff, addr;
|
|
unsigned long vma_pglen = vma_pages(vma);
|
|
|
|
VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
|
|
if (start > end)
|
|
return false;
|
|
|
|
if (start < vma->vm_start)
|
|
start = vma->vm_start;
|
|
|
|
if (end > vma->vm_end)
|
|
end = vma->vm_end;
|
|
|
|
pgoff = folio_pgoff(folio);
|
|
|
|
/* if folio start address is not in vma range */
|
|
if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
|
|
return false;
|
|
|
|
addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
|
|
|
|
return !(addr < start || end - addr < folio_size(folio));
|
|
}
|
|
|
|
static inline bool
|
|
folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
|
|
{
|
|
return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
|
|
}
|
|
|
|
/*
|
|
* mlock_vma_folio() and munlock_vma_folio():
|
|
* should be called with vma's mmap_lock held for read or write,
|
|
* under page table lock for the pte/pmd being added or removed.
|
|
*
|
|
* mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
|
|
* the end of folio_remove_rmap_*(); but new anon folios are managed by
|
|
* folio_add_lru_vma() calling mlock_new_folio().
|
|
*/
|
|
void mlock_folio(struct folio *folio);
|
|
static inline void mlock_vma_folio(struct folio *folio,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* The VM_SPECIAL check here serves two purposes.
|
|
* 1) VM_IO check prevents migration from double-counting during mlock.
|
|
* 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
|
|
* is never left set on a VM_SPECIAL vma, there is an interval while
|
|
* file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
|
|
* still be set while VM_SPECIAL bits are added: so ignore it then.
|
|
*/
|
|
if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
|
|
mlock_folio(folio);
|
|
}
|
|
|
|
void munlock_folio(struct folio *folio);
|
|
static inline void munlock_vma_folio(struct folio *folio,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* munlock if the function is called. Ideally, we should only
|
|
* do munlock if any page of folio is unmapped from VMA and
|
|
* cause folio not fully mapped to VMA.
|
|
*
|
|
* But it's not easy to confirm that's the situation. So we
|
|
* always munlock the folio and page reclaim will correct it
|
|
* if it's wrong.
|
|
*/
|
|
if (unlikely(vma->vm_flags & VM_LOCKED))
|
|
munlock_folio(folio);
|
|
}
|
|
|
|
void mlock_new_folio(struct folio *folio);
|
|
bool need_mlock_drain(int cpu);
|
|
void mlock_drain_local(void);
|
|
void mlock_drain_remote(int cpu);
|
|
|
|
extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
|
|
|
|
/*
|
|
* Return the start of user virtual address at the specific offset within
|
|
* a vma.
|
|
*/
|
|
static inline unsigned long
|
|
vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
unsigned long address;
|
|
|
|
if (pgoff >= vma->vm_pgoff) {
|
|
address = vma->vm_start +
|
|
((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
|
|
/* Check for address beyond vma (or wrapped through 0?) */
|
|
if (address < vma->vm_start || address >= vma->vm_end)
|
|
address = -EFAULT;
|
|
} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
|
|
/* Test above avoids possibility of wrap to 0 on 32-bit */
|
|
address = vma->vm_start;
|
|
} else {
|
|
address = -EFAULT;
|
|
}
|
|
return address;
|
|
}
|
|
|
|
/*
|
|
* Return the start of user virtual address of a page within a vma.
|
|
* Returns -EFAULT if all of the page is outside the range of vma.
|
|
* If page is a compound head, the entire compound page is considered.
|
|
*/
|
|
static inline unsigned long
|
|
vma_address(struct page *page, struct vm_area_struct *vma)
|
|
{
|
|
VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
|
|
return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
|
|
}
|
|
|
|
/*
|
|
* Then at what user virtual address will none of the range be found in vma?
|
|
* Assumes that vma_address() already returned a good starting address.
|
|
*/
|
|
static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
|
|
{
|
|
struct vm_area_struct *vma = pvmw->vma;
|
|
pgoff_t pgoff;
|
|
unsigned long address;
|
|
|
|
/* Common case, plus ->pgoff is invalid for KSM */
|
|
if (pvmw->nr_pages == 1)
|
|
return pvmw->address + PAGE_SIZE;
|
|
|
|
pgoff = pvmw->pgoff + pvmw->nr_pages;
|
|
address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
|
|
/* Check for address beyond vma (or wrapped through 0?) */
|
|
if (address < vma->vm_start || address > vma->vm_end)
|
|
address = vma->vm_end;
|
|
return address;
|
|
}
|
|
|
|
static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
|
|
struct file *fpin)
|
|
{
|
|
int flags = vmf->flags;
|
|
|
|
if (fpin)
|
|
return fpin;
|
|
|
|
/*
|
|
* FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
|
|
* anything, so we only pin the file and drop the mmap_lock if only
|
|
* FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
|
|
*/
|
|
if (fault_flag_allow_retry_first(flags) &&
|
|
!(flags & FAULT_FLAG_RETRY_NOWAIT)) {
|
|
fpin = get_file(vmf->vma->vm_file);
|
|
release_fault_lock(vmf);
|
|
}
|
|
return fpin;
|
|
}
|
|
#else /* !CONFIG_MMU */
|
|
static inline void unmap_mapping_folio(struct folio *folio) { }
|
|
static inline void mlock_new_folio(struct folio *folio) { }
|
|
static inline bool need_mlock_drain(int cpu) { return false; }
|
|
static inline void mlock_drain_local(void) { }
|
|
static inline void mlock_drain_remote(int cpu) { }
|
|
static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
|
|
{
|
|
}
|
|
#endif /* !CONFIG_MMU */
|
|
|
|
/* Memory initialisation debug and verification */
|
|
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
|
|
DECLARE_STATIC_KEY_TRUE(deferred_pages);
|
|
|
|
bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
|
|
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
|
|
|
|
enum mminit_level {
|
|
MMINIT_WARNING,
|
|
MMINIT_VERIFY,
|
|
MMINIT_TRACE
|
|
};
|
|
|
|
#ifdef CONFIG_DEBUG_MEMORY_INIT
|
|
|
|
extern int mminit_loglevel;
|
|
|
|
#define mminit_dprintk(level, prefix, fmt, arg...) \
|
|
do { \
|
|
if (level < mminit_loglevel) { \
|
|
if (level <= MMINIT_WARNING) \
|
|
pr_warn("mminit::" prefix " " fmt, ##arg); \
|
|
else \
|
|
printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
|
|
} \
|
|
} while (0)
|
|
|
|
extern void mminit_verify_pageflags_layout(void);
|
|
extern void mminit_verify_zonelist(void);
|
|
#else
|
|
|
|
static inline void mminit_dprintk(enum mminit_level level,
|
|
const char *prefix, const char *fmt, ...)
|
|
{
|
|
}
|
|
|
|
static inline void mminit_verify_pageflags_layout(void)
|
|
{
|
|
}
|
|
|
|
static inline void mminit_verify_zonelist(void)
|
|
{
|
|
}
|
|
#endif /* CONFIG_DEBUG_MEMORY_INIT */
|
|
|
|
#define NODE_RECLAIM_NOSCAN -2
|
|
#define NODE_RECLAIM_FULL -1
|
|
#define NODE_RECLAIM_SOME 0
|
|
#define NODE_RECLAIM_SUCCESS 1
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
|
|
extern int find_next_best_node(int node, nodemask_t *used_node_mask);
|
|
#else
|
|
static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
|
|
unsigned int order)
|
|
{
|
|
return NODE_RECLAIM_NOSCAN;
|
|
}
|
|
static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
|
|
{
|
|
return NUMA_NO_NODE;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* mm/memory-failure.c
|
|
*/
|
|
extern int hwpoison_filter(struct page *p);
|
|
|
|
extern u32 hwpoison_filter_dev_major;
|
|
extern u32 hwpoison_filter_dev_minor;
|
|
extern u64 hwpoison_filter_flags_mask;
|
|
extern u64 hwpoison_filter_flags_value;
|
|
extern u64 hwpoison_filter_memcg;
|
|
extern u32 hwpoison_filter_enable;
|
|
|
|
extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
|
|
unsigned long, unsigned long,
|
|
unsigned long, unsigned long);
|
|
|
|
extern void set_pageblock_order(void);
|
|
unsigned long reclaim_pages(struct list_head *folio_list);
|
|
unsigned int reclaim_clean_pages_from_list(struct zone *zone,
|
|
struct list_head *folio_list);
|
|
/* The ALLOC_WMARK bits are used as an index to zone->watermark */
|
|
#define ALLOC_WMARK_MIN WMARK_MIN
|
|
#define ALLOC_WMARK_LOW WMARK_LOW
|
|
#define ALLOC_WMARK_HIGH WMARK_HIGH
|
|
#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
|
|
|
|
/* Mask to get the watermark bits */
|
|
#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
|
|
|
|
/*
|
|
* Only MMU archs have async oom victim reclaim - aka oom_reaper so we
|
|
* cannot assume a reduced access to memory reserves is sufficient for
|
|
* !MMU
|
|
*/
|
|
#ifdef CONFIG_MMU
|
|
#define ALLOC_OOM 0x08
|
|
#else
|
|
#define ALLOC_OOM ALLOC_NO_WATERMARKS
|
|
#endif
|
|
|
|
#define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
|
|
* to 25% of the min watermark or
|
|
* 62.5% if __GFP_HIGH is set.
|
|
*/
|
|
#define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
|
|
* of the min watermark.
|
|
*/
|
|
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
|
|
#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
|
|
#else
|
|
#define ALLOC_NOFRAGMENT 0x0
|
|
#endif
|
|
#define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
|
|
#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
|
|
|
|
/* Flags that allow allocations below the min watermark. */
|
|
#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
|
|
|
|
enum ttu_flags;
|
|
struct tlbflush_unmap_batch;
|
|
|
|
|
|
/*
|
|
* only for MM internal work items which do not depend on
|
|
* any allocations or locks which might depend on allocations
|
|
*/
|
|
extern struct workqueue_struct *mm_percpu_wq;
|
|
|
|
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
|
|
void try_to_unmap_flush(void);
|
|
void try_to_unmap_flush_dirty(void);
|
|
void flush_tlb_batched_pending(struct mm_struct *mm);
|
|
#else
|
|
static inline void try_to_unmap_flush(void)
|
|
{
|
|
}
|
|
static inline void try_to_unmap_flush_dirty(void)
|
|
{
|
|
}
|
|
static inline void flush_tlb_batched_pending(struct mm_struct *mm)
|
|
{
|
|
}
|
|
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
|
|
|
|
extern const struct trace_print_flags pageflag_names[];
|
|
extern const struct trace_print_flags pagetype_names[];
|
|
extern const struct trace_print_flags vmaflag_names[];
|
|
extern const struct trace_print_flags gfpflag_names[];
|
|
|
|
static inline bool is_migrate_highatomic(enum migratetype migratetype)
|
|
{
|
|
return migratetype == MIGRATE_HIGHATOMIC;
|
|
}
|
|
|
|
static inline bool is_migrate_highatomic_page(struct page *page)
|
|
{
|
|
return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
|
|
}
|
|
|
|
void setup_zone_pageset(struct zone *zone);
|
|
|
|
struct migration_target_control {
|
|
int nid; /* preferred node id */
|
|
nodemask_t *nmask;
|
|
gfp_t gfp_mask;
|
|
};
|
|
|
|
/*
|
|
* mm/filemap.c
|
|
*/
|
|
size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
|
|
struct folio *folio, loff_t fpos, size_t size);
|
|
|
|
/*
|
|
* mm/vmalloc.c
|
|
*/
|
|
#ifdef CONFIG_MMU
|
|
void __init vmalloc_init(void);
|
|
int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
|
|
pgprot_t prot, struct page **pages, unsigned int page_shift);
|
|
#else
|
|
static inline void vmalloc_init(void)
|
|
{
|
|
}
|
|
|
|
static inline
|
|
int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
|
|
pgprot_t prot, struct page **pages, unsigned int page_shift)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
int __must_check __vmap_pages_range_noflush(unsigned long addr,
|
|
unsigned long end, pgprot_t prot,
|
|
struct page **pages, unsigned int page_shift);
|
|
|
|
void vunmap_range_noflush(unsigned long start, unsigned long end);
|
|
|
|
void __vunmap_range_noflush(unsigned long start, unsigned long end);
|
|
|
|
int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
|
|
unsigned long addr, int page_nid, int *flags);
|
|
|
|
void free_zone_device_page(struct page *page);
|
|
int migrate_device_coherent_page(struct page *page);
|
|
|
|
/*
|
|
* mm/gup.c
|
|
*/
|
|
struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
|
|
int __must_check try_grab_page(struct page *page, unsigned int flags);
|
|
|
|
/*
|
|
* mm/huge_memory.c
|
|
*/
|
|
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t *pmd,
|
|
unsigned int flags);
|
|
|
|
/*
|
|
* mm/mmap.c
|
|
*/
|
|
struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
|
|
struct vm_area_struct *vma,
|
|
unsigned long delta);
|
|
|
|
enum {
|
|
/* mark page accessed */
|
|
FOLL_TOUCH = 1 << 16,
|
|
/* a retry, previous pass started an IO */
|
|
FOLL_TRIED = 1 << 17,
|
|
/* we are working on non-current tsk/mm */
|
|
FOLL_REMOTE = 1 << 18,
|
|
/* pages must be released via unpin_user_page */
|
|
FOLL_PIN = 1 << 19,
|
|
/* gup_fast: prevent fall-back to slow gup */
|
|
FOLL_FAST_ONLY = 1 << 20,
|
|
/* allow unlocking the mmap lock */
|
|
FOLL_UNLOCKABLE = 1 << 21,
|
|
};
|
|
|
|
#define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
|
|
FOLL_FAST_ONLY | FOLL_UNLOCKABLE)
|
|
|
|
/*
|
|
* Indicates for which pages that are write-protected in the page table,
|
|
* whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
|
|
* GUP pin will remain consistent with the pages mapped into the page tables
|
|
* of the MM.
|
|
*
|
|
* Temporary unmapping of PageAnonExclusive() pages or clearing of
|
|
* PageAnonExclusive() has to protect against concurrent GUP:
|
|
* * Ordinary GUP: Using the PT lock
|
|
* * GUP-fast and fork(): mm->write_protect_seq
|
|
* * GUP-fast and KSM or temporary unmapping (swap, migration): see
|
|
* folio_try_share_anon_rmap_*()
|
|
*
|
|
* Must be called with the (sub)page that's actually referenced via the
|
|
* page table entry, which might not necessarily be the head page for a
|
|
* PTE-mapped THP.
|
|
*
|
|
* If the vma is NULL, we're coming from the GUP-fast path and might have
|
|
* to fallback to the slow path just to lookup the vma.
|
|
*/
|
|
static inline bool gup_must_unshare(struct vm_area_struct *vma,
|
|
unsigned int flags, struct page *page)
|
|
{
|
|
/*
|
|
* FOLL_WRITE is implicitly handled correctly as the page table entry
|
|
* has to be writable -- and if it references (part of) an anonymous
|
|
* folio, that part is required to be marked exclusive.
|
|
*/
|
|
if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
|
|
return false;
|
|
/*
|
|
* Note: PageAnon(page) is stable until the page is actually getting
|
|
* freed.
|
|
*/
|
|
if (!PageAnon(page)) {
|
|
/*
|
|
* We only care about R/O long-term pining: R/O short-term
|
|
* pinning does not have the semantics to observe successive
|
|
* changes through the process page tables.
|
|
*/
|
|
if (!(flags & FOLL_LONGTERM))
|
|
return false;
|
|
|
|
/* We really need the vma ... */
|
|
if (!vma)
|
|
return true;
|
|
|
|
/*
|
|
* ... because we only care about writable private ("COW")
|
|
* mappings where we have to break COW early.
|
|
*/
|
|
return is_cow_mapping(vma->vm_flags);
|
|
}
|
|
|
|
/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
|
|
if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
|
|
smp_rmb();
|
|
|
|
/*
|
|
* During GUP-fast we might not get called on the head page for a
|
|
* hugetlb page that is mapped using cont-PTE, because GUP-fast does
|
|
* not work with the abstracted hugetlb PTEs that always point at the
|
|
* head page. For hugetlb, PageAnonExclusive only applies on the head
|
|
* page (as it cannot be partially COW-shared), so lookup the head page.
|
|
*/
|
|
if (unlikely(!PageHead(page) && PageHuge(page)))
|
|
page = compound_head(page);
|
|
|
|
/*
|
|
* Note that PageKsm() pages cannot be exclusive, and consequently,
|
|
* cannot get pinned.
|
|
*/
|
|
return !PageAnonExclusive(page);
|
|
}
|
|
|
|
extern bool mirrored_kernelcore;
|
|
extern bool memblock_has_mirror(void);
|
|
|
|
static __always_inline void vma_set_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
pgoff_t pgoff)
|
|
{
|
|
vma->vm_start = start;
|
|
vma->vm_end = end;
|
|
vma->vm_pgoff = pgoff;
|
|
}
|
|
|
|
static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
|
|
* enablements, because when without soft-dirty being compiled in,
|
|
* VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
|
|
* will be constantly true.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
|
|
return false;
|
|
|
|
/*
|
|
* Soft-dirty is kind of special: its tracking is enabled when the
|
|
* vma flags not set.
|
|
*/
|
|
return !(vma->vm_flags & VM_SOFTDIRTY);
|
|
}
|
|
|
|
static inline void vma_iter_config(struct vma_iterator *vmi,
|
|
unsigned long index, unsigned long last)
|
|
{
|
|
__mas_set_range(&vmi->mas, index, last - 1);
|
|
}
|
|
|
|
/*
|
|
* VMA Iterator functions shared between nommu and mmap
|
|
*/
|
|
static inline int vma_iter_prealloc(struct vma_iterator *vmi,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
|
|
}
|
|
|
|
static inline void vma_iter_clear(struct vma_iterator *vmi)
|
|
{
|
|
mas_store_prealloc(&vmi->mas, NULL);
|
|
}
|
|
|
|
static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
|
|
{
|
|
return mas_walk(&vmi->mas);
|
|
}
|
|
|
|
/* Store a VMA with preallocated memory */
|
|
static inline void vma_iter_store(struct vma_iterator *vmi,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
|
|
#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
|
|
if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
|
|
vmi->mas.index > vma->vm_start)) {
|
|
pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
|
|
vmi->mas.index, vma->vm_start, vma->vm_start,
|
|
vma->vm_end, vmi->mas.index, vmi->mas.last);
|
|
}
|
|
if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
|
|
vmi->mas.last < vma->vm_start)) {
|
|
pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
|
|
vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
|
|
vmi->mas.index, vmi->mas.last);
|
|
}
|
|
#endif
|
|
|
|
if (vmi->mas.status != ma_start &&
|
|
((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
|
|
vma_iter_invalidate(vmi);
|
|
|
|
__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
|
|
mas_store_prealloc(&vmi->mas, vma);
|
|
}
|
|
|
|
static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
|
|
struct vm_area_struct *vma, gfp_t gfp)
|
|
{
|
|
if (vmi->mas.status != ma_start &&
|
|
((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
|
|
vma_iter_invalidate(vmi);
|
|
|
|
__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
|
|
mas_store_gfp(&vmi->mas, vma, gfp);
|
|
if (unlikely(mas_is_err(&vmi->mas)))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* VMA lock generalization
|
|
*/
|
|
struct vma_prepare {
|
|
struct vm_area_struct *vma;
|
|
struct vm_area_struct *adj_next;
|
|
struct file *file;
|
|
struct address_space *mapping;
|
|
struct anon_vma *anon_vma;
|
|
struct vm_area_struct *insert;
|
|
struct vm_area_struct *remove;
|
|
struct vm_area_struct *remove2;
|
|
};
|
|
|
|
void __meminit __init_single_page(struct page *page, unsigned long pfn,
|
|
unsigned long zone, int nid);
|
|
|
|
/* shrinker related functions */
|
|
unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
|
|
int priority);
|
|
|
|
#ifdef CONFIG_SHRINKER_DEBUG
|
|
static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
|
|
struct shrinker *shrinker, const char *fmt, va_list ap)
|
|
{
|
|
shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
|
|
|
|
return shrinker->name ? 0 : -ENOMEM;
|
|
}
|
|
|
|
static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
|
|
{
|
|
kfree_const(shrinker->name);
|
|
shrinker->name = NULL;
|
|
}
|
|
|
|
extern int shrinker_debugfs_add(struct shrinker *shrinker);
|
|
extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
|
|
int *debugfs_id);
|
|
extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
|
|
int debugfs_id);
|
|
#else /* CONFIG_SHRINKER_DEBUG */
|
|
static inline int shrinker_debugfs_add(struct shrinker *shrinker)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
|
|
const char *fmt, va_list ap)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
|
|
{
|
|
}
|
|
static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
|
|
int *debugfs_id)
|
|
{
|
|
*debugfs_id = -1;
|
|
return NULL;
|
|
}
|
|
static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
|
|
int debugfs_id)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SHRINKER_DEBUG */
|
|
|
|
#endif /* __MM_INTERNAL_H */
|