linux/arch/powerpc/platforms/powernv/pci-ioda.c
Anton Blanchard 5e4da530a5 powerpc/powernv: Fix some PCI sparse errors and one LE bug
pnv_pci_setup_bml_iommu was missing a byteswap of a device
tree property.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-11 16:48:52 +11:00

1311 lines
35 KiB
C

/*
* Support PCI/PCIe on PowerNV platforms
*
* Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>
#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/msi_bitmap.h>
#include <asm/ppc-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>
#include <asm/xics.h>
#include <asm/debug.h>
#include "powernv.h"
#include "pci.h"
#define define_pe_printk_level(func, kern_level) \
static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...) \
{ \
struct va_format vaf; \
va_list args; \
char pfix[32]; \
int r; \
\
va_start(args, fmt); \
\
vaf.fmt = fmt; \
vaf.va = &args; \
\
if (pe->pdev) \
strlcpy(pfix, dev_name(&pe->pdev->dev), \
sizeof(pfix)); \
else \
sprintf(pfix, "%04x:%02x ", \
pci_domain_nr(pe->pbus), \
pe->pbus->number); \
r = printk(kern_level "pci %s: [PE# %.3d] %pV", \
pfix, pe->pe_number, &vaf); \
\
va_end(args); \
\
return r; \
} \
define_pe_printk_level(pe_err, KERN_ERR);
define_pe_printk_level(pe_warn, KERN_WARNING);
define_pe_printk_level(pe_info, KERN_INFO);
static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
{
unsigned long pe;
do {
pe = find_next_zero_bit(phb->ioda.pe_alloc,
phb->ioda.total_pe, 0);
if (pe >= phb->ioda.total_pe)
return IODA_INVALID_PE;
} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
phb->ioda.pe_array[pe].phb = phb;
phb->ioda.pe_array[pe].pe_number = pe;
return pe;
}
static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
{
WARN_ON(phb->ioda.pe_array[pe].pdev);
memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
clear_bit(pe, phb->ioda.pe_alloc);
}
/* Currently those 2 are only used when MSIs are enabled, this will change
* but in the meantime, we need to protect them to avoid warnings
*/
#ifdef CONFIG_PCI_MSI
static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn = pci_get_pdn(dev);
if (!pdn)
return NULL;
if (pdn->pe_number == IODA_INVALID_PE)
return NULL;
return &phb->ioda.pe_array[pdn->pe_number];
}
#endif /* CONFIG_PCI_MSI */
static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
{
struct pci_dev *parent;
uint8_t bcomp, dcomp, fcomp;
long rc, rid_end, rid;
/* Bus validation ? */
if (pe->pbus) {
int count;
dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
parent = pe->pbus->self;
if (pe->flags & PNV_IODA_PE_BUS_ALL)
count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
else
count = 1;
switch(count) {
case 1: bcomp = OpalPciBusAll; break;
case 2: bcomp = OpalPciBus7Bits; break;
case 4: bcomp = OpalPciBus6Bits; break;
case 8: bcomp = OpalPciBus5Bits; break;
case 16: bcomp = OpalPciBus4Bits; break;
case 32: bcomp = OpalPciBus3Bits; break;
default:
pr_err("%s: Number of subordinate busses %d"
" unsupported\n",
pci_name(pe->pbus->self), count);
/* Do an exact match only */
bcomp = OpalPciBusAll;
}
rid_end = pe->rid + (count << 8);
} else {
parent = pe->pdev->bus->self;
bcomp = OpalPciBusAll;
dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
rid_end = pe->rid + 1;
}
/* Associate PE in PELT */
rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
bcomp, dcomp, fcomp, OPAL_MAP_PE);
if (rc) {
pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
return -ENXIO;
}
opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
/* Add to all parents PELT-V */
while (parent) {
struct pci_dn *pdn = pci_get_pdn(parent);
if (pdn && pdn->pe_number != IODA_INVALID_PE) {
rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
/* XXX What to do in case of error ? */
}
parent = parent->bus->self;
}
/* Setup reverse map */
for (rid = pe->rid; rid < rid_end; rid++)
phb->ioda.pe_rmap[rid] = pe->pe_number;
/* Setup one MVTs on IODA1 */
if (phb->type == PNV_PHB_IODA1) {
pe->mve_number = pe->pe_number;
rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
pe->pe_number);
if (rc) {
pe_err(pe, "OPAL error %ld setting up MVE %d\n",
rc, pe->mve_number);
pe->mve_number = -1;
} else {
rc = opal_pci_set_mve_enable(phb->opal_id,
pe->mve_number, OPAL_ENABLE_MVE);
if (rc) {
pe_err(pe, "OPAL error %ld enabling MVE %d\n",
rc, pe->mve_number);
pe->mve_number = -1;
}
}
} else if (phb->type == PNV_PHB_IODA2)
pe->mve_number = 0;
return 0;
}
static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
struct pnv_ioda_pe *pe)
{
struct pnv_ioda_pe *lpe;
list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
if (lpe->dma_weight < pe->dma_weight) {
list_add_tail(&pe->dma_link, &lpe->dma_link);
return;
}
}
list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
}
static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
{
/* This is quite simplistic. The "base" weight of a device
* is 10. 0 means no DMA is to be accounted for it.
*/
/* If it's a bridge, no DMA */
if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
return 0;
/* Reduce the weight of slow USB controllers */
if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
dev->class == PCI_CLASS_SERIAL_USB_EHCI)
return 3;
/* Increase the weight of RAID (includes Obsidian) */
if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
return 15;
/* Default */
return 10;
}
#if 0
static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn = pci_get_pdn(dev);
struct pnv_ioda_pe *pe;
int pe_num;
if (!pdn) {
pr_err("%s: Device tree node not associated properly\n",
pci_name(dev));
return NULL;
}
if (pdn->pe_number != IODA_INVALID_PE)
return NULL;
/* PE#0 has been pre-set */
if (dev->bus->number == 0)
pe_num = 0;
else
pe_num = pnv_ioda_alloc_pe(phb);
if (pe_num == IODA_INVALID_PE) {
pr_warning("%s: Not enough PE# available, disabling device\n",
pci_name(dev));
return NULL;
}
/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
* pointer in the PE data structure, both should be destroyed at the
* same time. However, this needs to be looked at more closely again
* once we actually start removing things (Hotplug, SR-IOV, ...)
*
* At some point we want to remove the PDN completely anyways
*/
pe = &phb->ioda.pe_array[pe_num];
pci_dev_get(dev);
pdn->pcidev = dev;
pdn->pe_number = pe_num;
pe->pdev = dev;
pe->pbus = NULL;
pe->tce32_seg = -1;
pe->mve_number = -1;
pe->rid = dev->bus->number << 8 | pdn->devfn;
pe_info(pe, "Associated device to PE\n");
if (pnv_ioda_configure_pe(phb, pe)) {
/* XXX What do we do here ? */
if (pe_num)
pnv_ioda_free_pe(phb, pe_num);
pdn->pe_number = IODA_INVALID_PE;
pe->pdev = NULL;
pci_dev_put(dev);
return NULL;
}
/* Assign a DMA weight to the device */
pe->dma_weight = pnv_ioda_dma_weight(dev);
if (pe->dma_weight != 0) {
phb->ioda.dma_weight += pe->dma_weight;
phb->ioda.dma_pe_count++;
}
/* Link the PE */
pnv_ioda_link_pe_by_weight(phb, pe);
return pe;
}
#endif /* Useful for SRIOV case */
static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
{
struct pci_dev *dev;
list_for_each_entry(dev, &bus->devices, bus_list) {
struct pci_dn *pdn = pci_get_pdn(dev);
if (pdn == NULL) {
pr_warn("%s: No device node associated with device !\n",
pci_name(dev));
continue;
}
pci_dev_get(dev);
pdn->pcidev = dev;
pdn->pe_number = pe->pe_number;
pe->dma_weight += pnv_ioda_dma_weight(dev);
if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
pnv_ioda_setup_same_PE(dev->subordinate, pe);
}
}
/*
* There're 2 types of PCI bus sensitive PEs: One that is compromised of
* single PCI bus. Another one that contains the primary PCI bus and its
* subordinate PCI devices and buses. The second type of PE is normally
* orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
*/
static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
{
struct pci_controller *hose = pci_bus_to_host(bus);
struct pnv_phb *phb = hose->private_data;
struct pnv_ioda_pe *pe;
int pe_num;
pe_num = pnv_ioda_alloc_pe(phb);
if (pe_num == IODA_INVALID_PE) {
pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
__func__, pci_domain_nr(bus), bus->number);
return;
}
pe = &phb->ioda.pe_array[pe_num];
pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
pe->pbus = bus;
pe->pdev = NULL;
pe->tce32_seg = -1;
pe->mve_number = -1;
pe->rid = bus->busn_res.start << 8;
pe->dma_weight = 0;
if (all)
pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
bus->busn_res.start, bus->busn_res.end, pe_num);
else
pe_info(pe, "Secondary bus %d associated with PE#%d\n",
bus->busn_res.start, pe_num);
if (pnv_ioda_configure_pe(phb, pe)) {
/* XXX What do we do here ? */
if (pe_num)
pnv_ioda_free_pe(phb, pe_num);
pe->pbus = NULL;
return;
}
/* Associate it with all child devices */
pnv_ioda_setup_same_PE(bus, pe);
/* Put PE to the list */
list_add_tail(&pe->list, &phb->ioda.pe_list);
/* Account for one DMA PE if at least one DMA capable device exist
* below the bridge
*/
if (pe->dma_weight != 0) {
phb->ioda.dma_weight += pe->dma_weight;
phb->ioda.dma_pe_count++;
}
/* Link the PE */
pnv_ioda_link_pe_by_weight(phb, pe);
}
static void pnv_ioda_setup_PEs(struct pci_bus *bus)
{
struct pci_dev *dev;
pnv_ioda_setup_bus_PE(bus, 0);
list_for_each_entry(dev, &bus->devices, bus_list) {
if (dev->subordinate) {
if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
pnv_ioda_setup_bus_PE(dev->subordinate, 1);
else
pnv_ioda_setup_PEs(dev->subordinate);
}
}
}
/*
* Configure PEs so that the downstream PCI buses and devices
* could have their associated PE#. Unfortunately, we didn't
* figure out the way to identify the PLX bridge yet. So we
* simply put the PCI bus and the subordinate behind the root
* port to PE# here. The game rule here is expected to be changed
* as soon as we can detected PLX bridge correctly.
*/
static void pnv_pci_ioda_setup_PEs(void)
{
struct pci_controller *hose, *tmp;
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
pnv_ioda_setup_PEs(hose->bus);
}
}
static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
{
struct pci_dn *pdn = pci_get_pdn(pdev);
struct pnv_ioda_pe *pe;
/*
* The function can be called while the PE#
* hasn't been assigned. Do nothing for the
* case.
*/
if (!pdn || pdn->pe_number == IODA_INVALID_PE)
return;
pe = &phb->ioda.pe_array[pdn->pe_number];
set_iommu_table_base(&pdev->dev, &pe->tce32_table);
}
static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
{
struct pci_dev *dev;
list_for_each_entry(dev, &bus->devices, bus_list) {
set_iommu_table_base(&dev->dev, &pe->tce32_table);
if (dev->subordinate)
pnv_ioda_setup_bus_dma(pe, dev->subordinate);
}
}
static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
__be64 *startp, __be64 *endp)
{
__be64 __iomem *invalidate = (__be64 __iomem *)tbl->it_index;
unsigned long start, end, inc;
start = __pa(startp);
end = __pa(endp);
/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
if (tbl->it_busno) {
start <<= 12;
end <<= 12;
inc = 128 << 12;
start |= tbl->it_busno;
end |= tbl->it_busno;
} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
/* p7ioc-style invalidation, 2 TCEs per write */
start |= (1ull << 63);
end |= (1ull << 63);
inc = 16;
} else {
/* Default (older HW) */
inc = 128;
}
end |= inc - 1; /* round up end to be different than start */
mb(); /* Ensure above stores are visible */
while (start <= end) {
__raw_writeq(cpu_to_be64(start), invalidate);
start += inc;
}
/*
* The iommu layer will do another mb() for us on build()
* and we don't care on free()
*/
}
static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
struct iommu_table *tbl,
__be64 *startp, __be64 *endp)
{
unsigned long start, end, inc;
__be64 __iomem *invalidate = (__be64 __iomem *)tbl->it_index;
/* We'll invalidate DMA address in PE scope */
start = 0x2ul << 60;
start |= (pe->pe_number & 0xFF);
end = start;
/* Figure out the start, end and step */
inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
start |= (inc << 12);
inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
end |= (inc << 12);
inc = (0x1ul << 12);
mb();
while (start <= end) {
__raw_writeq(cpu_to_be64(start), invalidate);
start += inc;
}
}
void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
__be64 *startp, __be64 *endp)
{
struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
tce32_table);
struct pnv_phb *phb = pe->phb;
if (phb->type == PNV_PHB_IODA1)
pnv_pci_ioda1_tce_invalidate(tbl, startp, endp);
else
pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp);
}
static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe, unsigned int base,
unsigned int segs)
{
struct page *tce_mem = NULL;
const __be64 *swinvp;
struct iommu_table *tbl;
unsigned int i;
int64_t rc;
void *addr;
/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
#define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8)
/* XXX FIXME: Handle 64-bit only DMA devices */
/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
/* XXX FIXME: Allocate multi-level tables on PHB3 */
/* We shouldn't already have a 32-bit DMA associated */
if (WARN_ON(pe->tce32_seg >= 0))
return;
/* Grab a 32-bit TCE table */
pe->tce32_seg = base;
pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
(base << 28), ((base + segs) << 28) - 1);
/* XXX Currently, we allocate one big contiguous table for the
* TCEs. We only really need one chunk per 256M of TCE space
* (ie per segment) but that's an optimization for later, it
* requires some added smarts with our get/put_tce implementation
*/
tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
get_order(TCE32_TABLE_SIZE * segs));
if (!tce_mem) {
pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
goto fail;
}
addr = page_address(tce_mem);
memset(addr, 0, TCE32_TABLE_SIZE * segs);
/* Configure HW */
for (i = 0; i < segs; i++) {
rc = opal_pci_map_pe_dma_window(phb->opal_id,
pe->pe_number,
base + i, 1,
__pa(addr) + TCE32_TABLE_SIZE * i,
TCE32_TABLE_SIZE, 0x1000);
if (rc) {
pe_err(pe, " Failed to configure 32-bit TCE table,"
" err %ld\n", rc);
goto fail;
}
}
/* Setup linux iommu table */
tbl = &pe->tce32_table;
pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
base << 28);
/* OPAL variant of P7IOC SW invalidated TCEs */
swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
if (swinvp) {
/* We need a couple more fields -- an address and a data
* to or. Since the bus is only printed out on table free
* errors, and on the first pass the data will be a relative
* bus number, print that out instead.
*/
tbl->it_busno = 0;
tbl->it_index = (unsigned long)ioremap(be64_to_cpup(swinvp), 8);
tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE |
TCE_PCI_SWINV_PAIR;
}
iommu_init_table(tbl, phb->hose->node);
iommu_register_group(tbl, pci_domain_nr(pe->pbus), pe->pe_number);
if (pe->pdev)
set_iommu_table_base(&pe->pdev->dev, tbl);
else
pnv_ioda_setup_bus_dma(pe, pe->pbus);
return;
fail:
/* XXX Failure: Try to fallback to 64-bit only ? */
if (pe->tce32_seg >= 0)
pe->tce32_seg = -1;
if (tce_mem)
__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
}
static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe)
{
struct page *tce_mem = NULL;
void *addr;
const __be64 *swinvp;
struct iommu_table *tbl;
unsigned int tce_table_size, end;
int64_t rc;
/* We shouldn't already have a 32-bit DMA associated */
if (WARN_ON(pe->tce32_seg >= 0))
return;
/* The PE will reserve all possible 32-bits space */
pe->tce32_seg = 0;
end = (1 << ilog2(phb->ioda.m32_pci_base));
tce_table_size = (end / 0x1000) * 8;
pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
end);
/* Allocate TCE table */
tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
get_order(tce_table_size));
if (!tce_mem) {
pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
goto fail;
}
addr = page_address(tce_mem);
memset(addr, 0, tce_table_size);
/*
* Map TCE table through TVT. The TVE index is the PE number
* shifted by 1 bit for 32-bits DMA space.
*/
rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
pe->pe_number << 1, 1, __pa(addr),
tce_table_size, 0x1000);
if (rc) {
pe_err(pe, "Failed to configure 32-bit TCE table,"
" err %ld\n", rc);
goto fail;
}
/* Setup linux iommu table */
tbl = &pe->tce32_table;
pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0);
/* OPAL variant of PHB3 invalidated TCEs */
swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
if (swinvp) {
/* We need a couple more fields -- an address and a data
* to or. Since the bus is only printed out on table free
* errors, and on the first pass the data will be a relative
* bus number, print that out instead.
*/
tbl->it_busno = 0;
tbl->it_index = (unsigned long)ioremap(be64_to_cpup(swinvp), 8);
tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE;
}
iommu_init_table(tbl, phb->hose->node);
if (pe->pdev)
set_iommu_table_base(&pe->pdev->dev, tbl);
else
pnv_ioda_setup_bus_dma(pe, pe->pbus);
return;
fail:
if (pe->tce32_seg >= 0)
pe->tce32_seg = -1;
if (tce_mem)
__free_pages(tce_mem, get_order(tce_table_size));
}
static void pnv_ioda_setup_dma(struct pnv_phb *phb)
{
struct pci_controller *hose = phb->hose;
unsigned int residual, remaining, segs, tw, base;
struct pnv_ioda_pe *pe;
/* If we have more PE# than segments available, hand out one
* per PE until we run out and let the rest fail. If not,
* then we assign at least one segment per PE, plus more based
* on the amount of devices under that PE
*/
if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
residual = 0;
else
residual = phb->ioda.tce32_count -
phb->ioda.dma_pe_count;
pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
hose->global_number, phb->ioda.tce32_count);
pr_info("PCI: %d PE# for a total weight of %d\n",
phb->ioda.dma_pe_count, phb->ioda.dma_weight);
/* Walk our PE list and configure their DMA segments, hand them
* out one base segment plus any residual segments based on
* weight
*/
remaining = phb->ioda.tce32_count;
tw = phb->ioda.dma_weight;
base = 0;
list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
if (!pe->dma_weight)
continue;
if (!remaining) {
pe_warn(pe, "No DMA32 resources available\n");
continue;
}
segs = 1;
if (residual) {
segs += ((pe->dma_weight * residual) + (tw / 2)) / tw;
if (segs > remaining)
segs = remaining;
}
/*
* For IODA2 compliant PHB3, we needn't care about the weight.
* The all available 32-bits DMA space will be assigned to
* the specific PE.
*/
if (phb->type == PNV_PHB_IODA1) {
pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
pe->dma_weight, segs);
pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
} else {
pe_info(pe, "Assign DMA32 space\n");
segs = 0;
pnv_pci_ioda2_setup_dma_pe(phb, pe);
}
remaining -= segs;
base += segs;
}
}
#ifdef CONFIG_PCI_MSI
static void pnv_ioda2_msi_eoi(struct irq_data *d)
{
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
struct irq_chip *chip = irq_data_get_irq_chip(d);
struct pnv_phb *phb = container_of(chip, struct pnv_phb,
ioda.irq_chip);
int64_t rc;
rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
WARN_ON_ONCE(rc);
icp_native_eoi(d);
}
static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
unsigned int hwirq, unsigned int virq,
unsigned int is_64, struct msi_msg *msg)
{
struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
struct pci_dn *pdn = pci_get_pdn(dev);
struct irq_data *idata;
struct irq_chip *ichip;
unsigned int xive_num = hwirq - phb->msi_base;
__be32 data;
int rc;
/* No PE assigned ? bail out ... no MSI for you ! */
if (pe == NULL)
return -ENXIO;
/* Check if we have an MVE */
if (pe->mve_number < 0)
return -ENXIO;
/* Force 32-bit MSI on some broken devices */
if (pdn && pdn->force_32bit_msi)
is_64 = 0;
/* Assign XIVE to PE */
rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
if (rc) {
pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
pci_name(dev), rc, xive_num);
return -EIO;
}
if (is_64) {
__be64 addr64;
rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
&addr64, &data);
if (rc) {
pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
pci_name(dev), rc);
return -EIO;
}
msg->address_hi = be64_to_cpu(addr64) >> 32;
msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
} else {
__be32 addr32;
rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
&addr32, &data);
if (rc) {
pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
pci_name(dev), rc);
return -EIO;
}
msg->address_hi = 0;
msg->address_lo = be32_to_cpu(addr32);
}
msg->data = be32_to_cpu(data);
/*
* Change the IRQ chip for the MSI interrupts on PHB3.
* The corresponding IRQ chip should be populated for
* the first time.
*/
if (phb->type == PNV_PHB_IODA2) {
if (!phb->ioda.irq_chip_init) {
idata = irq_get_irq_data(virq);
ichip = irq_data_get_irq_chip(idata);
phb->ioda.irq_chip_init = 1;
phb->ioda.irq_chip = *ichip;
phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
}
irq_set_chip(virq, &phb->ioda.irq_chip);
}
pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
" address=%x_%08x data=%x PE# %d\n",
pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
msg->address_hi, msg->address_lo, data, pe->pe_number);
return 0;
}
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
{
unsigned int count;
const __be32 *prop = of_get_property(phb->hose->dn,
"ibm,opal-msi-ranges", NULL);
if (!prop) {
/* BML Fallback */
prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
}
if (!prop)
return;
phb->msi_base = be32_to_cpup(prop);
count = be32_to_cpup(prop + 1);
if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
phb->hose->global_number);
return;
}
phb->msi_setup = pnv_pci_ioda_msi_setup;
phb->msi32_support = 1;
pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
count, phb->msi_base);
}
#else
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
#endif /* CONFIG_PCI_MSI */
/*
* This function is supposed to be called on basis of PE from top
* to bottom style. So the the I/O or MMIO segment assigned to
* parent PE could be overrided by its child PEs if necessary.
*/
static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
struct pnv_ioda_pe *pe)
{
struct pnv_phb *phb = hose->private_data;
struct pci_bus_region region;
struct resource *res;
int i, index;
int rc;
/*
* NOTE: We only care PCI bus based PE for now. For PCI
* device based PE, for example SRIOV sensitive VF should
* be figured out later.
*/
BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
pci_bus_for_each_resource(pe->pbus, res, i) {
if (!res || !res->flags ||
res->start > res->end)
continue;
if (res->flags & IORESOURCE_IO) {
region.start = res->start - phb->ioda.io_pci_base;
region.end = res->end - phb->ioda.io_pci_base;
index = region.start / phb->ioda.io_segsize;
while (index < phb->ioda.total_pe &&
region.start <= region.end) {
phb->ioda.io_segmap[index] = pe->pe_number;
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
if (rc != OPAL_SUCCESS) {
pr_err("%s: OPAL error %d when mapping IO "
"segment #%d to PE#%d\n",
__func__, rc, index, pe->pe_number);
break;
}
region.start += phb->ioda.io_segsize;
index++;
}
} else if (res->flags & IORESOURCE_MEM) {
/* WARNING: Assumes M32 is mem region 0 in PHB. We need to
* harden that algorithm when we start supporting M64
*/
region.start = res->start -
hose->mem_offset[0] -
phb->ioda.m32_pci_base;
region.end = res->end -
hose->mem_offset[0] -
phb->ioda.m32_pci_base;
index = region.start / phb->ioda.m32_segsize;
while (index < phb->ioda.total_pe &&
region.start <= region.end) {
phb->ioda.m32_segmap[index] = pe->pe_number;
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
if (rc != OPAL_SUCCESS) {
pr_err("%s: OPAL error %d when mapping M32 "
"segment#%d to PE#%d",
__func__, rc, index, pe->pe_number);
break;
}
region.start += phb->ioda.m32_segsize;
index++;
}
}
}
}
static void pnv_pci_ioda_setup_seg(void)
{
struct pci_controller *tmp, *hose;
struct pnv_phb *phb;
struct pnv_ioda_pe *pe;
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
phb = hose->private_data;
list_for_each_entry(pe, &phb->ioda.pe_list, list) {
pnv_ioda_setup_pe_seg(hose, pe);
}
}
}
static void pnv_pci_ioda_setup_DMA(void)
{
struct pci_controller *hose, *tmp;
struct pnv_phb *phb;
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
pnv_ioda_setup_dma(hose->private_data);
/* Mark the PHB initialization done */
phb = hose->private_data;
phb->initialized = 1;
}
}
static void pnv_pci_ioda_create_dbgfs(void)
{
#ifdef CONFIG_DEBUG_FS
struct pci_controller *hose, *tmp;
struct pnv_phb *phb;
char name[16];
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
phb = hose->private_data;
sprintf(name, "PCI%04x", hose->global_number);
phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
if (!phb->dbgfs)
pr_warning("%s: Error on creating debugfs on PHB#%x\n",
__func__, hose->global_number);
}
#endif /* CONFIG_DEBUG_FS */
}
static void pnv_pci_ioda_fixup(void)
{
pnv_pci_ioda_setup_PEs();
pnv_pci_ioda_setup_seg();
pnv_pci_ioda_setup_DMA();
pnv_pci_ioda_create_dbgfs();
#ifdef CONFIG_EEH
eeh_probe_mode_set(EEH_PROBE_MODE_DEV);
eeh_addr_cache_build();
eeh_init();
#endif
}
/*
* Returns the alignment for I/O or memory windows for P2P
* bridges. That actually depends on how PEs are segmented.
* For now, we return I/O or M32 segment size for PE sensitive
* P2P bridges. Otherwise, the default values (4KiB for I/O,
* 1MiB for memory) will be returned.
*
* The current PCI bus might be put into one PE, which was
* create against the parent PCI bridge. For that case, we
* needn't enlarge the alignment so that we can save some
* resources.
*/
static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
unsigned long type)
{
struct pci_dev *bridge;
struct pci_controller *hose = pci_bus_to_host(bus);
struct pnv_phb *phb = hose->private_data;
int num_pci_bridges = 0;
bridge = bus->self;
while (bridge) {
if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
num_pci_bridges++;
if (num_pci_bridges >= 2)
return 1;
}
bridge = bridge->bus->self;
}
/* We need support prefetchable memory window later */
if (type & IORESOURCE_MEM)
return phb->ioda.m32_segsize;
return phb->ioda.io_segsize;
}
/* Prevent enabling devices for which we couldn't properly
* assign a PE
*/
static int pnv_pci_enable_device_hook(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn;
/* The function is probably called while the PEs have
* not be created yet. For example, resource reassignment
* during PCI probe period. We just skip the check if
* PEs isn't ready.
*/
if (!phb->initialized)
return 0;
pdn = pci_get_pdn(dev);
if (!pdn || pdn->pe_number == IODA_INVALID_PE)
return -EINVAL;
return 0;
}
static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
u32 devfn)
{
return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
}
static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
{
opal_pci_reset(phb->opal_id, OPAL_PCI_IODA_TABLE_RESET,
OPAL_ASSERT_RESET);
}
void __init pnv_pci_init_ioda_phb(struct device_node *np,
u64 hub_id, int ioda_type)
{
struct pci_controller *hose;
struct pnv_phb *phb;
unsigned long size, m32map_off, iomap_off, pemap_off;
const __be64 *prop64;
const __be32 *prop32;
int len;
u64 phb_id;
void *aux;
long rc;
pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
if (!prop64) {
pr_err(" Missing \"ibm,opal-phbid\" property !\n");
return;
}
phb_id = be64_to_cpup(prop64);
pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
phb = alloc_bootmem(sizeof(struct pnv_phb));
if (!phb) {
pr_err(" Out of memory !\n");
return;
}
/* Allocate PCI controller */
memset(phb, 0, sizeof(struct pnv_phb));
phb->hose = hose = pcibios_alloc_controller(np);
if (!phb->hose) {
pr_err(" Can't allocate PCI controller for %s\n",
np->full_name);
free_bootmem((unsigned long)phb, sizeof(struct pnv_phb));
return;
}
spin_lock_init(&phb->lock);
prop32 = of_get_property(np, "bus-range", &len);
if (prop32 && len == 8) {
hose->first_busno = be32_to_cpu(prop32[0]);
hose->last_busno = be32_to_cpu(prop32[1]);
} else {
pr_warn(" Broken <bus-range> on %s\n", np->full_name);
hose->first_busno = 0;
hose->last_busno = 0xff;
}
hose->private_data = phb;
phb->hub_id = hub_id;
phb->opal_id = phb_id;
phb->type = ioda_type;
/* Detect specific models for error handling */
if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
phb->model = PNV_PHB_MODEL_P7IOC;
else if (of_device_is_compatible(np, "ibm,power8-pciex"))
phb->model = PNV_PHB_MODEL_PHB3;
else
phb->model = PNV_PHB_MODEL_UNKNOWN;
/* Parse 32-bit and IO ranges (if any) */
pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
/* Get registers */
phb->regs = of_iomap(np, 0);
if (phb->regs == NULL)
pr_err(" Failed to map registers !\n");
/* Initialize more IODA stuff */
prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
if (!prop32)
phb->ioda.total_pe = 1;
else
phb->ioda.total_pe = be32_to_cpup(prop32);
phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
/* FW Has already off top 64k of M32 space (MSI space) */
phb->ioda.m32_size += 0x10000;
phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
phb->ioda.io_size = hose->pci_io_size;
phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
m32map_off = size;
size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
iomap_off = size;
if (phb->type == PNV_PHB_IODA1) {
iomap_off = size;
size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
}
pemap_off = size;
size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
aux = alloc_bootmem(size);
memset(aux, 0, size);
phb->ioda.pe_alloc = aux;
phb->ioda.m32_segmap = aux + m32map_off;
if (phb->type == PNV_PHB_IODA1)
phb->ioda.io_segmap = aux + iomap_off;
phb->ioda.pe_array = aux + pemap_off;
set_bit(0, phb->ioda.pe_alloc);
INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
INIT_LIST_HEAD(&phb->ioda.pe_list);
/* Calculate how many 32-bit TCE segments we have */
phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
/* Clear unusable m64 */
hose->mem_resources[1].flags = 0;
hose->mem_resources[1].start = 0;
hose->mem_resources[1].end = 0;
hose->mem_resources[2].flags = 0;
hose->mem_resources[2].start = 0;
hose->mem_resources[2].end = 0;
#if 0 /* We should really do that ... */
rc = opal_pci_set_phb_mem_window(opal->phb_id,
window_type,
window_num,
starting_real_address,
starting_pci_address,
segment_size);
#endif
pr_info(" %d PE's M32: 0x%x [segment=0x%x] IO: 0x%x [segment=0x%x]\n",
phb->ioda.total_pe,
phb->ioda.m32_size, phb->ioda.m32_segsize,
phb->ioda.io_size, phb->ioda.io_segsize);
phb->hose->ops = &pnv_pci_ops;
#ifdef CONFIG_EEH
phb->eeh_ops = &ioda_eeh_ops;
#endif
/* Setup RID -> PE mapping function */
phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
/* Setup TCEs */
phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
/* Setup shutdown function for kexec */
phb->shutdown = pnv_pci_ioda_shutdown;
/* Setup MSI support */
pnv_pci_init_ioda_msis(phb);
/*
* We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
* to let the PCI core do resource assignment. It's supposed
* that the PCI core will do correct I/O and MMIO alignment
* for the P2P bridge bars so that each PCI bus (excluding
* the child P2P bridges) can form individual PE.
*/
ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
pci_add_flags(PCI_REASSIGN_ALL_RSRC);
/* Reset IODA tables to a clean state */
rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
if (rc)
pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
/*
* On IODA1 map everything to PE#0, on IODA2 we assume the IODA reset
* has cleared the RTT which has the same effect
*/
if (ioda_type == PNV_PHB_IODA1)
opal_pci_set_pe(phb_id, 0, 0, 7, 1, 1 , OPAL_MAP_PE);
}
void __init pnv_pci_init_ioda2_phb(struct device_node *np)
{
pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
}
void __init pnv_pci_init_ioda_hub(struct device_node *np)
{
struct device_node *phbn;
const __be64 *prop64;
u64 hub_id;
pr_info("Probing IODA IO-Hub %s\n", np->full_name);
prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
if (!prop64) {
pr_err(" Missing \"ibm,opal-hubid\" property !\n");
return;
}
hub_id = be64_to_cpup(prop64);
pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
/* Count child PHBs */
for_each_child_of_node(np, phbn) {
/* Look for IODA1 PHBs */
if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
}
}